/usr/lib/python2.7/dist-packages/boltons/cacheutils.py is in python-boltons 17.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 | # -*- coding: utf-8 -*-
"""``cacheutils`` contains consistent implementations of fundamental
cache types. Currently there are two to choose from:
* :class:`LRI` - Least-recently inserted
* :class:`LRU` - Least-recently used
Both caches are :class:`dict` subtypes, designed to be as
interchangeable as possible, to facilitate experimentation. A key
practice with performance enhancement with caching is ensuring that
the caching strategy is working. If the cache is constantly missing,
it is just adding more overhead and code complexity. The standard
statistics are:
* ``hit_count`` - the number of times the queried key has been in
the cache
* ``miss_count`` - the number of times a key has been absent and/or
fetched by the cache
* ``soft_miss_count`` - the number of times a key has been absent,
but a default has been provided by the caller, as with
:meth:`dict.get` and :meth:`dict.setdefault`. Soft misses are a
subset of misses, so this number is always less than or equal to
``miss_count``.
Additionally, ``cacheutils`` provides :class:`ThresholdCounter`, a
cache-like bounded counter useful for online statistics collection.
Learn more about `caching algorithms on Wikipedia
<https://en.wikipedia.org/wiki/Cache_algorithms#Examples>`_.
"""
# TODO: TimedLRI
# TODO: support 0 max_size?
import itertools
from collections import deque
from operator import attrgetter
try:
from threading import RLock
except Exception:
class RLock(object):
'Dummy reentrant lock for builds without threads'
def __enter__(self):
pass
def __exit__(self, exctype, excinst, exctb):
pass
try:
from boltons.typeutils import make_sentinel
_MISSING = make_sentinel(var_name='_MISSING')
_KWARG_MARK = make_sentinel(var_name='_KWARG_MARK')
except ImportError:
_MISSING = object()
_KWARG_MARK = object()
try:
xrange
except NameError:
# py3
xrange = range
unicode, str, bytes, basestring = str, bytes, bytes, (str, bytes)
PREV, NEXT, KEY, VALUE = range(4) # names for the link fields
DEFAULT_MAX_SIZE = 128
class LRU(dict):
"""The ``LRU`` is :class:`dict` subtype implementation of the
*Least-Recently Used* caching strategy.
Args:
max_size (int): Max number of items to cache. Defaults to ``128``.
values (iterable): Initial values for the cache. Defaults to ``None``.
on_miss (callable): a callable which accepts a single argument, the
key not present in the cache, and returns the value to be cached.
>>> cap_cache = LRU(max_size=2)
>>> cap_cache['a'], cap_cache['b'] = 'A', 'B'
>>> from pprint import pprint as pp
>>> pp(dict(cap_cache))
{'a': 'A', 'b': 'B'}
>>> [cap_cache['b'] for i in range(3)][0]
'B'
>>> cap_cache['c'] = 'C'
>>> print(cap_cache.get('a'))
None
This cache is also instrumented with statistics
collection. ``hit_count``, ``miss_count``, and ``soft_miss_count``
are all integer members that can be used to introspect the
performance of the cache. ("Soft" misses are misses that did not
raise :exc:`KeyError`, e.g., ``LRU.get()`` or ``on_miss`` was used to
cache a default.
>>> cap_cache.hit_count, cap_cache.miss_count, cap_cache.soft_miss_count
(3, 1, 1)
Other than the size-limiting caching behavior and statistics,
``LRU`` acts like its parent class, the built-in Python :class:`dict`.
"""
def __init__(self, max_size=DEFAULT_MAX_SIZE, values=None,
on_miss=None):
if max_size <= 0:
raise ValueError('expected max_size > 0, not %r' % max_size)
self.hit_count = self.miss_count = self.soft_miss_count = 0
self.max_size = max_size
self._lock = RLock()
self._init_ll()
if on_miss is not None and not callable(on_miss):
raise TypeError('expected on_miss to be a callable'
' (or None), not %r' % on_miss)
self.on_miss = on_miss
if values:
self.update(values)
