/usr/lib/python2.7/dist-packages/arrayfire/vision.py is in python-arrayfire 3.3.20160624-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | #######################################################
# Copyright (c) 2015, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################
"""
Computer vision functions (FAST, ORB, etc)
"""
from .library import *
from .array import *
from .features import *
def fast(image, threshold=20.0, arc_length=9, non_max=True, feature_ratio=0.05, edge=3):
"""
FAST feature detector.
Parameters
----------
image : af.Array
A 2D array representing an image.
threshold : scalar. optional. default: 20.0.
FAST threshold for which a pixel of the circle around a central pixel is consdered.
arc_length : scalar. optional. default: 9
The minimum length of arc length to be considered. Max length should be 16.
non_max : Boolean. optional. default: True
A boolean flag specifying if non max suppression has to be performed.
feature_ratio : scalar. optional. default: 0.05 (5%)
Specifies the maximum ratio of features to pixels in the image.
edge : scalar. optional. default: 3.
Specifies the number of edge rows and columns to be ignored.
Returns
---------
features : af.Features()
Contains the location and score. Orientation and size are not computed.
"""
out = Features()
safe_call(backend.get().af_fast(ct.pointer(out.feat),
image.arr, ct.c_float(threshold), ct.c_uint(arc_length), non_max,
ct.c_float(feature_ratio), ct.c_uint(edge)))
return out
def harris(image, max_corners=500, min_response=1E5, sigma=1.0, block_size=0, k_thr=0.04):
"""
Harris corner detector.
Parameters
----------
image : af.Array
A 2D array specifying an image.
max_corners : scalar. optional. default: 500.
Specifies the maximum number of corners to be calculated.
min_response : scalar. optional. default: 1E5
Specifies the cutoff score for a corner to be considered
sigma : scalar. optional. default: 1.0
- Specifies the standard deviation of a circular window.
- Only used when block_size == 0. Must be >= 0.5 and <= 5.0.
block_size : scalar. optional. default: 0
Specifies the window size.
k_thr : scalar. optional. default: 0.04
Harris constant. must be >= 0.01
Returns
---------
features : af.Features()
Contains the location and score. Orientation and size are not computed.
Note
------
The covariation matrix will be square when `block_size` is used and circular when `sigma` is used.
"""
out = Features()
safe_call(backend.get().af_harris(ct.pointer(out.feat),
image.arr, ct.c_uint(max_corners), ct.c_float(min_response),
ct.c_float(sigma), ct.c_uint(block_size), ct.c_float(k_thr)))
return out
def orb(image, threshold=20.0, max_features=400, scale = 1.5, num_levels = 4, blur_image = False):
"""
ORB Feature descriptor.
Parameters
----------
image : af.Array
A 2D array representing an image.
threshold : scalar. optional. default: 20.0.
FAST threshold for which a pixel of the circle around a central pixel is consdered.
max_features : scalar. optional. default: 400.
Specifies the maximum number of features to be considered.
scale : scalar. optional. default: 1.5.
Specifies the factor by which images are down scaled at each level.
num_levles : scalar. optional. default: 4.
Specifies the number of levels used in the image pyramid.
blur_image : Boolean. optional. default: False.
Flag specifying if the input has to be blurred before computing descriptors.
A gaussian filter with sigma = 2 is applied if True.
Returns
---------
(features, descriptor) : tuple of (af.Features(), af.Array)
- descriptor is an af.Array of size N x 8
"""
feat = Features()
desc = Array()
safe_call(backend.get().af_orb(ct.pointer(feat.feat), ct.pointer(desc.arr),
ct.c_float(threshold), ct.c_uint(max_features),
ct.c_float(scale), ct.c_uint(num_levels), blur_image))
return feat, desc
def hamming_matcher(query, database, dim = 0, num_nearest = 1):
"""
Hamming distance matcher.
Parameters
-----------
query : af.Array
A query feature descriptor
database : af.Array
A multi dimensional array containing the feature descriptor database.
dim : scalar. optional. default: 0.
