/usr/lib/python2.7/dist-packages/boltons/iterutils.py is in python-boltons 17.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 | # -*- coding: utf-8 -*-
""":mod:`itertools` is full of great examples of Python generator
usage. However, there are still some critical gaps. ``iterutils``
fills many of those gaps with featureful, tested, and Pythonic
solutions.
Many of the functions below have two versions, one which
returns an iterator (denoted by the ``*_iter`` naming pattern), and a
shorter-named convenience form that returns a list. Some of the
following are based on examples in itertools docs.
"""
import os
import math
import time
import codecs
import random
import socket
import hashlib
import itertools
from collections import Mapping, Sequence, Set, ItemsView
try:
from typeutils import make_sentinel
_UNSET = make_sentinel('_UNSET')
_REMAP_EXIT = make_sentinel('_REMAP_EXIT')
except ImportError:
_REMAP_EXIT = object()
_UNSET = object()
try:
from future_builtins import filter
from itertools import izip
_IS_PY3 = False
except ImportError:
# Python 3 compat
_IS_PY3 = True
basestring = (str, bytes)
izip, xrange = zip, range
def is_iterable(obj):
"""Similar in nature to :func:`callable`, ``is_iterable`` returns
``True`` if an object is `iterable`_, ``False`` if not.
>>> is_iterable([])
True
>>> is_iterable(object())
False
.. _iterable: https://docs.python.org/2/glossary.html#term-iterable
"""
try:
iter(obj)
except TypeError:
return False
return True
def is_scalar(obj):
"""A near-mirror of :func:`is_iterable`. Returns ``False`` if an
object is an iterable container type. Strings are considered
scalar as well, because strings are more often treated as whole
values as opposed to iterables of 1-character substrings.
>>> is_scalar(object())
True
>>> is_scalar(range(10))
False
>>> is_scalar('hello')
True
"""
return not is_iterable(obj) or isinstance(obj, basestring)
def is_collection(obj):
"""The opposite of :func:`is_scalar`. Returns ``True`` if an object
is an iterable other than a string.
>>> is_collection(object())
False
>>> is_collection(range(10))
True
>>> is_collection('hello')
False
"""
return is_iterable(obj) and not isinstance(obj, basestring)
def split(src, sep=None, maxsplit=None):
"""Splits an iterable based on a separator. Like :meth:`str.split`,
but for all iterables. Returns a list of lists.
>>> split(['hi', 'hello', None, None, 'sup', None, 'soap', None])
[['hi', 'hello'], ['sup'], ['soap']]
See :func:`split_iter` docs for more info.
"""
return list(split_iter(src, sep, maxsplit))
def split_iter(src, sep=None, maxsplit=None):
"""Splits an iterable based on a separator, *sep*, a max of
*maxsplit* times (no max by default). *sep* can be:
* a single value
* an iterable of separators
* a single-argument callable that returns True when a separator is
encountered
``split_iter()`` yields lists of non-separator values. A separator will
never appear in the output.
>>> list(split_iter(['hi', 'hello', None, None, 'sup', None, 'soap', None]))
[['hi', 'hello'], ['sup'], ['soap']]
Note that ``split_iter`` is based on :func:`str.split`, so if
*sep* is ``None``, ``split()`` **groups** separators. If empty lists
are desired between two contiguous ``None`` values, simply use
``sep=[None]``:
>>> list(split_iter(['hi', 'hello', None, None, 'sup', None]))
[['hi', 'hello'], ['sup']]
>>> list(split_iter(['hi', 'hello', None, None, 'sup', None], sep=[None]))
[['hi', 'hello'], [], ['sup'], []]
Using a callable separator:
>>> falsy_sep = lambda x: not x
>>> list(split_iter(['hi', 'hello', None, '', 'sup', False], falsy_sep))
[['hi', 'hello'], [], ['sup'], []]
See :func:`split` for a list-returning version.