# TODO: fromkeys()?
# linked list manipulation methods.
#
# invariants:
# 1) 'anchor' is the sentinel node in the doubly linked list. there is
# always only one, and its KEY and VALUE are both _MISSING.
# 2) the most recently accessed node comes immediately before 'anchor'.
# 3) the least recently accessed node comes immediately after 'anchor'.
def _init_ll(self):
anchor = []
anchor[:] = [anchor, anchor, _MISSING, _MISSING]
# a link lookup table for finding linked list links in O(1)
# time.
self._link_lookup = {}
self._anchor = anchor
def _print_ll(self):
link = self._anchor
print('***')
while True:
print(link[KEY], link[VALUE])
link = link[NEXT]
if link is self._anchor:
break
print('***')
return
def _get_link_and_move_to_front_of_ll(self, key):
# find what will become the newest link. this may raise a
# KeyError, which is useful to __getitem__ and __setitem__
newest = self._link_lookup[key]
# splice out what will become the newest link.
newest[PREV][NEXT] = newest[NEXT]
newest[NEXT][PREV] = newest[PREV]
# move what will become the newest link immediately before
# anchor (invariant 2)
anchor = self._anchor
second_newest = anchor[PREV]
second_newest[NEXT] = anchor[PREV] = newest
newest[PREV] = second_newest
newest[NEXT] = anchor
return newest
def _set_key_and_add_to_front_of_ll(self, key, value):
# create a new link and place it immediately before anchor
# (invariant 2).
anchor = self._anchor
second_newest = anchor[PREV]
newest = [second_newest, anchor, key, value]
second_newest[NEXT] = anchor[PREV] = newest
self._link_lookup[key] = newest
def _set_key_and_evict_last_in_ll(self, key, value):
# the link after anchor is the oldest in the linked list
# (invariant 3). the current anchor becomes a link that holds
# the newest key, and the oldest link becomes the new anchor
# (invariant 1). now the newest link comes before anchor
# (invariant 2). no links are moved; only their keys
# and values are changed.
oldanchor = self._anchor
oldanchor[KEY] = key
oldanchor[VALUE] = value
self._anchor = anchor = oldanchor[NEXT]
evicted = anchor[KEY]
anchor[KEY] = anchor[VALUE] = _MISSING
del self._link_lookup[evicted]
self._link_lookup[key] = oldanchor
return evicted
def _remove_from_ll(self, key):
# splice a link out of the list and drop it from our lookup
# table.
link = self._link_lookup.pop(key)
link[PREV][NEXT] = link[NEXT]
link[NEXT][PREV] = link[PREV]
def __setitem__(self, key, value):
with self._lock:
try:
link = self._get_link_and_move_to_front_of_ll(key)
except KeyError:
if len(self) < self.max_size:
self._set_key_and_add_to_front_of_ll(key, value)
else:
evicted = self._set_key_and_evict_last_in_ll(key, value)
super(LRU, self).__delitem__(evicted)
super(LRU, self).__setitem__(key, value)
else:
link[VALUE] = value
def __getitem__(self, key):
with self._lock:
try:
link = self._get_link_and_move_to_front_of_ll(key)
except KeyError:
self.miss_count += 1
if not self.on_miss:
raise
ret = self[key] = self.on_miss(key)
return ret
self.hit_count += 1
return link[VALUE]
def get(self, key, default=None):
try:
return self[key]
except KeyError:
self.soft_miss_count += 1
return default
def __delitem__(self, key):
with self._lock:
super(LRU, self).__delitem__(key)
self._remove_from_ll(key)
def pop(self, key, default=_MISSING):
# NB: hit/miss counts are bypassed for pop()
with self._lock:
try:
ret = super(LRU, self).pop(key)
except KeyError:
if default is _MISSING:
raise
ret = default
else:
self._remove_from_ll(key)
return ret
def popitem(self):
with self._lock:
item = super(LRU, self).popitem()
self._remove_from_ll(item[0])
return item
def clear(self):
with self._lock:
super(LRU, self).clear()
self._init_ll()
def copy(self):
return self.__class__(max_size=self.max_size, values=self)
def setdefault(self, key, default=None):
with self._lock:
try:
return self[key]
except KeyError:
self.soft_miss_count += 1
self[key] = default
return default
def update(self, E, **F):
# E and F are throwback names to the dict() __doc__
with self._lock:
if E is self:
return
setitem = self.__setitem__
if callable(getattr(E, 'keys', None)):
for k in E.keys():
setitem(k, E[k])
else:
for k, v in E:
setitem(k, v)
for k in F:
setitem(k, F[k])
return
def __eq__(self, other):
with self._lock:
if self is other:
return True
if len(other) != len(self):
return False
if not isinstance(other, LRU):
return other == self
return super(LRU, self).__eq__(other)
def __ne__(self, other):
return not (self == other)
def __repr__(self):
cn = self.__class__.__name__
val_map = super(LRU, self).__repr__()
return ('%s(max_size=%r, on_miss=%r, values=%s)'
% (cn, self.max_size, self.on_miss, val_map))
class LRI(dict):
"""The ``LRI`` implements the basic *Least Recently Inserted* strategy to
caching. One could also think of this as a ``SizeLimitedDefaultDict``.
