This file is indexed.

/usr/lib/pypy/dist-packages/schema-0.6.7.egg-info/PKG-INFO is in pypy-schema 0.6.7-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
Metadata-Version: 1.1
Name: schema
Version: 0.6.7
Summary: Simple data validation library
Home-page: https://github.com/keleshev/schema
Author: Vladimir Keleshev
Author-email: vladimir@keleshev.com
License: MIT
Description-Content-Type: UNKNOWN
Description: Schema validation just got Pythonic
        ===============================================================================
        
        **schema** is a library for validating Python data structures, such as those
        obtained from config-files, forms, external services or command-line
        parsing, converted from JSON/YAML (or something else) to Python data-types.
        
        
        .. image:: https://secure.travis-ci.org/keleshev/schema.png?branch=master
            :target: https://travis-ci.org/keleshev/schema
        
        .. image:: https://img.shields.io/codecov/c/github/keleshev/schema.svg
            :target: http://codecov.io/github/keleshev/schema
        
        Example
        ----------------------------------------------------------------------------
        
        Here is a quick example to get a feeling of **schema**, validating a list of
        entries with personal information:
        
        .. code:: python
        
            >>> from schema import Schema, And, Use, Optional
        
            >>> schema = Schema([{'name': And(str, len),
            ...                   'age':  And(Use(int), lambda n: 18 <= n <= 99),
            ...                   Optional('gender'): And(str, Use(str.lower),
            ...                                           lambda s: s in ('squid', 'kid'))}])
        
            >>> data = [{'name': 'Sue', 'age': '28', 'gender': 'Squid'},
            ...         {'name': 'Sam', 'age': '42'},
            ...         {'name': 'Sacha', 'age': '20', 'gender': 'KID'}]
        
            >>> validated = schema.validate(data)
        
            >>> assert validated == [{'name': 'Sue', 'age': 28, 'gender': 'squid'},
            ...                      {'name': 'Sam', 'age': 42},
            ...                      {'name': 'Sacha', 'age' : 20, 'gender': 'kid'}]
        
        
        If data is valid, ``Schema.validate`` will return the validated data
        (optionally converted with `Use` calls, see below).
        
        If data is invalid, ``Schema`` will raise ``SchemaError`` exception.
        
        
        Installation
        -------------------------------------------------------------------------------
        
        Use `pip <http://pip-installer.org>`_ or easy_install::
        
            pip install schema
        
        Alternatively, you can just drop ``schema.py`` file into your projectit is
        self-contained.
        
        - **schema** is tested with Python 2.6, 2.7, 3.2, 3.3, 3.4, 3.5 and PyPy.
        - **schema** follows `semantic versioning <http://semver.org>`_.
        
        How ``Schema`` validates data
        -------------------------------------------------------------------------------
        
        Types
        ~~~~~
        
        If ``Schema(...)`` encounters a type (such as ``int``, ``str``, ``object``,
        etc.), it will check if the corresponding piece of data is an instance of that type,
        otherwise it will raise ``SchemaError``.
        
        .. code:: python
        
            >>> from schema import Schema
        
            >>> Schema(int).validate(123)
            123
        
            >>> Schema(int).validate('123')
            Traceback (most recent call last):
            ...
            SchemaUnexpectedTypeError: '123' should be instance of 'int'
        
            >>> Schema(object).validate('hai')
            'hai'
        
        Callables
        ~~~~~~~~~
        
        If ``Schema(...)`` encounters a callable (function, class, or object with
        ``__call__`` method) it will call it, and if its return value evaluates to
        ``True`` it will continue validating, elseit will raise ``SchemaError``.
        
        .. code:: python
        
            >>> import os
        
            >>> Schema(os.path.exists).validate('./')
            './'
        
            >>> Schema(os.path.exists).validate('./non-existent/')
            Traceback (most recent call last):
            ...
            SchemaError: exists('./non-existent/') should evaluate to True
        
            >>> Schema(lambda n: n > 0).validate(123)
            123
        
            >>> Schema(lambda n: n > 0).validate(-12)
            Traceback (most recent call last):
            ...
            SchemaError: <lambda>(-12) should evaluate to True
        
        "Validatables"
        ~~~~~~~~~~~~~~
        
        If ``Schema(...)`` encounters an object with method ``validate`` it will run
        this method on corresponding data as ``data = obj.validate(data)``. This method
        may raise ``SchemaError`` exception, which will tell ``Schema`` that that piece
        of data is invalid, otherwiseit will continue validating.
        