"""
if not is_iterable(src):
raise TypeError('expected an iterable')
if maxsplit is not None:
maxsplit = int(maxsplit)
if maxsplit == 0:
yield [src]
return
if callable(sep):
sep_func = sep
elif not is_scalar(sep):
sep = frozenset(sep)
sep_func = lambda x: x in sep
else:
sep_func = lambda x: x == sep
cur_group = []
split_count = 0
for s in src:
if maxsplit is not None and split_count >= maxsplit:
sep_func = lambda x: False
if sep_func(s):
if sep is None and not cur_group:
# If sep is none, str.split() "groups" separators
# check the str.split() docs for more info
continue
split_count += 1
yield cur_group
cur_group = []
else:
cur_group.append(s)
if cur_group or sep is not None:
yield cur_group
return
def chunked(src, size, count=None, **kw):
"""Returns a list of *count* chunks, each with *size* elements,
generated from iterable *src*. If *src* is not evenly divisible by
*size*, the final chunk will have fewer than *size* elements.
Provide the *fill* keyword argument to provide a pad value and
enable padding, otherwise no padding will take place.
>>> chunked(range(10), 3)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> chunked(range(10), 3, fill=None)
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]
>>> chunked(range(10), 3, count=2)
[[0, 1, 2], [3, 4, 5]]
See :func:`chunked_iter` for more info.
"""
chunk_iter = chunked_iter(src, size, **kw)
if count is None:
return list(chunk_iter)
else:
return list(itertools.islice(chunk_iter, count))
def chunked_iter(src, size, **kw):
"""Generates *size*-sized chunks from *src* iterable. Unless the
optional *fill* keyword argument is provided, iterables not even
divisible by *size* will have a final chunk that is smaller than
*size*.
>>> list(chunked_iter(range(10), 3))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
>>> list(chunked_iter(range(10), 3, fill=None))
[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, None, None]]
Note that ``fill=None`` in fact uses ``None`` as the fill value.
"""
# TODO: add count kwarg?
if not is_iterable(src):
raise TypeError('expected an iterable')
size = int(size)
if size <= 0:
raise ValueError('expected a positive integer chunk size')
do_fill = True
try:
fill_val = kw.pop('fill')
except KeyError:
do_fill = False
fill_val = None
if kw:
raise ValueError('got unexpected keyword arguments: %r' % kw.keys())
if not src:
return
postprocess = lambda chk: chk
if isinstance(src, basestring):
postprocess = lambda chk, _sep=type(src)(): _sep.join(chk)
src_iter = iter(src)
while True:
cur_chunk = list(itertools.islice(src_iter, size))
if not cur_chunk:
break
lc = len(cur_chunk)
if lc < size and do_fill:
cur_chunk[lc:] = [fill_val] * (size - lc)
yield postprocess(cur_chunk)
return
def pairwise(src):
"""Convenience function for calling :func:`windowed` on *src*, with
*size* set to 2.
>>> pairwise(range(5))
[(0, 1), (1, 2), (2, 3), (3, 4)]
>>> pairwise([])
[]
The number of pairs is always one less than the number of elements
in the iterable passed in, except on empty inputs, which returns
an empty list.
"""
return windowed(src, 2)
def pairwise_iter(src):
"""Convenience function for calling :func:`windowed_iter` on *src*,
with *size* set to 2.
>>> list(pairwise_iter(range(5)))
[(0, 1), (1, 2), (2, 3), (3, 4)]
>>> list(pairwise_iter([]))
[]
The number of pairs is always one less than the number of elements
in the iterable passed in, or zero, when *src* is empty.
"""
return windowed_iter(src, 2)
def windowed(src, size):
"""Returns tuples with exactly length *size*. If the iterable is
too short to make a window of length *size*, no tuples are
returned. See :func:`windowed_iter` for more.
"""
return list(windowed_iter(src, size))
def windowed_iter(src, size):
"""Returns tuples with length *size* which represent a sliding
window over iterable *src*.
>>> list(windowed_iter(range(7), 3))
[(0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
If the iterable is too short to make a window of length *size*,
then no window tuples are returned.
>>> list(windowed_iter(range(3), 5))
[]
"""
# TODO: lists? (for consistency)
tees = itertools.tee(src, size)
try:
for i, t in enumerate(tees):
for _ in xrange(i):
next(t)
except StopIteration:
return izip([])
return izip(*tees)
def xfrange(stop, start=None, step=1.0):
"""Same as :func:`frange`, but generator-based instead of returning a
list.