Specifies the dimension along which feature descriptor lies.
num_nearest: scalar. optional. default: 1.
Specifies the number of nearest neighbors to find.
Returns
---------
(location, distance): tuple of af.Array
location and distances of closest matches.
"""
index = Array()
dist = Array()
safe_call(backend.get().af_hamming_matcher(ct.pointer(idx.arr), ct.pointer(dist.arr),
query.arr, database.arr,
c_dim_t(dim), c_dim_t(num_nearest)))
return index, dist
def nearest_neighbour(query, database, dim = 0, num_nearest = 1, match_type=MATCH.SSD):
"""
Nearest Neighbour matcher.
Parameters
-----------
query : af.Array
A query feature descriptor
database : af.Array
A multi dimensional array containing the feature descriptor database.
dim : scalar. optional. default: 0.
Specifies the dimension along which feature descriptor lies.
num_nearest: scalar. optional. default: 1.
Specifies the number of nearest neighbors to find.
match_type: optional: af.MATCH. default: af.MATCH.SSD
Specifies the match function metric.
Returns
---------
(location, distance): tuple of af.Array
location and distances of closest matches.
"""
index = Array()
dist = Array()
safe_call(backend.get().af_nearest_neighbour(ct.pointer(idx.arr), ct.pointer(dist.arr),
query.arr, database.arr,
c_dim_t(dim), c_dim_t(num_nearest),
match_type.value))
return index, dist
def match_template(image, template, match_type = MATCH.SAD):
"""
Find the closest match of a template in an image.
Parameters
----------
image : af.Array
A multi dimensional array specifying an image or batch of images.
template : af.Array
A multi dimensional array specifying a template or batch of templates.
match_type: optional: af.MATCH. default: af.MATCH.SAD
Specifies the match function metric.
Returns
--------
out : af.Array
An array containing the score of the match at each pixel.
"""
out = Array()
safe_call(backend.get().af_match_template(ct.pointer(out.arr),
image.arr, template.arr,
match_type.value))
return out
def susan(image, radius=3, diff_thr=32, geom_thr=10, feature_ratio=0.05, edge=3):
"""
SUSAN corner detector.
Parameters
----------
image : af.Array
A 2D array specifying an image.
radius : scalar. optional. default: 500.
Specifies the radius of each pixel neighborhood.
diff_thr : scalar. optional. default: 1E5
Specifies the intensity difference threshold.
geom_thr : scalar. optional. default: 1.0
Specifies the geometric threshold.
feature_ratio : scalar. optional. default: 0.05 (5%)
Specifies the ratio of corners found to number of pixels.
edge : scalar. optional. default: 3
Specifies the number of edge rows and columns that are ignored.
Returns
---------
features : af.Features()
Contains the location and score. Orientation and size are not computed.
"""
out = Features()
safe_call(backend.get().af_susan(ct.pointer(out.feat),
image.arr, ct.c_uint(radius), ct.c_float(diff_thr),
ct.c_float(geom_thr), ct.c_float(feature_ratio),
ct.c_uint(edge)))
return out
def dog(image, radius1, radius2):
"""
Difference of gaussians.
Parameters
----------
image : af.Array
A 2D array specifying an image.
radius1 : scalar.
The radius of first gaussian kernel.
radius2 : scalar.
The radius of second gaussian kernel.
Returns
--------
out : af.Array
A multi dimensional array containing the difference of gaussians.
Note
------
The sigma values are calculated to be 0.25 * radius.
"""
out = Array()
safe_call(backend.get().af_dog(ct.pointer(out.arr),
image.arr, radius1, radius2))
return out
def sift(image, num_layers=3, contrast_threshold=0.04, edge_threshold=10.0, initial_sigma = 1.6,
double_input = True, intensity_scale = 0.00390625, feature_ratio = 0.05):
"""
SIFT feature detector and descriptor.