        An example of "validatable" is ``Regex``, that tries to match a string or a
        buffer with the given regular expression (itself as a string, buffer or
        compiled regex ``SRE_Pattern``):
        
        .. code:: python
        
            >>> from schema import Regex
            >>> import re
        
            >>> Regex(r'^foo').validate('foobar')
            'foobar'
        
            >>> Regex(r'^[A-Z]+$', flags=re.I).validate('those-dashes-dont-match')
            Traceback (most recent call last):
            ...
            SchemaError: Regex('^[A-Z]+$', flags=re.IGNORECASE) does not match 'those-dashes-dont-match'
        
        For a more general case, you can use ``Use`` for creating such objects.
        ``Use`` helps to use a function or type to convert a value while validating it:
        
        .. code:: python
        
            >>> from schema import Use
        
            >>> Schema(Use(int)).validate('123')
            123
        
            >>> Schema(Use(lambda f: open(f, 'a'))).validate('LICENSE-MIT')
            <open file 'LICENSE-MIT', mode 'a' at 0x...>
        
        Dropping the details, ``Use`` is basically:
        
        .. code:: python
        
            class Use(object):
        
                def __init__(self, callable_):
                    self._callable = callable_
        
                def validate(self, data):
                    try:
                        return self._callable(data)
                    except Exception as e:
                        raise SchemaError('%r raised %r' % (self._callable.__name__, e))
        
        
        Sometimes you need to transform and validate part of data, but keep original data unchanged.
        ``Const`` helps to keep your data safe:
        
        .. code:: python
        
            >> from schema import Use, Const, And, Schema
        
            >> from datetime import datetime
        
            >> is_future = lambda date: datetime.now() > date
        
            >> to_json = lambda v: {"timestamp": v}
        
            >> Schema(And(Const(And(Use(datetime.fromtimestamp), is_future)), Use(to_json))).validate(1234567890)
            {"timestamp": 1234567890}
        
        Now you can write your own validation-aware classes and data types.
        
        Lists, similar containers
        ~~~~~~~~~~~~~~~~~~~~~~~~~
        
        If ``Schema(...)`` encounters an instance of ``list``, ``tuple``, ``set`` or
        ``frozenset``, it will validate contents of corresponding data container
        against schemas listed inside that container:
        
        
        .. code:: python
        
            >>> Schema([1, 0]).validate([1, 1, 0, 1])
            [1, 1, 0, 1]
        
            >>> Schema((int, float)).validate((5, 7, 8, 'not int or float here'))
            Traceback (most recent call last):
            ...
            SchemaError: Or(<type 'int'>, <type 'float'>) did not validate 'not int or float here'
            'not int or float here' should be instance of 'float'
        
        Dictionaries
        ~~~~~~~~~~~~
        
        If ``Schema(...)`` encounters an instance of ``dict``, it will validate data
        key-value pairs:
        
        .. code:: python
        
            >>> d = Schema({'name': str,
            ...             'age': lambda n: 18 <= n <= 99}).validate({'name': 'Sue', 'age': 28})
        
            >>> assert d == {'name': 'Sue', 'age': 28}
        
        You can specify keys as schemas too:
        
        .. code:: python
        
            >>> schema = Schema({str: int,  # string keys should have integer values
            ...                  int: None})  # int keys should be always None
        
            >>> data = schema.validate({'key1': 1, 'key2': 2,
            ...                         10: None, 20: None})
        
            >>> schema.validate({'key1': 1,
            ...                   10: 'not None here'})
            Traceback (most recent call last):
            ...
            SchemaError: Key '10' error:
            None does not match 'not None here'
        
        This is useful if you want to check certain key-values, but don't care
        about other:
        
        .. code:: python
        
            >>> schema = Schema({'<id>': int,
            ...                  '<file>': Use(open),
            ...                  str: object})  # don't care about other str keys
        
            >>> data = schema.validate({'<id>': 10,
            ...                         '<file>': 'README.rst',
            ...                         '--verbose': True})
        
        You can mark a key as optional as follows:
        
        .. code:: python
        
            >>> from schema import Optional
            >>> Schema({'name': str,
            ...         Optional('occupation'): str}).validate({'name': 'Sam'})
            {'name': 'Sam'}
        
        ``Optional`` keys can also carry a ``default``, to be used when no key in the
        data matches:
        
        .. code:: python
        
            >>> from schema import Optional
            >>> Schema({Optional('color', default='blue'): str,
            ...         str: str}).validate({'texture': 'furry'}
            ...       ) == {'color': 'blue', 'texture': 'furry'}
            True
        
        Defaults are used verbatim, not passed through any validators specified in the
        value.
        
        You can mark a key as forbidden as follows:
        
        .. code:: python
        
            >>> from schema import Forbidden
            >>> Schema({Forbidden('age'): object}).validate({'age': 50})
            Traceback (most recent call last):
            ...
            SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50}
        
        A few things are worth noting. First, the value paired with the forbidden
        key determines whether it will be rejected:
        
        .. code:: python
        
            >>> Schema({Forbidden('age'): str, 'age': int}).validate({'age': 50})
            {'age': 50}
        
        Note: if we hadn't supplied the 'age' key here, the call would have failed too, but with
        SchemaWrongKeyError, not SchemaForbiddenKeyError.
        