>>> tuple(xfrange(1, 3, step=0.75))
(1.0, 1.75, 2.5)
See :func:`frange` for more details.
"""
if not step:
raise ValueError('step must be non-zero')
if start is None:
start, stop = 0.0, stop * 1.0
else:
# swap when all args are used
stop, start = start * 1.0, stop * 1.0
cur = start
while cur < stop:
yield cur
cur += step
def frange(stop, start=None, step=1.0):
"""A :func:`range` clone for float-based ranges.
>>> frange(5)
[0.0, 1.0, 2.0, 3.0, 4.0]
>>> frange(6, step=1.25)
[0.0, 1.25, 2.5, 3.75, 5.0]
>>> frange(100.5, 101.5, 0.25)
[100.5, 100.75, 101.0, 101.25]
>>> frange(5, 0)
[]
>>> frange(5, 0, step=-1.25)
[5.0, 3.75, 2.5, 1.25]
"""
if not step:
raise ValueError('step must be non-zero')
if start is None:
start, stop = 0.0, stop * 1.0
else:
# swap when all args are used
stop, start = start * 1.0, stop * 1.0
count = int(math.ceil((stop - start) / step))
ret = [None] * count
if not ret:
return ret
ret[0] = start
for i in xrange(1, count):
ret[i] = ret[i - 1] + step
return ret
def backoff(start, stop, count=None, factor=2.0, jitter=False):
"""Returns a list of geometrically-increasing floating-point numbers,
suitable for usage with `exponential backoff`_. Exactly like
:func:`backoff_iter`, but without the ``'repeat'`` option for
*count*. See :func:`backoff_iter` for more details.
.. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff
>>> backoff(1, 10)
[1.0, 2.0, 4.0, 8.0, 10.0]
"""
if count == 'repeat':
raise ValueError("'repeat' supported in backoff_iter, not backoff")
return list(backoff_iter(start, stop, count=count,
factor=factor, jitter=jitter))
def backoff_iter(start, stop, count=None, factor=2.0, jitter=False):
"""Generates a sequence of geometrically-increasing floats, suitable
for usage with `exponential backoff`_. Starts with *start*,
increasing by *factor* until *stop* is reached, optionally
stopping iteration once *count* numbers are yielded. *factor*
defaults to 2. In general retrying with properly-configured
backoff creates a better-behaved component for a larger service
ecosystem.
.. _exponential backoff: https://en.wikipedia.org/wiki/Exponential_backoff
>>> list(backoff_iter(1.0, 10.0, count=5))
[1.0, 2.0, 4.0, 8.0, 10.0]
>>> list(backoff_iter(1.0, 10.0, count=8))
[1.0, 2.0, 4.0, 8.0, 10.0, 10.0, 10.0, 10.0]
>>> list(backoff_iter(0.25, 100.0, factor=10))
[0.25, 2.5, 25.0, 100.0]
A simplified usage example:
.. code-block:: python
for timeout in backoff_iter(0.25, 5.0):
try:
res = network_call()
break
except Exception as e:
log(e)
time.sleep(timeout)
An enhancement for large-scale systems would be to add variation,
or *jitter*, to timeout values. This is done to avoid a thundering
herd on the receiving end of the network call.
Finally, for *count*, the special value ``'repeat'`` can be passed to
continue yielding indefinitely.
Args:
start (float): Positive number for baseline.
stop (float): Positive number for maximum.
count (int): Number of steps before stopping
iteration. Defaults to the number of steps between *start* and
*stop*. Pass the string, `'repeat'`, to continue iteration
indefinitely.
factor (float): Rate of exponential increase. Defaults to `2.0`,
e.g., `[1, 2, 4, 8, 16]`.
jitter (float): A factor between `-1.0` and `1.0`, used to
uniformly randomize and thus spread out timeouts in a distributed
system, avoiding rhythm effects. Positive values use the base
backoff curve as a maximum, negative values use the curve as a
minimum. Set to 1.0 or `True` for a jitter approximating
Ethernet's time-tested backoff solution. Defaults to `False`.
