This file is indexed.

/usr/lib/python2.7/dist-packages/boltons/iterutils.py is in python-boltons 17.1.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
# -*- coding: utf-8 -*-
""":mod:`itertools` is full of great examples of Python generator
usage. However, there are still some critical gaps. ``iterutils``
fills many of those gaps with featureful, tested, and Pythonic
solutions.

Many of the functions below have two versions, one which
returns an iterator (denoted by the ``*_iter`` naming pattern), and a
shorter-named convenience form that returns a list. Some of the
following are based on examples in itertools docs.
"""

import os
import math
import time
import codecs
import random
import socket
import hashlib
import itertools

from collections import Mapping, Sequence, Set, ItemsView

try:
    from typeutils import make_sentinel
    _UNSET = make_sentinel('_UNSET')
    _REMAP_EXIT = make_sentinel('_REMAP_EXIT')
except ImportError:
    _REMAP_EXIT = object()
    _UNSET = object()

try:
    from future_builtins import filter
    from itertools import izip
    _IS_PY3 = False
except ImportError:
    # Python 3 compat
    _IS_PY3 = True
    basestring = (str, bytes)
    izip, xrange = zip, range


def is_iterable(obj):
    """Similar in nature to :func:`callable`, ``is_iterable`` returns
    ``True`` if an object is `iterable`_, ``False`` if not.

    >>> is_iterable([])
    True
    >>> is_iterable(object())
    False

    .. _iterable: https://docs.python.org/2/glossary.html#term-iterable
    """
    try:
        iter(obj)
    except TypeError:
        return False
    return True


def is_scalar(obj):
    """A near-mirror of :func:`is_iterable`. Returns ``False`` if an
    object is an iterable container type. Strings are considered
    scalar as well, because strings are more often treated as whole
    values as opposed to iterables of 1-character substrings.

    >>> is_scalar(object())
    True
    >>> is_scalar(range(10))
    False
    >>> is_scalar('hello')
    True
    """
    return not is_iterable(obj) or isinstance(obj, basestring)


def is_collection(obj):
    """The opposite of :func:`is_scalar`.  Returns ``True`` if an object
    is an iterable other than a string.

    >>> is_collection(object())
    False
    >>> is_collection(range(10))
    True
    >>> is_collection('hello')
    False
    """
    return is_iterable(obj) and not isinstance(obj, basestring)


def split(src, sep=None, maxsplit=None):
    """Splits an iterable based on a separator. Like :meth:`str.split`,
    but for all iterables. Returns a list of lists.

    >>> split(['hi', 'hello', None, None, 'sup', None, 'soap', None])
    [['hi', 'hello'], ['sup'], ['soap']]

    See :func:`split_iter` docs for more info.
    """
    return list(split_iter(src, sep, maxsplit))


def split_iter(src, sep=None, maxsplit=None):
    """Splits an iterable based on a separator, *sep*, a max of
    *maxsplit* times (no max by default). *sep* can be:

      * a single value
      * an iterable of separators
      * a single-argument callable that returns True when a separator is
        encountered

    ``split_iter()`` yields lists of non-separator values. A separator will
    never appear in the output.

    >>> list(split_iter(['hi', 'hello', None, None, 'sup', None, 'soap', None]))
    [['hi', 'hello'], ['sup'], ['soap']]

    Note that ``split_iter`` is based on :func:`str.split`, so if
    *sep* is ``None``, ``split()`` **groups** separators. If empty lists
    are desired between two contiguous ``None`` values, simply use
    ``sep=[None]``:

    >>> list(split_iter(['hi', 'hello', None, None, 'sup', None]))
    [['hi', 'hello'], ['sup']]
    >>> list(split_iter(['hi', 'hello', None, None, 'sup', None], sep=[None]))
    [['hi', 'hello'], [], ['sup'], []]

    Using a callable separator:

    >>> falsy_sep = lambda x: not x
    >>> list(split_iter(['hi', 'hello', None, '', 'sup', False], falsy_sep))
    [['hi', 'hello'], [], ['sup'], []]

    See :func:`split` for a list-returning version.