*on_miss* is a callable that accepts the missing key (as opposed
to :class:`collections.defaultdict`'s "default_factory", which
accepts no arguments.) Also note that, like the :class:`LRU`,
the ``LRI`` is instrumented with statistics tracking.
>>> cap_cache = LRI(max_size=2)
>>> cap_cache['a'], cap_cache['b'] = 'A', 'B'
>>> from pprint import pprint as pp
>>> pp(cap_cache)
{'a': 'A', 'b': 'B'}
>>> [cap_cache['b'] for i in range(3)][0]
'B'
>>> cap_cache['c'] = 'C'
>>> print(cap_cache.get('a'))
None
>>> cap_cache.hit_count, cap_cache.miss_count, cap_cache.soft_miss_count
(3, 1, 1)
"""
# In order to support delitem andn .pop() setitem will need to
# popleft until it finds a key still in the cache. or, only
# support popitems and raise an error on pop.
def __init__(self, max_size=DEFAULT_MAX_SIZE, values=None,
on_miss=None):
super(LRI, self).__init__()
self.hit_count = self.miss_count = self.soft_miss_count = 0
self.max_size = max_size
self.on_miss = on_miss
self._queue = deque()
if values:
self.update(values)
def __setitem__(self, key, value):
# TODO: pop support (see above)
if len(self) >= self.max_size:
old = self._queue.popleft()
del self[old]
super(LRI, self).__setitem__(key, value)
self._queue.append(key)
def update(self, E, **F):
# E and F are throwback names to the dict() __doc__
if E is self:
return
setitem = self.__setitem__
if callable(getattr(E, 'keys', None)):
for k in E.keys():
setitem(k, E[k])
else:
for k, v in E:
setitem(k, v)
for k in F:
setitem(k, F[k])
return
def copy(self):
return self.__class__(max_size=self.max_size, values=self)
def clear(self):
self._queue.clear()
super(LRI, self).clear()
def __getitem__(self, key):
try:
ret = super(LRI, self).__getitem__(key)
except KeyError:
self.miss_count += 1
if not self.on_miss:
raise
ret = self[key] = self.on_miss(key)
return ret
self.hit_count += 1
return ret
def get(self, key, default=None):
try:
return self[key]
except KeyError:
self.soft_miss_count += 1
return default
def setdefault(self, key, default=None):
try:
return self[key]
except KeyError:
self.soft_miss_count += 1
self[key] = default
return default
### Cached decorator
# Key-making technique adapted from Python 3.4's functools
class _HashedKey(list):
"""The _HashedKey guarantees that hash() will be called no more than once
per cached function invocation.
"""
__slots__ = 'hash_value'
def __init__(self, key):
self[:] = key
self.hash_value = hash(tuple(key))
def __hash__(self):
return self.hash_value
def __repr__(self):
return '%s(%s)' % (self.__class__.__name__, list.__repr__(self))
def make_cache_key(args, kwargs, typed=False,
kwarg_mark=_KWARG_MARK,
fasttypes=frozenset([int, str, frozenset, type(None)])):
"""Make a generic key from a function's positional and keyword
arguments, suitable for use in caches. Arguments within *args* and
*kwargs* must be `hashable`_. If *typed* is ``True``, ``3`` and
``3.0`` will be treated as separate keys.