"""
start = float(start)
stop = float(stop)
factor = float(factor)
if start < 0.0:
raise ValueError('expected start >= 0, not %r' % start)
if factor < 1.0:
raise ValueError('expected factor >= 1.0, not %r' % factor)
if stop == 0.0:
raise ValueError('expected stop >= 0')
if stop < start:
raise ValueError('expected stop >= start, not %r' % stop)
if count is None:
denom = start if start else 1
count = 1 + math.ceil(math.log(stop/denom, factor))
count = count if start else count + 1
if count != 'repeat' and count < 0:
raise ValueError('count must be positive or "repeat", not %r' % count)
if jitter:
jitter = float(jitter)
if not (-1.0 <= jitter <= 1.0):
raise ValueError('expected jitter -1 <= j <= 1, not: %r' % jitter)
cur, i = start, 0
while count == 'repeat' or i < count:
if not jitter:
cur_ret = cur
elif jitter:
cur_ret = cur - (cur * jitter * random.random())
yield cur_ret
i += 1
if cur == 0:
cur = 1
elif cur < stop:
cur *= factor
if cur > stop:
cur = stop
return
def bucketize(src, key=None, value_transform=None, key_filter=None):
"""Group values in the *src* iterable by the value returned by *key*,
which defaults to :class:`bool`, grouping values by truthiness.
>>> bucketize(range(5))
{False: [0], True: [1, 2, 3, 4]}
>>> is_odd = lambda x: x % 2 == 1
>>> bucketize(range(5), is_odd)
{False: [0, 2, 4], True: [1, 3]}
Value lists are not deduplicated:
>>> bucketize([None, None, None, 'hello'])
{False: [None, None, None], True: ['hello']}
Bucketize into more than 3 groups
>>> bucketize(range(10), lambda x: x % 3)
{0: [0, 3, 6, 9], 1: [1, 4, 7], 2: [2, 5, 8]}
``bucketize`` has a couple of advanced options useful in certain
cases. *value_transform* can be used to modify values as they are
added to buckets, and *key_filter* will allow excluding certain
buckets from being collected.
>>> bucketize(range(5), value_transform=lambda x: x*x)
{False: [0], True: [1, 4, 9, 16]}
>>> bucketize(range(10), key=lambda x: x % 3, key_filter=lambda k: k % 3 != 1)
{0: [0, 3, 6, 9], 2: [2, 5, 8]}
Note in some of these examples there were at most two keys, ``True`` and
``False``, and each key present has a list with at least one
item. See :func:`partition` for a version specialized for binary
use cases.
"""
if not is_iterable(src):
raise TypeError('expected an iterable')
if key is None:
key = bool
if not callable(key):
raise TypeError('expected callable key function')
if value_transform is None:
value_transform = lambda x: x
if not callable(value_transform):
raise TypeError('expected callable value transform function')
ret = {}
for val in src:
key_of_val = key(val)
if key_filter is None or key_filter(key_of_val):
ret.setdefault(key_of_val, []).append(value_transform(val))
return ret
def partition(src, key=None):
"""No relation to :meth:`str.partition`, ``partition`` is like
:func:`bucketize`, but for added convenience returns a tuple of
``(truthy_values, falsy_values)``.
>>> nonempty, empty = partition(['', '', 'hi', '', 'bye'])
>>> nonempty
['hi', 'bye']
*key* defaults to :class:`bool`, but can be carefully overridden to
use any function that returns either ``True`` or ``False``.
>>> import string
>>> is_digit = lambda x: x in string.digits
>>> decimal_digits, hexletters = partition(string.hexdigits, is_digit)
>>> ''.join(decimal_digits), ''.join(hexletters)
('0123456789', 'abcdefABCDEF')
"""
bucketized = bucketize(src, key)
return bucketized.get(True, []), bucketized.get(False, [])
def unique(src, key=None):
"""``unique()`` returns a list of unique values, as determined by
*key*, in the order they first appeared in the input iterable,
*src*.
>>> ones_n_zeros = '11010110001010010101010'
>>> ''.join(unique(ones_n_zeros))
'10'
See :func:`unique_iter` docs for more details.
"""
return list(unique_iter(src, key))
def unique_iter(src, key=None):
"""Yield unique elements from the iterable, *src*, based on *key*,
in the order in which they first appeared in *src*.
