/usr/lib/python2.7/dist-packages/astroML/utils.py is in python-astroml 0.3-7.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 | import numpy as np
from scipy import linalg
try:
# exists in python 2.7+
from itertools import combinations_with_replacement
except:
def combinations_with_replacement(iterable, r):
"""
Return successive r-length combinations of elements in the iterable
allowing individual elements to have successive repeats.
combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC
"""
from itertools import product
pool = tuple(iterable)
n = len(pool)
for indices in product(range(n), repeat=r):
if sorted(indices) == list(indices):
yield tuple(pool[i] for i in indices)
def logsumexp(arr, axis=None):
"""Computes the sum of arr assuming arr is in the log domain.
Returns log(sum(exp(arr))) while minimizing the possibility of
over/underflow.
Examples
--------
>>> import numpy as np
>>> a = np.arange(10)
>>> np.log(np.sum(np.exp(a)))
9.4586297444267107
>>> logsumexp(a)
9.4586297444267107
"""
# if axis is specified, roll axis to 0 so that broadcasting works below
if axis is not None:
arr = np.rollaxis(arr, axis)
axis = 0
# Use the max to normalize, as with the log this is what accumulates
# the fewest errors
vmax = arr.max(axis=axis)
out = np.log(np.sum(np.exp(arr - vmax), axis=axis))
out += vmax
return out
def log_multivariate_gaussian(x, mu, V, Vinv=None, method=1):
"""Evaluate a multivariate gaussian N(x|mu, V)
This allows for multiple evaluations at once, using array broadcasting
Parameters
----------
x: array_like
points, shape[-1] = n_features
mu: array_like
centers, shape[-1] = n_features
V: array_like
covariances, shape[-2:] = (n_features, n_features)
Vinv: array_like or None
pre-computed inverses of V: should have the same shape as V
method: integer, optional
method = 0: use cholesky decompositions of V
method = 1: use explicit inverse of V
Returns
-------
values: ndarray
shape = broadcast(x.shape[:-1], mu.shape[:-1], V.shape[:-2])
Examples
--------
>>> x = [1, 2]
>>> mu = [0, 0]
>>> V = [[2, 1], [1, 2]]
>>> log_multivariate_gaussian(x, mu, V)
-3.3871832107434003
"""
x = np.asarray(x, dtype=float)
mu = np.asarray(mu, dtype=float)
V = np.asarray(V, dtype=float)
ndim = x.shape[-1]
x_mu = x - mu
if V.shape[-2:] != (ndim, ndim):
raise ValueError("Shape of (x-mu) and V do not match")
Vshape = V.shape
V = V.reshape([-1, ndim, ndim])
if Vinv is not None:
assert Vinv.shape == Vshape
method = 1
if method == 0:
Vchol = np.array([linalg.cholesky(V[i], lower=True)
for i in range(V.shape[0])])
# we may be more efficient by using scipy.linalg.solve_triangular
# with each cholesky decomposition
VcholI = np.array([linalg.inv(Vchol[i])
for i in range(V.shape[0])])
logdet = np.array([2 * np.sum(np.log(np.diagonal(Vchol[i])))
for i in range(V.shape[0])])
VcholI = VcholI.reshape(Vshape)
logdet = logdet.reshape(Vshape[:-2])
VcIx = np.sum(VcholI * x_mu.reshape(x_mu.shape[:-1]
+ (1,) + x_mu.shape[-1:]), -1)
xVIx = np.sum(VcIx ** 2, -1)
elif method == 1:
if Vinv is None:
Vinv = np.array([linalg.inv(V[i])
for i in range(V.shape[0])]).reshape(Vshape)
else:
assert Vinv.shape == Vshape
logdet = np.log(np.array([linalg.det(V[i])
for i in range(V.shape[0])]))
logdet = logdet.reshape(Vshape[:-2])
xVI = np.sum(x_mu.reshape(x_mu.shape + (1,)) * Vinv, -2)
xVIx = np.sum(xVI * x_mu, -1)
else:
raise ValueError("unrecognized method %s" % method)
return -0.5 * ndim * np.log(2 * np.pi) - 0.5 * (logdet + xVIx)
# From scikit-learn utilities:
def check_random_state(seed):
"""Turn seed into a np.random.RandomState instance
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
if isinstance(seed, (int, np.integer)):
return np.random.RandomState(seed)
if isinstance(seed, np.random.RandomState):
return seed
raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
' instance' % seed)
def split_samples(X, y, fractions=[0.75, 0.25], random_state=None):
"""Split samples into training, test, and cross-validation sets
Parameters
----------
X, y : array_like
leading dimension n_samples
fraction : array_like
length n_splits. If the fractions do not add to 1, they will be
re-normalized.