        Second, Forbidden has a higher priority than standard keys, and consequently than Optional.
        This means we can do that:
        
        .. code:: python
        
            >>> Schema({Forbidden('age'): object, Optional(str): object}).validate({'age': 50})
            Traceback (most recent call last):
            ...
            SchemaForbiddenKeyError: Forbidden key encountered: 'age' in {'age': 50}
        
        **schema** has classes ``And`` and ``Or`` that help validating several schemas
        for the same data:
        
        .. code:: python
        
            >>> from schema import And, Or
        
            >>> Schema({'age': And(int, lambda n: 0 < n < 99)}).validate({'age': 7})
            {'age': 7}
        
            >>> Schema({'password': And(str, lambda s: len(s) > 6)}).validate({'password': 'hai'})
            Traceback (most recent call last):
            ...
            SchemaError: Key 'password' error:
            <lambda>('hai') should evaluate to True
        
            >>> Schema(And(Or(int, float), lambda x: x > 0)).validate(3.1415)
            3.1415
        
        Extra Keys
        ~~~~~~~~~~
        
        The ``Schema(...)`` parameter ``ignore_extra_keys`` causes validation to ignore extra keys in a dictionary, and also to not return them after validating.
        
        .. code:: python
        
            >>> schema = Schema({'name': str}, ignore_extra_keys=True)
            >>> schema.validate({'name': 'Sam', 'age': '42'})
            {'name': 'Sam'}
        
        If you would like any extra keys returned, use ``object: object`` as one of the key/value pairs, which will match any key and any value.
        Otherwise, extra keys will raise a ``SchemaError``.
        
        User-friendly error reporting
        -------------------------------------------------------------------------------
        
        You can pass a keyword argument ``error`` to any of validatable classes
        (such as ``Schema``, ``And``, ``Or``, ``Regex``, ``Use``) to report this error
        instead of a built-in one.
        
        .. code:: python
        
            >>> Schema(Use(int, error='Invalid year')).validate('XVII')
            Traceback (most recent call last):
            ...
            SchemaError: Invalid year
        
        You can see all errors that occurred by accessing exception's ``exc.autos``
        for auto-generated error messages, and ``exc.errors`` for errors
        which had ``error`` text passed to them.
        
        You can exit with ``sys.exit(exc.code)`` if you want to show the messages
        to the user without traceback. ``error`` messages are given precedence in that
        case.
        
        A JSON API example
        -------------------------------------------------------------------------------
        
        Here is a quick example: validation of
        `create a gist <http://developer.github.com/v3/gists/>`_
        request from github API.
        
        .. code:: python
        
            >>> gist = '''{"description": "the description for this gist",
            ...            "public": true,
            ...            "files": {
            ...                "file1.txt": {"content": "String file contents"},
            ...                "other.txt": {"content": "Another file contents"}}}'''
        
            >>> from schema import Schema, And, Use, Optional
        
            >>> import json
        
            >>> gist_schema = Schema(And(Use(json.loads),  # first convert from JSON
            ...                          # use basestring since json returns unicode
            ...                          {Optional('description'): basestring,
            ...                           'public': bool,
            ...                           'files': {basestring: {'content': basestring}}}))
        
            >>> gist = gist_schema.validate(gist)
        
            # gist:
            {u'description': u'the description for this gist',
             u'files': {u'file1.txt': {u'content': u'String file contents'},
                        u'other.txt': {u'content': u'Another file contents'}},
             u'public': True}
        
        Using **schema** with `docopt <http://github.com/docopt/docopt>`_
        -------------------------------------------------------------------------------
        
        Assume you are using **docopt** with the following usage-pattern:
        
            Usage: my_program.py [--count=N] <path> <files>...
        
        and you would like to validate that ``<files>`` are readable, and that
        ``<path>`` exists, and that ``--count`` is either integer from 0 to 5, or
        ``None``.
        
        Assuming **docopt** returns the following dict:
        
        .. code:: python
        
            >>> args = {'<files>': ['LICENSE-MIT', 'setup.py'],
            ...         '<path>': '../',
            ...         '--count': '3'}
        
        this is how you validate it using ``schema``:
        
        .. code:: python
        
            >>> from schema import Schema, And, Or, Use
            >>> import os
        
            >>> s = Schema({'<files>': [Use(open)],
            ...             '<path>': os.path.exists,
            ...             '--count': Or(None, And(Use(int), lambda n: 0 < n < 5))})
        
            >>> args = s.validate(args)
        
            >>> args['<files>']
            [<open file 'LICENSE-MIT', mode 'r' at 0x...>, <open file 'setup.py', mode 'r' at 0x...>]
        
            >>> args['<path>']
            '../'
        
            >>> args['--count']
            3
        
        As you can see, **schema** validated data successfully, opened files and
        converted ``'3'`` to ``int``.
        
Keywords: schema json validation
Platform: UNKNOWN
Classifier: Development Status :: 3 - Alpha
Classifier: Topic :: Utilities
Classifier: Programming Language :: Python :: 2.6
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3.2
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: Programming Language :: Python :: Implementation :: PyPy
Classifier: License :: OSI Approved :: MIT License