>>> repetitious = [1, 2, 3] * 10
>>> list(unique_iter(repetitious))
[1, 2, 3]
By default, *key* is the object itself, but *key* can either be a
callable or, for convenience, a string name of the attribute on
which to uniqueify objects, falling back on identity when the
attribute is not present.
>>> pleasantries = ['hi', 'hello', 'ok', 'bye', 'yes']
>>> list(unique_iter(pleasantries, key=lambda x: len(x)))
['hi', 'hello', 'bye']
"""
if not is_iterable(src):
raise TypeError('expected an iterable, not %r' % type(src))
if key is None:
key_func = lambda x: x
elif callable(key):
key_func = key
elif isinstance(key, basestring):
key_func = lambda x: getattr(x, key, x)
else:
raise TypeError('"key" expected a string or callable, not %r' % key)
seen = set()
for i in src:
k = key_func(i)
if k not in seen:
seen.add(k)
yield i
return
def one(src, default=None, key=None):
"""Along the same lines as builtins, :func:`all` and :func:`any`, and
similar to :func:`first`, ``one()`` returns the single object in
the given iterable *src* that evaluates to ``True``, as determined
by callable *key*. If unset, *key* defaults to :class:`bool`. If
no such objects are found, *default* is returned. If *default* is
not passed, ``None`` is returned.
If *src* has more than one object that evaluates to ``True``, or
if there is no object that fulfills such condition, return
*default*. It's like an `XOR`_ over an iterable.
>>> one((True, False, False))
True
>>> one((True, False, True))
>>> one((0, 0, 'a'))
'a'
>>> one((0, False, None))
>>> one((True, True), default=False)
False
>>> bool(one(('', 1)))
True
>>> one((10, 20, 30, 42), key=lambda i: i > 40)
42
See `Martín Gaitán's original repo`_ for further use cases.
.. _Martín Gaitán's original repo: https://github.com/mgaitan/one
.. _XOR: https://en.wikipedia.org/wiki/Exclusive_or
"""
ones = list(itertools.islice(filter(key, src), 2))
return ones[0] if len(ones) == 1 else default
def first(iterable, default=None, key=None):
"""Return first element of *iterable* that evaluates to ``True``, else
return ``None`` or optional *default*. Similar to :func:`one`.
>>> first([0, False, None, [], (), 42])
42
>>> first([0, False, None, [], ()]) is None
True
>>> first([0, False, None, [], ()], default='ohai')
'ohai'
>>> import re
>>> m = first(re.match(regex, 'abc') for regex in ['b.*', 'a(.*)'])
>>> m.group(1)
'bc'
The optional *key* argument specifies a one-argument predicate function
like that used for *filter()*. The *key* argument, if supplied, should be
in keyword form. For example, finding the first even number in an iterable:
>>> first([1, 1, 3, 4, 5], key=lambda x: x % 2 == 0)
4
Contributed by Hynek Schlawack, author of `the original standalone module`_.
.. _the original standalone module: https://github.com/hynek/first
"""
return next(filter(key, iterable), default)
def same(iterable, ref=_UNSET):
"""``same()`` returns ``True`` when all values in *iterable* are
equal to one another, or optionally a reference value,
*ref*. Similar to :func:`all` and :func:`any` in that it evaluates
an iterable and returns a :class:`bool`. ``same()`` returns
``True`` for empty iterables.
