/usr/share/python-ase/doc/numpy.rst is in python-ase-doc 3.15.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | .. _numpy:
Numeric arrays in Python
========================
Links to NumPy's webpage:
* `Numpy and Scipy Documentation`_
* `Numpy user guide <http://docs.scipy.org/doc/numpy/user/index.html>`_
.. _Numpy and Scipy Documentation: http://docs.scipy.org/doc
ASE makes heavy use of an extension to Python called NumPy. The
NumPy module defines an ``ndarray`` type that can hold large arrays of
uniform multidimensional numeric data. An array is similar to a
``list`` or a ``tuple``, but it is a lot more powerful and efficient.
XXX More examples from everyday ASE-life here ...
>>> import numpy as np
>>> a = np.zeros((3, 2))
>>> a[:, 1] = 1.0
>>> a[1] = 2.0
>>> a
array([[ 0., 1.],
[ 2., 2.],
[ 0., 1.]])
>>> a.shape
(3, 2)
>>> a.ndim
2
The conventions of numpy's linear algebra package:
>>> import numpy as np
>>>
>>> # Make a random hermitian matrix, H
>>> H = np.random.rand(6, 6) + 1.j * np.random.rand(6, 6)
>>> H = H + H.T.conj()
>>>
>>> # Determine eigenvalues and rotation matrix
>>> eps, U = np.linalg.eigh(H)
>>>
>>> # Sort eigenvalues
>>> sorted_indices = eps.real.argsort()
>>> eps = eps[sorted_indices]
>>> U = U[:, sorted_indices]
>>>
>>> # Make print of numpy arrays less messy:
>>> np.set_printoptions(precision=3, suppress=True)
>>>
>>> # Check that U diagonalizes H:
>>> print(np.dot(np.dot(U.T.conj(), H), U) - np.diag(eps))
>>> print(np.allclose(np.dot(np.dot(U.T.conj(), H), U), np.diag(eps)))
>>>
>>> # The eigenvectors of H are the *coloumns* of U:
>>> np.allclose(np.dot(H, U[:, 3]), eps[3] * U[:, 3])
>>> np.allclose(np.dot(H, U), eps * U)
The rules for multiplying 1D arrays with 2D arrays:
* 1D arrays and treated like shape (1, N) arrays (row vectors).
* left and right multiplications are treated identically.
* A length `m` *row* vector can be multiplied with an `n \times m`
matrix, producing the same result as if replaced by a matrix with
`n` copies of the vector as rows.
* A length `n` *column* vector can be multiplied with an `n \times m`
matrix, producing the same result as if replaced by a matrix with
`m` copies of the vector as columns.
Thus, for the arrays below:
>>> M = np.arange(5 * 6).reshape(5, 6) # A matrix af shape (5, 6)
>>> v5 = np.arange(5) + 10 # A vector of length 5
>>> v51 = v5[:, None] # A length 5 column vector
>>> v6 = np.arange(6) - 12 # A vector of length 6
>>> v16 = v6[None, :] # A length 6 row vector
The following identities hold::
v6 * M == v16 * M == M * v6 == M * v16 == M * v16.repeat(5, 0)
v51 * M == M * v51 == M * v51.repeat(6, 1)
The exact same rules apply for adding and subtracting 1D arrays to /
from 2D arrays.
|