    """
    if not is_iterable(src):
        raise TypeError('expected an iterable')

    if maxsplit is not None:
        maxsplit = int(maxsplit)
        if maxsplit == 0:
            yield [src]
            return

    if callable(sep):
        sep_func = sep
    elif not is_scalar(sep):
        sep = frozenset(sep)
        sep_func = lambda x: x in sep
    else:
        sep_func = lambda x: x == sep

    cur_group = []
    split_count = 0
    for s in src:
        if maxsplit is not None and split_count >= maxsplit:
            sep_func = lambda x: False
        if sep_func(s):
            if sep is None and not cur_group:
                # If sep is none, str.split() "groups" separators
                # check the str.split() docs for more info
                continue
            split_count += 1
            yield cur_group
            cur_group = []
        else:
            cur_group.append(s)

    if cur_group or sep is not None:
        yield cur_group
    return


def chunked(src, size, count=None, **kw):
    """Returns a list of *count* chunks, each with *size* elements,
    generated from iterable *src*. If *src* is not evenly divisible by
    *size*, the final chunk will have fewer than *size* elements.
    Provide the *fill* keyword argument to provide a pad value and
    enable padding, otherwise no padding will take place.

    >>> chunked(range(10), 3)
    [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
    >>> chunked(range(10), 3, fill=None)
    [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]
    >>> chunked(range(10), 3, count=2)
    [[0, 1, 2], [3, 4, 5]]

    See :func:`chunked_iter` for more info.
    """
    chunk_iter = chunked_iter(src, size, **kw)
    if count is None:
        return list(chunk_iter)
    else:
        return list(itertools.islice(chunk_iter, count))


def chunked_iter(src, size, **kw):
    """Generates *size*-sized chunks from *src* iterable. Unless the
    optional *fill* keyword argument is provided, iterables not even
    divisible by *size* will have a final chunk that is smaller than
    *size*.

    >>> list(chunked_iter(range(10), 3))
    [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
    >>> list(chunked_iter(range(10), 3, fill=None))
    [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]

    Note that ``fill=None`` in fact uses ``None`` as the fill value.
    """
    # TODO: add count kwarg?
    if not is_iterable(src):
        raise TypeError('expected an iterable')
    size = int(size)
    if size <= 0:
        raise ValueError('expected a positive integer chunk size')
    do_fill = True
    try:
        fill_val = kw.pop('fill')
    except KeyError:
        do_fill = False
        fill_val = None
    if kw:
        raise ValueError('got unexpected keyword arguments: %r' % kw.keys())
    if not src:
        return
    postprocess = lambda chk: chk
    if isinstance(src, basestring):
        postprocess = lambda chk, _sep=type(src)(): _sep.join(chk)
    src_iter = iter(src)
    while True:
        cur_chunk = list(itertools.islice(src_iter, size))
        if not cur_chunk:
            break
        lc = len(cur_chunk)
        if lc < size and do_fill:
            cur_chunk[lc:] = [fill_val] * (size - lc)
        yield postprocess(cur_chunk)
    return


def pairwise(src):
    """Convenience function for calling :func:`windowed` on *src*, with
    *size* set to 2.

    >>> pairwise(range(5))
    [(0, 1), (1, 2), (2, 3), (3, 4)]
    >>> pairwise([])
    []

    The number of pairs is always one less than the number of elements
    in the iterable passed in, except on empty inputs, which returns
    an empty list.
    """
    return windowed(src, 2)


def pairwise_iter(src):
    """Convenience function for calling :func:`windowed_iter` on *src*,
    with *size* set to 2.

    >>> list(pairwise_iter(range(5)))
    [(0, 1), (1, 2), (2, 3), (3, 4)]
    >>> list(pairwise_iter([]))
    []

    The number of pairs is always one less than the number of elements
    in the iterable passed in, or zero, when *src* is empty.

    """
    return windowed_iter(src, 2)


def windowed(src, size):
    """Returns tuples with exactly length *size*. If the iterable is
    too short to make a window of length *size*, no tuples are
    returned. See :func:`windowed_iter` for more.
    """
    return list(windowed_iter(src, size))


def windowed_iter(src, size):
    """Returns tuples with length *size* which represent a sliding
    window over iterable *src*.

    >>> list(windowed_iter(range(7), 3))
    [(0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]

    If the iterable is too short to make a window of length *size*,
    then no window tuples are returned.

    >>> list(windowed_iter(range(3), 5))
    []
    """
    # TODO: lists? (for consistency)
    tees = itertools.tee(src, size)
    try:
        for i, t in enumerate(tees):
            for _ in xrange(i):
                next(t)
    except StopIteration:
        return izip([])
    return izip(*tees)


def xfrange(stop, start=None, step=1.0):
    """Same as :func:`frange`, but generator-based instead of returning a
    list.