Parameters
----------
image : af.Array
A 2D array representing an image
num_layers : optional: integer. Default: 3
Number of layers per octave. The number of octaves is calculated internally.
contrast_threshold : optional: float. Default: 0.04
Threshold used to filter out features that have low contrast.
edge_threshold : optional: float. Default: 10.0
Threshold used to filter out features that are too edge-like.
initial_sigma : optional: float. Default: 1.6
The sigma value used to filter the input image at the first octave.
double_input : optional: bool. Default: True
If True, the input image will be scaled to double the size for the first octave.
intensity_scale : optional: float. Default: 1.0/255
The inverse of the difference between maximum and minimum intensity values.
feature_ratio : optional: float. Default: 0.05
Specifies the maximum number of features to detect as a ratio of image pixels.
Returns
--------
(features, descriptor) : tuple of (af.Features(), af.Array)
- descriptor is an af.Array of size N x 128
"""
feat = Features()
desc = Array()
safe_call(af_sift(ct.pointer(feat), ct.pointer(desc),
image.arr, num_layers, contrast_threshold, edge_threshold,
initial_sigma, double_input, intensity_scale, feature_ratio))
return (feat, desc)
def gloh(image, num_layers=3, contrast_threshold=0.04, edge_threshold=10.0, initial_sigma = 1.6,
double_input = True, intensity_scale = 0.00390625, feature_ratio = 0.05):
"""
GLOH feature detector and descriptor.
Parameters
----------
image : af.Array
A 2D array representing an image
num_layers : optional: integer. Default: 3
Number of layers per octave. The number of octaves is calculated internally.
contrast_threshold : optional: float. Default: 0.04
Threshold used to filter out features that have low contrast.
edge_threshold : optional: float. Default: 10.0
Threshold used to filter out features that are too edge-like.
initial_sigma : optional: float. Default: 1.6
The sigma value used to filter the input image at the first octave.
double_input : optional: bool. Default: True
If True, the input image will be scaled to double the size for the first octave.
intensity_scale : optional: float. Default: 1.0/255
The inverse of the difference between maximum and minimum intensity values.
feature_ratio : optional: float. Default: 0.05
Specifies the maximum number of features to detect as a ratio of image pixels.
Returns
--------
(features, descriptor) : tuple of (af.Features(), af.Array)
- descriptor is an af.Array of size N x 272
"""
feat = Features()
desc = Array()
safe_call(af_gloh(ct.pointer(feat), ct.pointer(desc),
image.arr, num_layers, contrast_threshold, edge_threshold,
initial_sigma, double_input, intensity_scale, feature_ratio))
return (feat, desc)
def homography(x_src, y_src, x_dst, y_dst, htype = HOMOGRAPHY.RANSAC,
ransac_threshold = 3.0, iters = 1000, out_type = Dtype.f32):
"""
Homography estimation
Parameters
----------
x_src : af.Array
A list of x co-ordinates of the source points.
y_src : af.Array
A list of y co-ordinates of the source points.
x_dst : af.Array
A list of x co-ordinates of the destination points.
y_dst : af.Array
A list of y co-ordinates of the destination points.
htype : optional: af.HOMOGRAPHY. Default: HOMOGRAPHY.RANSAC
htype can be one of
- HOMOGRAPHY.RANSAC: RANdom SAmple Consensus will be used to evaluate quality.
- HOMOGRAPHY.LMEDS : Least MEDian of Squares is used to evaluate quality.
ransac_threshold : optional: scalar. Default: 3.0
If `htype` is HOMOGRAPHY.RANSAC, it specifies the L2-distance threshold for inliers.
out_type : optional. af.Dtype. Default: Dtype.f32.
Specifies the output data type.
Returns
-------
(H, inliers) : A tuple of (af.Array, integer)
"""
H = Array()
inliers = ct.c_int(0)
safe_call(backend.get().af_homography(ct.pointer(H), ct.pointer(inliers),
x_src.arr, y_src.arr, x_dst.arr, y_dst.arr,
htype.value, ransac_threshold, iters, out_type.value))
return (H, inliers)
|