The key is constructed in a way that is flat as possible rather than
as a nested structure that would take more memory.
If there is only a single argument and its data type is known to cache
its hash value, then that argument is returned without a wrapper. This
saves space and improves lookup speed.
>>> tuple(make_cache_key(('a', 'b'), {'c': ('d')}))
('a', 'b', _KWARG_MARK, ('c', 'd'))
.. _hashable: https://docs.python.org/2/glossary.html#term-hashable
"""
# key = [func_name] if func_name else []
# key.extend(args)
key = list(args)
if kwargs:
sorted_items = sorted(kwargs.items())
key.append(kwarg_mark)
key.extend(sorted_items)
if typed:
key.extend([type(v) for v in args])
if kwargs:
key.extend([type(v) for k, v in sorted_items])
elif len(key) == 1 and type(key[0]) in fasttypes:
return key[0]
return _HashedKey(key)
# for backwards compatibility in case someone was importing it
_make_cache_key = make_cache_key
class CachedFunction(object):
"""This type is used by :func:`cached`, below. Instances of this
class are used to wrap functions in caching logic.
"""
def __init__(self, func, cache, scoped=True, typed=False, key=None):
self.func = func
if callable(cache):
self.get_cache = cache
elif not (callable(getattr(cache, '__getitem__', None))
and callable(getattr(cache, '__setitem__', None))):
raise TypeError('expected cache to be a dict-like object,'
' or callable returning a dict-like object, not %r'
% cache)
else:
def _get_cache():
return cache
self.get_cache = _get_cache
self.scoped = scoped
self.typed = typed
self.key_func = key or make_cache_key
def __call__(self, *args, **kwargs):
cache = self.get_cache()
key = self.key_func(args, kwargs, typed=self.typed)
try:
ret = cache[key]
except KeyError:
ret = cache[key] = self.func(*args, **kwargs)
return ret
def __repr__(self):
cn = self.__class__.__name__
if self.typed or not self.scoped:
return ("%s(func=%r, scoped=%r, typed=%r)"
% (cn, self.func, self.scoped, self.typed))
return "%s(func=%r)" % (cn, self.func)
class CachedMethod(object):
"""Similar to :class:`CachedFunction`, this type is used by
:func:`cachedmethod` to wrap methods in caching logic.
"""
def __init__(self, func, cache, scoped=True, typed=False, key=None):
self.func = func
if isinstance(cache, basestring):
self.get_cache = attrgetter(cache)
elif callable(cache):
self.get_cache = cache
elif not (callable(getattr(cache, '__getitem__', None))
and callable(getattr(cache, '__setitem__', None))):
raise TypeError('expected cache to be an attribute name,'
' dict-like object, or callable returning'
' a dict-like object, not %r' % cache)
else:
def _get_cache(obj):
return cache
self.get_cache = _get_cache
self.scoped = scoped
self.typed = typed
self.key_func = key or make_cache_key
self.bound_to = None
def __get__(self, obj, objtype=None):
if obj is None:
return self
cls = self.__class__
ret = cls(self.func, self.get_cache, typed=self.typed,
scoped=self.scoped, key=self.key_func)
ret.bound_to = obj
return ret
def __call__(self, *args, **kwargs):
obj = args[0] if self.bound_to is None else self.bound_to
cache = self.get_cache(obj)
key_args = (self.bound_to, self.func) + args if self.scoped else args
key = self.key_func(key_args, kwargs, typed=self.typed)
try:
ret = cache[key]
except KeyError:
if self.bound_to is not None:
args = (self.bound_to,) + args
ret = cache[key] = self.func(*args, **kwargs)
return ret
def __repr__(self):
cn = self.__class__.__name__
args = (cn, self.func, self.scoped, self.typed)
if self.bound_to is not None:
args += (self.bound_to,)
return ('<%s func=%r scoped=%r typed=%r bound_to=%r>' % args)
return ("%s(func=%r, scoped=%r, typed=%r)" % args)
def cached(cache, scoped=True, typed=False, key=None):
"""Cache any function with the cache object of your choosing. Note
that the function wrapped should take only `hashable`_ arguments.