    >>> tuple(xfrange(1, 3, step=0.75))
    (1.0, 1.75, 2.5)

    See :func:`frange` for more details.
    """
    if not step:
        raise ValueError('step must be non-zero')
    if start is None:
        start, stop = 0.0, stop * 1.0
    else:
        # swap when all args are used
        stop, start = start * 1.0, stop * 1.0
    cur = start
    while cur < stop:
        yield cur
        cur += step


def frange(stop, start=None, step=1.0):
    """A :func:`range` clone for float-based ranges.

    >>> frange(5)
    [0.0, 1.0, 2.0, 3.0, 4.0]
    >>> frange(6, step=1.25)
    [0.0, 1.25, 2.5, 3.75, 5.0]
    >>> frange(100.5, 101.5, 0.25)
    [100.5, 100.75, 101.0, 101.25]
    >>> frange(5, 0)
    []
    >>> frange(5, 0, step=-1.25)
    [5.0, 3.75, 2.5, 1.25]
    """
    if not step:
        raise ValueError('step must be non-zero')
    if start is None:
        start, stop = 0.0, stop * 1.0
    else:
        # swap when all args are used
        stop, start = start * 1.0, stop * 1.0
    count = int(math.ceil((stop - start) / step))
    ret = [None] * count
    if not ret:
        return ret
    ret[0] = start
    for i in xrange(1, count):
        ret[i] = ret[i - 1] + step
    return ret


def backoff(start, stop, count=None, factor=2.0, jitter=False):
    """Returns a list of geometrically-increasing floating-point numbers,
    suitable for usage with `exponential backoff`_. Exactly like
    :func:`backoff_iter`, but without the ``'repeat'`` option for
    *count*. See :func:`backoff_iter` for more details.

    .. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff

    >>> backoff(1, 10)
    [1.0, 2.0, 4.0, 8.0, 10.0]
    """
    if count == 'repeat':
        raise ValueError("'repeat' supported in backoff_iter, not backoff")
    return list(backoff_iter(start, stop, count=count,
                             factor=factor, jitter=jitter))


def backoff_iter(start, stop, count=None, factor=2.0, jitter=False):
    """Generates a sequence of geometrically-increasing floats, suitable
    for usage with `exponential backoff`_. Starts with *start*,
    increasing by *factor* until *stop* is reached, optionally
    stopping iteration once *count* numbers are yielded. *factor*
    defaults to 2. In general retrying with properly-configured
    backoff creates a better-behaved component for a larger service
    ecosystem.

    .. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff

    >>> list(backoff_iter(1.0, 10.0, count=5))
    [1.0, 2.0, 4.0, 8.0, 10.0]
    >>> list(backoff_iter(1.0, 10.0, count=8))
    [1.0, 2.0, 4.0, 8.0, 10.0, 10.0, 10.0, 10.0]
    >>> list(backoff_iter(0.25, 100.0, factor=10))
    [0.25, 2.5, 25.0, 100.0]

    A simplified usage example:

    .. code-block:: python

      for timeout in backoff_iter(0.25, 5.0):
          try:
              res = network_call()
              break
          except Exception as e:
              log(e)
              time.sleep(timeout)

    An enhancement for large-scale systems would be to add variation,
    or *jitter*, to timeout values. This is done to avoid a thundering
    herd on the receiving end of the network call.

    Finally, for *count*, the special value ``'repeat'`` can be passed to
    continue yielding indefinitely.

    Args:

        start (float): Positive number for baseline.
        stop (float): Positive number for maximum.
        count (int): Number of steps before stopping
            iteration. Defaults to the number of steps between *start* and
            *stop*. Pass the string, `'repeat'`, to continue iteration
            indefinitely.
        factor (float): Rate of exponential increase. Defaults to `2.0`,
            e.g., `[1, 2, 4, 8, 16]`.
        jitter (float): A factor between `-1.0` and `1.0`, used to
            uniformly randomize and thus spread out timeouts in a distributed
            system, avoiding rhythm effects. Positive values use the base
            backoff curve as a maximum, negative values use the curve as a
            minimum. Set to 1.0 or `True` for a jitter approximating
            Ethernet's time-tested backoff solution. Defaults to `False`.