>>> same([])
True
>>> same([1])
True
>>> same(['a', 'a', 'a'])
True
>>> same(range(20))
False
>>> same([[], []])
True
>>> same([[], []], ref='test')
False
"""
iterator = iter(iterable)
if ref is _UNSET:
ref = next(iterator, ref)
return all(val == ref for val in iterator)
def default_visit(path, key, value):
# print('visit(%r, %r, %r)' % (path, key, value))
return key, value
# enable the extreme: monkeypatching iterutils with a different default_visit
_orig_default_visit = default_visit
def default_enter(path, key, value):
# print('enter(%r, %r)' % (key, value))
try:
iter(value)
except TypeError:
return value, False
if isinstance(value, basestring):
return value, False
elif isinstance(value, Mapping):
return value.__class__(), ItemsView(value)
elif isinstance(value, Sequence):
return value.__class__(), enumerate(value)
elif isinstance(value, Set):
return value.__class__(), enumerate(value)
return value, False
def default_exit(path, key, old_parent, new_parent, new_items):
# print('exit(%r, %r, %r, %r, %r)'
# % (path, key, old_parent, new_parent, new_items))
ret = new_parent
if isinstance(new_parent, Mapping):
new_parent.update(new_items)
elif isinstance(new_parent, Sequence):
vals = [v for i, v in new_items]
try:
new_parent.extend(vals)
except AttributeError:
ret = new_parent.__class__(vals) # tuples
elif isinstance(new_parent, Set):
vals = [v for i, v in new_items]
try:
new_parent.update(vals)
except AttributeError:
ret = new_parent.__class__(vals) # frozensets
else:
raise RuntimeError('unexpected iterable type: %r' % type(new_parent))
return ret
def remap(root, visit=default_visit, enter=default_enter, exit=default_exit,
**kwargs):
"""The remap ("recursive map") function is used to traverse and
transform nested structures. Lists, tuples, sets, and dictionaries
are just a few of the data structures nested into heterogenous
tree-like structures that are so common in programming.
Unfortunately, Python's built-in ways to manipulate collections
are almost all flat. List comprehensions may be fast and succinct,
but they do not recurse, making it tedious to apply quick changes
or complex transforms to real-world data.
remap goes where list comprehensions cannot.
Here's an example of removing all Nones from some data:
>>> from pprint import pprint
>>> reviews = {'Star Trek': {'TNG': 10, 'DS9': 8.5, 'ENT': None},
... 'Babylon 5': 6, 'Dr. Who': None}
>>> pprint(remap(reviews, lambda p, k, v: v is not None))
{'Babylon 5': 6, 'Star Trek': {'DS9': 8.5, 'TNG': 10}}
Notice how both Nones have been removed despite the nesting in the
dictionary. Not bad for a one-liner, and that's just the beginning.
See `this remap cookbook`_ for more delicious recipes.
.. _this remap cookbook: http://sedimental.org/remap.html
remap takes four main arguments: the object to traverse and three
optional callables which determine how the remapped object will be
created.
Args:
root: The target object to traverse. By default, remap
supports iterables like :class:`list`, :class:`tuple`,
:class:`dict`, and :class:`set`, but any object traversable by
*enter* will work.
visit (callable): This function is called on every item in
*root*. It must accept three positional arguments, *path*,
*key*, and *value*. *path* is simply a tuple of parents'
keys. *visit* should return the new key-value pair. It may
also return ``True`` as shorthand to keep the old item
unmodified, or ``False`` to drop the item from the new
structure. *visit* is called after *enter*, on the new parent.
The *visit* function is called for every item in root,
including duplicate items. For traversable values, it is
called on the new parent object, after all its children
have been visited. The default visit behavior simply
returns the key-value pair unmodified.
enter (callable): This function controls which items in *root*
are traversed. It accepts the same arguments as *visit*: the
path, the key, and the value of the current item. It returns a
pair of the blank new parent, and an iterator over the items
which should be visited. If ``False`` is returned instead of
an iterator, the value will not be traversed.
The *enter* function is only called once per unique value. The
default enter behavior support mappings, sequences, and
sets. Strings and all other iterables will not be traversed.
exit (callable): This function determines how to handle items
once they have been visited. It gets the same three
arguments as the other functions -- *path*, *key*, *value*
-- plus two more: the blank new parent object returned
from *enter*, and a list of the new items, as remapped by
*visit*.
Like *enter*, the *exit* function is only called once per
unique value. The default exit behavior is to simply add
all new items to the new parent, e.g., using
:meth:`list.extend` and :meth:`dict.update` to add to the
new parent. Immutable objects, such as a :class:`tuple` or
:class:`namedtuple`, must be recreated from scratch, but
use the same type as the new parent passed back from the
*enter* function.
reraise_visit (bool): A pragmatic convenience for the *visit*
callable. When set to ``False``, remap ignores any errors
raised by the *visit* callback. Items causing exceptions
are kept. See examples for more details.
remap is designed to cover the majority of cases with just the
*visit* callable. While passing in multiple callables is very
empowering, remap is designed so very few cases should require
passing more than one function.