Args:
cache (Mapping): Any :class:`dict`-like object suitable for
use as a cache. Instances of the :class:`LRU` and
:class:`LRI` are good choices, but a plain :class:`dict`
can work in some cases, as well. This argument can also be
a callable which accepts no arguments and returns a mapping.
scoped (bool): Whether the function itself is part of the
cache key. ``True`` by default, different functions will
not read one another's cache entries, but can evict one
another's results. ``False`` can be useful for certain
shared cache use cases. More advanced behavior can be
produced through the *key* argument.
typed (bool): Whether to factor argument types into the cache
check. Default ``False``, setting to ``True`` causes the
cache keys for ``3`` and ``3.0`` to be considered unequal.
>>> my_cache = LRU()
>>> @cached(my_cache)
... def cached_lower(x):
... return x.lower()
...
>>> cached_lower("CaChInG's FuN AgAiN!")
"caching's fun again!"
>>> len(my_cache)
1
.. _hashable: https://docs.python.org/2/glossary.html#term-hashable
"""
def cached_func_decorator(func):
return CachedFunction(func, cache, scoped=scoped, typed=typed, key=key)
return cached_func_decorator
def cachedmethod(cache, scoped=True, typed=False, key=None):
"""Similar to :func:`cached`, ``cachedmethod`` is used to cache
methods based on their arguments, using any :class:`dict`-like
*cache* object.
Args:
cache (str/Mapping/callable): Can be the name of an attribute
on the instance, any Mapping/:class:`dict`-like object, or
a callable which returns a Mapping.
scoped (bool): Whether the method itself and the object it is
bound to are part of the cache keys. ``True`` by default,
different methods will not read one another's cache
results. ``False`` can be useful for certain shared cache
use cases. More advanced behavior can be produced through
the *key* arguments.
typed (bool): Whether to factor argument types into the cache
check. Default ``False``, setting to ``True`` causes the
cache keys for ``3`` and ``3.0`` to be considered unequal.
key (callable): A callable with a signature that matches
:func:`make_cache_key` that returns a tuple of hashable
values to be used as the key in the cache.
>>> class Lowerer(object):
... def __init__(self):
... self.cache = LRI()
...
... @cachedmethod('cache')
... def lower(self, text):
... return text.lower()
...
>>> lowerer = Lowerer()
>>> lowerer.lower('WOW WHO COULD GUESS CACHING COULD BE SO NEAT')
'wow who could guess caching could be so neat'
>>> len(lowerer.cache)
1
"""
def cached_method_decorator(func):
return CachedMethod(func, cache, scoped=scoped, typed=typed, key=key)
return cached_method_decorator
class cachedproperty(object):
"""The ``cachedproperty`` is used similar to :class:`property`, except
that the wrapped method is only called once. This is commonly used
to implement lazy attributes.
After the property has been accessed, the value is stored on the
instance itself, using the same name as the cachedproperty. This
allows the cache to be cleared with :func:`delattr`, or through
manipulating the object's ``__dict__``.
"""
def __init__(self, func):
self.__doc__ = getattr(func, '__doc__')
self.func = func
def __get__(self, obj, objtype=None):
if obj is None:
return self
value = obj.__dict__[self.func.__name__] = self.func(obj)
return value
def __repr__(self):
cn = self.__class__.__name__
return '<%s func=%s>' % (cn, self.func)
class ThresholdCounter(object):
"""A **bounded** dict-like Mapping from keys to counts. The
ThresholdCounter automatically compacts after every (1 /
*threshold*) additions, maintaining exact counts for any keys
whose count represents at least a *threshold* ratio of the total
data. In other words, if a particular key is not present in the
ThresholdCounter, its count represents less than *threshold* of
the total data.
>>> tc = ThresholdCounter(threshold=0.1)
>>> tc.add(1)
>>> tc.items()
[(1, 1)]
>>> tc.update([2] * 10)
>>> tc.get(1)
0
>>> tc.add(5)
>>> 5 in tc
True
>>> len(list(tc.elements()))
11
As you can see above, the API is kept similar to
:class:`collections.Counter`. The most notable feature omissions
being that counted items cannot be set directly, uncounted, or
removed, as this would disrupt the math.