    """
    start = float(start)
    stop = float(stop)
    factor = float(factor)
    if start < 0.0:
        raise ValueError('expected start >= 0, not %r' % start)
    if factor < 1.0:
        raise ValueError('expected factor >= 1.0, not %r' % factor)
    if stop == 0.0:
        raise ValueError('expected stop >= 0')
    if stop < start:
        raise ValueError('expected stop >= start, not %r' % stop)
    if count is None:
        denom = start if start else 1
        count = 1 + math.ceil(math.log(stop/denom, factor))
        count = count if start else count + 1
    if count != 'repeat' and count < 0:
        raise ValueError('count must be positive or "repeat", not %r' % count)
    if jitter:
        jitter = float(jitter)
        if not (-1.0 <= jitter <= 1.0):
            raise ValueError('expected jitter -1 <= j <= 1, not: %r' % jitter)

    cur, i = start, 0
    while count == 'repeat' or i < count:
        if not jitter:
            cur_ret = cur
        elif jitter:
            cur_ret = cur - (cur * jitter * random.random())
        yield cur_ret
        i += 1
        if cur == 0:
            cur = 1
        elif cur < stop:
            cur *= factor
        if cur > stop:
            cur = stop
    return


def bucketize(src, key=None, value_transform=None, key_filter=None):
    """Group values in the *src* iterable by the value returned by *key*,
    which defaults to :class:`bool`, grouping values by truthiness.

    >>> bucketize(range(5))
    {False: [0], True: [1, 2, 3, 4]}
    >>> is_odd = lambda x: x % 2 == 1
    >>> bucketize(range(5), is_odd)
    {False: [0, 2, 4], True: [1, 3]}

    Value lists are not deduplicated:

    >>> bucketize([None, None, None, 'hello'])
    {False: [None, None, None], True: ['hello']}

    Bucketize into more than 3 groups

    >>> bucketize(range(10), lambda x: x % 3)
    {0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]}

    ``bucketize`` has a couple of advanced options useful in certain
    cases.  *value_transform* can be used to modify values as they are
    added to buckets, and *key_filter* will allow excluding certain
    buckets from being collected.

    >>> bucketize(range(5), value_transform=lambda x: x*x)
    {False: [0], True: [1, 4, 9, 16]}

    >>> bucketize(range(10), key=lambda x: x % 3, key_filter=lambda k: k % 3 != 1)
    {0: [0, 3, 6, 9], 2: [2, 5, 8]}

    Note in some of these examples there were at most two keys, ``True`` and
    ``False``, and each key present has a list with at least one
    item. See :func:`partition` for a version specialized for binary
    use cases.

    """
    if not is_iterable(src):
        raise TypeError('expected an iterable')
    if key is None:
        key = bool
    if not callable(key):
        raise TypeError('expected callable key function')
    if value_transform is None:
        value_transform = lambda x: x
    if not callable(value_transform):
        raise TypeError('expected callable value transform function')

    ret = {}
    for val in src:
        key_of_val = key(val)
        if key_filter is None or key_filter(key_of_val):
            ret.setdefault(key_of_val, []).append(value_transform(val))
    return ret


def partition(src, key=None):
    """No relation to :meth:`str.partition`, ``partition`` is like
    :func:`bucketize`, but for added convenience returns a tuple of
    ``(truthy_values, falsy_values)``.

    >>> nonempty, empty = partition(['', '', 'hi', '', 'bye'])
    >>> nonempty
    ['hi', 'bye']

    *key* defaults to :class:`bool`, but can be carefully overridden to
    use any function that returns either ``True`` or ``False``.

    >>> import string
    >>> is_digit = lambda x: x in string.digits
    >>> decimal_digits, hexletters = partition(string.hexdigits, is_digit)
    >>> ''.join(decimal_digits), ''.join(hexletters)
    ('0123456789', 'abcdefABCDEF')
    """
    bucketized = bucketize(src, key)
    return bucketized.get(True, []), bucketized.get(False, [])


def unique(src, key=None):
    """``unique()`` returns a list of unique values, as determined by
    *key*, in the order they first appeared in the input iterable,
    *src*.

    >>> ones_n_zeros = '11010110001010010101010'
    >>> ''.join(unique(ones_n_zeros))
    '10'

    See :func:`unique_iter` docs for more details.
    """
    return list(unique_iter(src, key))


def unique_iter(src, key=None):
    """Yield unique elements from the iterable, *src*, based on *key*,
    in the order in which they first appeared in *src*.

    >>> repetitious = [1, 2, 3] * 10
    >>> list(unique_iter(repetitious))
    [1, 2, 3]

    By default, *key* is the object itself, but *key* can either be a
    callable or, for convenience, a string name of the attribute on
    which to uniqueify objects, falling back on identity when the
    attribute is not present.