random_state : None, int, or RandomState object
random seed, or random number generator
"""
X = np.asarray(X)
y = np.asarray(y)
if X.shape[0] != y.shape[0]:
raise ValueError("X and y should have the same leading dimension")
n_samples = X.shape[0]
fractions = np.asarray(fractions).ravel().cumsum()
fractions /= fractions[-1]
fractions *= n_samples
N = np.concatenate([[0], fractions.astype(int)])
N[-1] = n_samples # in case of roundoff errors
random_state = check_random_state(random_state)
indices = np.arange(len(y))
random_state.shuffle(indices)
X_divisions = tuple(X[indices[N[i]:N[i + 1]]]
for i in range(len(fractions)))
y_divisions = tuple(y[indices[N[i]:N[i + 1]]]
for i in range(len(fractions)))
return X_divisions, y_divisions
def completeness_contamination(predicted, true):
"""Compute the completeness and contamination values
Parameters
----------
predicted_value, true_value : array_like
integer arrays of predicted and true values. This assumes that
'false' values are given by 0, and 'true' values are nonzero.
Returns
-------
completeness, contamination : float or array_like
the completeness and contamination of the results. shape is
np.broadcast(predicted, true).shape[:-1]
"""
predicted = np.asarray(predicted)
true = np.asarray(true)
outshape = np.broadcast(predicted, true).shape[:-1]
predicted = np.atleast_2d(predicted)
true = np.atleast_2d(true)
matches = (predicted == true)
tp = np.sum(matches & (true != 0), -1)
tn = np.sum(matches & (true == 0), -1)
fp = np.sum(~matches & (true == 0), -1)
fn = np.sum(~matches & (true != 0), -1)
tot = (tp + fn)
tot[tot == 0] = 1
completeness = tp * 1. / tot
tot = (tp + fp)
tot[tot == 0] = 1
contamination = fp * 1. / tot
completeness[np.isnan(completeness)] = 0
contamination[np.isnan(contamination)] = 0
return completeness.reshape(outshape), contamination.reshape(outshape)
def convert_2D_cov(*args):
"""Convert a 2D covariance from matrix form to principal form, and back
if one parameter is passed, it is a covariance matrix, and the principal
axes and rotation (sigma1, sigma2, alpha) are returned.
if three parameters are passed, they are assumed to be (sigma1, sigma2,
alpha) and the covariance is returned
"""
if len(args) == 1:
C = np.asarray(args[0])
if C.shape != (2, 2):
raise ValueError("Input not understood")
sigma_x2 = C[0, 0]
sigma_y2 = C[1, 1]
sigma_xy = C[0, 1]
alpha = 0.5 * np.arctan2(2 * sigma_xy,
(sigma_x2 - sigma_y2))
tmp1 = 0.5 * (sigma_x2 + sigma_y2)
tmp2 = np.sqrt(0.25 * (sigma_x2 - sigma_y2) ** 2 + sigma_xy ** 2)
sigma1 = np.sqrt(tmp1 + tmp2)
sigma2 = np.sqrt(tmp1 - tmp2)
return (sigma1, sigma2, alpha)
elif len(args) == 3:
sigma1, sigma2, alpha = args
s = np.sin(alpha)
c = np.cos(alpha)
sigma_x2 = (sigma1 * c) ** 2 + (sigma2 * s) ** 2
sigma_y2 = (sigma1 * s) ** 2 + (sigma2 * c) ** 2
sigma_xy = (sigma1 ** 2 - sigma2 ** 2) * s * c
return np.array([[sigma_x2, sigma_xy],
[sigma_xy, sigma_y2]])
else:
raise ValueError("Input not understood")
|