Use the ThresholdCounter when you need best-effort long-lived
counts for dynamically-keyed data. Without a bounded datastructure
such as this one, the dynamic keys often represent a memory leak
and can impact application reliability. The ThresholdCounter's
item replacement strategy is fully deterministic and can be
thought of as *Amortized Least Relevant*. The absolute upper bound
of keys it will store is *(2/threshold)*, but realistically
*(1/threshold)* is expected for uniformly random datastreams, and
one or two orders of magnitude better for real-world data.
This algorithm is an implementation of the Lossy Counting
algorithm described in "Approximate Frequency Counts over Data
Streams" by Manku & Motwani. Hat tip to Kurt Rose for discovery
and initial implementation.
"""
# TODO: hit_count/miss_count?
def __init__(self, threshold=0.001):
if not 0 < threshold < 1:
raise ValueError('expected threshold between 0 and 1, not: %r'
% threshold)
self.total = 0
self._count_map = {}
self._threshold = threshold
self._thresh_count = int(1 / threshold)
self._cur_bucket = 1
@property
def threshold(self):
return self._threshold
def add(self, key):
"""Increment the count of *key* by 1, automatically adding it if it
does not exist.
Cache compaction is triggered every *1/threshold* additions.
"""
self.total += 1
try:
self._count_map[key][0] += 1
except KeyError:
self._count_map[key] = [1, self._cur_bucket - 1]
if self.total % self._thresh_count == 0:
self._count_map = dict([(k, v) for k, v in self._count_map.items()
if sum(v) > self._cur_bucket])
self._cur_bucket += 1
return
def elements(self):
"""Return an iterator of all the common elements tracked by the
counter. Yields each key as many times as it has been seen.
"""
repeaters = itertools.starmap(itertools.repeat, self.iteritems())
return itertools.chain.from_iterable(repeaters)
def most_common(self, n=None):
"""Get the top *n* keys and counts as tuples. If *n* is omitted,
returns all the pairs.
"""
if n <= 0:
return []
ret = sorted(self.iteritems(), key=lambda x: x[1][0], reverse=True)
if n is None or n >= len(ret):
return ret
return ret[:n]
def get_common_count(self):
"""Get the sum of counts for keys exceeding the configured data
threshold.
"""
return sum([count for count, _ in self._count_map.itervalues()])
def get_uncommon_count(self):
"""Get the sum of counts for keys that were culled because the
associated counts represented less than the configured
threshold. The long-tail counts.
"""
return self.total - self.get_common_count()
def get_commonality(self):
"""Get a float representation of the effective count accuracy. The
higher the number, the less uniform the keys being added, and
the higher accuracy and efficiency of the ThresholdCounter.
If a stronger measure of data cardinality is required,
consider using hyperloglog.
"""
return float(self.get_common_count()) / self.total
def __getitem__(self, key):
return self._count_map[key][0]
def __len__(self):
return len(self._count_map)
def __contains__(self, key):
return key in self._count_map
def iterkeys(self):
return iter(self._count_map)
def keys(self):
return list(self.iterkeys())
def itervalues(self):
count_map = self._count_map
for k in count_map:
yield count_map[k][0]
def values(self):
return list(self.itervalues())
def iteritems(self):
count_map = self._count_map
for k in count_map:
yield (k, count_map[k][0])
def items(self):
return list(self.iteritems())
def get(self, key, default=0):
"Get count for *key*, defaulting to 0."
try:
return self[key]
except KeyError:
return default
def update(self, iterable, **kwargs):
"""Like dict.update() but add counts instead of replacing them, used
to add multiple items in one call.
Source can be an iterable of keys to add, or a mapping of keys
to integer counts.
"""
if iterable is not None:
if callable(getattr(iterable, 'iteritems', None)):
for key, count in iterable.iteritems():
for i in xrange(count):
self.add(key)
else:
for key in iterable:
self.add(key)
if kwargs:
self.update(kwargs)
# end cacheutils.py
|