    >>> pleasantries = ['hi', 'hello', 'ok', 'bye', 'yes']
    >>> list(unique_iter(pleasantries, key=lambda x: len(x)))
    ['hi', 'hello', 'bye']
    """
    if not is_iterable(src):
        raise TypeError('expected an iterable, not %r' % type(src))
    if key is None:
        key_func = lambda x: x
    elif callable(key):
        key_func = key
    elif isinstance(key, basestring):
        key_func = lambda x: getattr(x, key, x)
    else:
        raise TypeError('"key" expected a string or callable, not %r' % key)
    seen = set()
    for i in src:
        k = key_func(i)
        if k not in seen:
            seen.add(k)
            yield i
    return


def one(src, default=None, key=None):
    """Along the same lines as builtins, :func:`all` and :func:`any`, and
    similar to :func:`first`, ``one()`` returns the single object in
    the given iterable *src* that evaluates to ``True``, as determined
    by callable *key*. If unset, *key* defaults to :class:`bool`. If
    no such objects are found, *default* is returned. If *default* is
    not passed, ``None`` is returned.

    If *src* has more than one object that evaluates to ``True``, or
    if there is no object that fulfills such condition, return
    *default*. It's like an `XOR`_ over an iterable.

    >>> one((True, False, False))
    True
    >>> one((True, False, True))
    >>> one((0, 0, 'a'))
    'a'
    >>> one((0, False, None))
    >>> one((True, True), default=False)
    False
    >>> bool(one(('', 1)))
    True
    >>> one((10, 20, 30, 42), key=lambda i: i > 40)
    42

    See `Martín Gaitán's original repo`_ for further use cases.

    .. _Martín Gaitán's original repo: https://github.com/mgaitan/one
    .. _XOR: https://en.wikipedia.org/wiki/Exclusive_or

    """
    ones = list(itertools.islice(filter(key, src), 2))
    return ones[0] if len(ones) == 1 else default


def first(iterable, default=None, key=None):
    """Return first element of *iterable* that evaluates to ``True``, else
    return ``None`` or optional *default*. Similar to :func:`one`.

    >>> first([0, False, None, [], (), 42])
    42
    >>> first([0, False, None, [], ()]) is None
    True
    >>> first([0, False, None, [], ()], default='ohai')
    'ohai'
    >>> import re
    >>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)'])
    >>> m.group(1)
    'bc'

    The optional *key* argument specifies a one-argument predicate function
    like that used for *filter()*.  The *key* argument, if supplied, should be
    in keyword form. For example, finding the first even number in an iterable:

    >>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0)
    4

    Contributed by Hynek Schlawack, author of `the original standalone module`_.

    .. _the original standalone module: https://github.com/hynek/first
    """
    return next(filter(key, iterable), default)


def same(iterable, ref=_UNSET):
    """``same()`` returns ``True`` when all values in *iterable* are
    equal to one another, or optionally a reference value,
    *ref*. Similar to :func:`all` and :func:`any` in that it evaluates
    an iterable and returns a :class:`bool`. ``same()`` returns
    ``True`` for empty iterables.

    >>> same([])
    True
    >>> same([1])
    True
    >>> same(['a', 'a', 'a'])
    True
    >>> same(range(20))
    False
    >>> same([[], []])
    True
    >>> same([[], []], ref='test')
    False

    """
    iterator = iter(iterable)
    if ref is _UNSET:
        ref = next(iterator, ref)
    return all(val == ref for val in iterator)


def default_visit(path, key, value):
    # print('visit(%r, %r, %r)' % (path, key, value))
    return key, value

# enable the extreme: monkeypatching iterutils with a different default_visit
_orig_default_visit = default_visit


def default_enter(path, key, value):
    # print('enter(%r, %r)' % (key, value))
    try:
        iter(value)
    except TypeError:
        return value, False
    if isinstance(value, basestring):
        return value, False
    elif isinstance(value, Mapping):
        return value.__class__(), ItemsView(value)
    elif isinstance(value, Sequence):
        return value.__class__(), enumerate(value)
    elif isinstance(value, Set):
        return value.__class__(), enumerate(value)
    return value, False


def default_exit(path, key, old_parent, new_parent, new_items):
    # print('exit(%r, %r, %r, %r, %r)'
    #       % (path, key, old_parent, new_parent, new_items))
    ret = new_parent
    if isinstance(new_parent, Mapping):
        new_parent.update(new_items)
    elif isinstance(new_parent, Sequence):
        vals = [v for i, v in new_items]
        try:
            new_parent.extend(vals)
        except AttributeError:
            ret = new_parent.__class__(vals)  # tuples
    elif isinstance(new_parent, Set):
        vals = [v for i, v in new_items]
        try:
            new_parent.update(vals)
        except AttributeError:
            ret = new_parent.__class__(vals)  # frozensets
    else:
        raise RuntimeError('unexpected iterable type: %r' % type(new_parent))
    return ret


def remap(root, visit=default_visit, enter=default_enter, exit=default_exit,
          **kwargs):
    """The remap ("recursive map") function is used to traverse and
    transform nested structures. Lists, tuples, sets, and dictionaries
    are just a few of the data structures nested into heterogenous
    tree-like structures that are so common in programming.
    Unfortunately, Python's built-in ways to manipulate collections
    are almost all flat. List comprehensions may be fast and succinct,
    but they do not recurse, making it tedious to apply quick changes
    or complex transforms to real-world data.

    remap goes where list comprehensions cannot.

    Here's an example of removing all Nones from some data:

    >>> from pprint import pprint
    >>> reviews = {'Star Trek': {'TNG': 10, 'DS9': 8.5, 'ENT': None},
    ...            'Babylon 5': 6, 'Dr. Who': None}
    >>> pprint(remap(reviews, lambda p, k, v: v is not None))
    {'Babylon 5': 6, 'Star Trek': {'DS9': 8.5, 'TNG': 10}}

    Notice how both Nones have been removed despite the nesting in the
    dictionary. Not bad for a one-liner, and that's just the beginning.
    See `this remap cookbook`_ for more delicious recipes.

    .. _this remap cookbook: http://sedimental.org/remap.html

    remap takes four main arguments: the object to traverse and three
    optional callables which determine how the remapped object will be
    created.

    Args:

        root: The target object to traverse. By default, remap
            supports iterables like :class:`list`, :class:`tuple`,
            :class:`dict`, and :class:`set`, but any object traversable by
            *enter* will work.
        visit (callable): This function is called on every item in
            *root*. It must accept three positional arguments, *path*,
            *key*, and *value*. *path* is simply a tuple of parents'
            keys. *visit* should return the new key-value pair. It may
            also return ``True`` as shorthand to keep the old item
            unmodified, or ``False`` to drop the item from the new
            structure. *visit* is called after *enter*, on the new parent.

            The *visit* function is called for every item in root,
            including duplicate items. For traversable values, it is
            called on the new parent object, after all its children
            have been visited. The default visit behavior simply
            returns the key-value pair unmodified.
        enter (callable): This function controls which items in *root*
            are traversed. It accepts the same arguments as *visit*: the
            path, the key, and the value of the current item. It returns a
            pair of the blank new parent, and an iterator over the items
            which should be visited. If ``False`` is returned instead of
            an iterator, the value will not be traversed.

            The *enter* function is only called once per unique value. The
            default enter behavior support mappings, sequences, and
            sets. Strings and all other iterables will not be traversed.
        exit (callable): This function determines how to handle items
            once they have been visited. It gets the same three
            arguments as the other functions -- *path*, *key*, *value*
            -- plus two more: the blank new parent object returned
            from *enter*, and a list of the new items, as remapped by
            *visit*.

            Like *enter*, the *exit* function is only called once per
            unique value. The default exit behavior is to simply add
            all new items to the new parent, e.g., using
            :meth:`list.extend` and :meth:`dict.update` to add to the
            new parent. Immutable objects, such as a :class:`tuple` or
            :class:`namedtuple`, must be recreated from scratch, but
            use the same type as the new parent passed back from the
            *enter* function.
        reraise_visit (bool): A pragmatic convenience for the *visit*
            callable. When set to ``False``, remap ignores any errors
            raised by the *visit* callback. Items causing exceptions
            are kept. See examples for more details.

    remap is designed to cover the majority of cases with just the
    *visit* callable. While passing in multiple callables is very
    empowering, remap is designed so very few cases should require
    passing more than one function.

    When passing *enter* and *exit*, it's common and easiest to build
    on the default behavior. Simply add ``from boltons.iterutils import
    default_enter`` (or ``default_exit``), and have your enter/exit
    function call the default behavior before or after your custom
    logic. See `this example`_.

    Duplicate and self-referential objects (aka reference loops) are
    automatically handled internally, `as shown here`_.

    .. _this example: http://sedimental.org/remap.html#sort_all_lists
    .. _as shown here: http://sedimental.org/remap.html#corner_cases

    """
    # TODO: improve argument formatting in sphinx doc
    # TODO: enter() return (False, items) to continue traverse but cancel copy?
    if not callable(visit):
        raise TypeError('visit expected callable, not: %r' % visit)
    if not callable(enter):
        raise TypeError('enter expected callable, not: %r' % enter)
    if not callable(exit):
        raise TypeError('exit expected callable, not: %r' % exit)
    reraise_visit = kwargs.pop('reraise_visit', True)
    if kwargs:
        raise TypeError('unexpected keyword arguments: %r' % kwargs.keys())

    path, registry, stack = (), {}, [(None, root)]
    new_items_stack = []
    while stack:
        key, value = stack.pop()
        id_value = id(value)
        if key is _REMAP_EXIT:
            key, new_parent, old_parent = value
            id_value = id(old_parent)
            path, new_items = new_items_stack.pop()
            value = exit(path, key, old_parent, new_parent, new_items)
            registry[id_value] = value
            if not new_items_stack:
                continue
        elif id_value in registry:
            value = registry[id_value]
        else:
            res = enter(path, key, value)
            try:
                new_parent, new_items = res
            except TypeError:
                # TODO: handle False?
                raise TypeError('enter should return a tuple of (new_parent,'
                                ' items_iterator), not: %r' % res)
            if new_items is not False:
                # traverse unless False is explicitly passed
                registry[id_value] = new_parent
                new_items_stack.append((path, []))
                if value is not root:
                    path += (key,)
                stack.append((_REMAP_EXIT, (key, new_parent, value)))
                if new_items:
                    stack.extend(reversed(list(new_items)))
                continue
        if visit is _orig_default_visit:
            # avoid function call overhead by inlining identity operation
            visited_item = (key, value)
        else:
            try:
                visited_item = visit(path, key, value)
            except Exception:
                if reraise_visit:
                    raise
                visited_item = True
            if visited_item is False:
                continue  # drop
            elif visited_item is True:
                visited_item = (key, value)
            # TODO: typecheck?
            #    raise TypeError('expected (key, value) from visit(),'
            #                    ' not: %r' % visited_item)
        try:
            new_items_stack[-1][1].append(visited_item)
        except IndexError:
            raise TypeError('expected remappable root, not: %r' % root)
    return value


class PathAccessError(KeyError, IndexError, TypeError):
    # TODO: could maybe get fancy with an isinstance
    # TODO: should accept an idx argument
    def __init__(self, exc, seg, path):
        self.exc = exc
        self.seg = seg
        self.path = path

    def __repr__(self):
        cn = self.__class__.__name__
        return '%s(%r, %r, %r)' % (cn, self.exc, self.seg, self.path)

    def __str__(self):
        return ('could not access %r from path %r, got error: %r'
                % (self.seg, self.path, self.exc))


def get_path(root, path, default=_UNSET):
    """EAFP is great, but the error message on this isn't:

    var_key = 'last_key'
    x['key'][-1]['other_key'][var_key]
    KeyError: 'last_key'

    One of get_path's chief aims is to have a good exception that is
    better than a plain old KeyError: 'missing_key'
    """
    # TODO: integrate default
    # TODO: listify kwarg? to allow indexing into sets
    # TODO: raise better error on not iterable?
    if isinstance(path, basestring):
        path = path.split('.')
    cur = root
    for seg in path:
        try:
            cur = cur[seg]
        except (KeyError, IndexError) as exc:
            raise PathAccessError(exc, seg, path)
        except TypeError as exc:
            # either string index in a list, or a parent that
            # doesn't support indexing
            try:
                seg = int(seg)
                cur = cur[seg]
            except (ValueError, KeyError, IndexError, TypeError):
                raise PathAccessError(exc, seg, path)
    return cur

# TODO: get_path/set_path
# TODO: recollect()
# TODO: reiter()

# GUID iterators: 10x faster and somewhat more compact than uuid.


class GUIDerator(object):
    """The GUIDerator is an iterator that yields a globally-unique
    identifier (GUID) on every iteration. The GUIDs produced are
    hexadecimal strings.

    Testing shows it to be around 12x faster than the uuid module. By
    default it is also more compact, partly due to its default 96-bit
    (12-byte) length. 96 bits of randomness means that there is a 1 in
    2 ^ 32 chance of collision after 2 ^ 64 iterations. If more or
    less uniqueness is desired, the *size* argument can be adjusted
    accordingly.

    Args:
        size (int): character length of the GUID, defaults to 12. Lengths
                    between 10 and 20 are considered valid.

    The GUIDerator has built-in fork protection that causes it to
    detect a fork on next iteration and reseed accordingly.
    """
    def __init__(self, size=12):
        self.size = size
        if size < 10 or size > 20:
            raise ValueError('expected 10 < size <= 20')
        self.count = itertools.count()
        self.reseed()

    def reseed(self):
        self.pid = os.getpid()
        self.salt = '-'.join([str(self.pid),
                              socket.gethostname() or b'<nohostname>',
                              str(time.time()),
                              codecs.encode(os.urandom(6),
                                            'hex_codec').decode('ascii')])
        # that codecs trick is the best/only way to get a bytes to
        # hexbytes in py2/3
        return

    def __iter__(self):
        return self

    if _IS_PY3:
        def __next__(self):
            if os.getpid() != self.pid:
                self.reseed()
            target_bytes = (self.salt + str(next(self.count))).encode('utf8')
            hash_text = hashlib.sha1(target_bytes).hexdigest()[:self.size]
            return hash_text
    else:
        def __next__(self):
            if os.getpid() != self.pid:
                self.reseed()
            return hashlib.sha1(self.salt +
                                str(next(self.count))).hexdigest()[:self.size]

    next = __next__


class SequentialGUIDerator(GUIDerator):
    """Much like the standard GUIDerator, the SequentialGUIDerator is an
    iterator that yields a globally-unique identifier (GUID) on every
    iteration. The GUIDs produced are hexadecimal strings.

    The SequentialGUIDerator differs in that it picks a starting GUID
    value and increments every iteration. This yields GUIDs which are
    of course unique, but also ordered and lexicographically sortable.

    The SequentialGUIDerator is aronud 50% faster than the normal
    GUIDerator, making it almost 20x as fast as the built-in uuid
    module. By default it is also more compact, partly due to its
    96-bit (12-byte) default length. 96 bits of randomness means that
    there is a 1 in 2 ^ 32 chance of collision after 2 ^ 64
    iterations. If more or less uniqueness is desired, the *size*
    argument can be adjusted accordingly.

    Args:
        size (int): character length of the GUID, defaults to 12.

    Note that with SequentialGUIDerator there is a chance of GUIDs
    growing larger than the size configured. The SequentialGUIDerator
    has built-in fork protection that causes it to detect a fork on
    next iteration and reseed accordingly.

    """

    if _IS_PY3:
        def reseed(self):
            super(SequentialGUIDerator, self).reseed()
            start_str = hashlib.sha1(self.salt.encode('utf8')).hexdigest()
            self.start = int(start_str[:self.size], 16)
            self.start |= (1 << ((self.size * 4) - 2))
    else:
        def reseed(self):
            super(SequentialGUIDerator, self).reseed()
            start_str = hashlib.sha1(self.salt).hexdigest()
            self.start = int(start_str[:self.size], 16)
            self.start |= (1 << ((self.size * 4) - 2))

    def __next__(self):
        if os.getpid() != self.pid:
            self.reseed()
        return '%x' % (next(self.count) + self.start)

    next = __next__


guid_iter = GUIDerator()
seq_guid_iter = SequentialGUIDerator()


"""
May actually be faster to do an isinstance check for a str path

$ python -m timeit -s "x = [1]" "x[0]"
10000000 loops, best of 3: 0.0207 usec per loop
$ python -m timeit -s "x = [1]" "try: x[0] \nexcept: pass"
10000000 loops, best of 3: 0.029 usec per loop
$ python -m timeit -s "x = [1]" "try: x[1] \nexcept: pass"
1000000 loops, best of 3: 0.315 usec per loop
# setting up try/except is fast, only around 0.01us
# actually triggering the exception takes almost 10x as long

$ python -m timeit -s "x = [1]" "isinstance(x, basestring)"
10000000 loops, best of 3: 0.141 usec per loop
$ python -m timeit -s "x = [1]" "isinstance(x, str)"
10000000 loops, best of 3: 0.131 usec per loop
$ python -m timeit -s "x = [1]" "try: x.split('.')\n except: pass"
1000000 loops, best of 3: 0.443 usec per loop
$ python -m timeit -s "x = [1]" "try: x.split('.') \nexcept AttributeError: pass"
1000000 loops, best of 3: 0.544 usec per loop
"""