When passing *enter* and *exit*, it's common and easiest to build
on the default behavior. Simply add ``from boltons.iterutils import
default_enter`` (or ``default_exit``), and have your enter/exit
function call the default behavior before or after your custom
logic. See `this example`_.
Duplicate and self-referential objects (aka reference loops) are
automatically handled internally, `as shown here`_.
.. _this example: http://sedimental.org/remap.html#sort_all_lists
.. _as shown here: http://sedimental.org/remap.html#corner_cases
"""
# TODO: improve argument formatting in sphinx doc
# TODO: enter() return (False, items) to continue traverse but cancel copy?
if not callable(visit):
raise TypeError('visit expected callable, not: %r' % visit)
if not callable(enter):
raise TypeError('enter expected callable, not: %r' % enter)
if not callable(exit):
raise TypeError('exit expected callable, not: %r' % exit)
reraise_visit = kwargs.pop('reraise_visit', True)
if kwargs:
raise TypeError('unexpected keyword arguments: %r' % kwargs.keys())
path, registry, stack = (), {}, [(None, root)]
new_items_stack = []
while stack:
key, value = stack.pop()
id_value = id(value)
if key is _REMAP_EXIT:
key, new_parent, old_parent = value
id_value = id(old_parent)
path, new_items = new_items_stack.pop()
value = exit(path, key, old_parent, new_parent, new_items)
registry[id_value] = value
if not new_items_stack:
continue
elif id_value in registry:
value = registry[id_value]
else:
res = enter(path, key, value)
try:
new_parent, new_items = res
except TypeError:
# TODO: handle False?
raise TypeError('enter should return a tuple of (new_parent,'
' items_iterator), not: %r' % res)
if new_items is not False:
# traverse unless False is explicitly passed
registry[id_value] = new_parent
new_items_stack.append((path, []))
if value is not root:
path += (key,)
stack.append((_REMAP_EXIT, (key, new_parent, value)))
if new_items:
stack.extend(reversed(list(new_items)))
continue
if visit is _orig_default_visit:
# avoid function call overhead by inlining identity operation
visited_item = (key, value)
else:
try:
visited_item = visit(path, key, value)
except Exception:
if reraise_visit:
raise
visited_item = True
if visited_item is False:
continue # drop
elif visited_item is True:
visited_item = (key, value)
# TODO: typecheck?
# raise TypeError('expected (key, value) from visit(),'
# ' not: %r' % visited_item)
try:
new_items_stack[-1][1].append(visited_item)
except IndexError:
raise TypeError('expected remappable root, not: %r' % root)
return value
class PathAccessError(KeyError, IndexError, TypeError):
# TODO: could maybe get fancy with an isinstance
# TODO: should accept an idx argument
def __init__(self, exc, seg, path):
self.exc = exc
self.seg = seg
self.path = path
def __repr__(self):
cn = self.__class__.__name__
return '%s(%r, %r, %r)' % (cn, self.exc, self.seg, self.path)
def __str__(self):
return ('could not access %r from path %r, got error: %r'
% (self.seg, self.path, self.exc))
def get_path(root, path, default=_UNSET):
"""EAFP is great, but the error message on this isn't:
var_key = 'last_key'
x['key'][-1]['other_key'][var_key]
KeyError: 'last_key'
One of get_path's chief aims is to have a good exception that is
better than a plain old KeyError: 'missing_key'
"""
# TODO: integrate default
# TODO: listify kwarg? to allow indexing into sets
# TODO: raise better error on not iterable?
if isinstance(path, basestring):
path = path.split('.')
cur = root
for seg in path:
try:
cur = cur[seg]
except (KeyError, IndexError) as exc:
raise PathAccessError(exc, seg, path)
except TypeError as exc:
# either string index in a list, or a parent that
# doesn't support indexing
try:
seg = int(seg)
cur = cur[seg]
except (ValueError, KeyError, IndexError, TypeError):
raise PathAccessError(exc, seg, path)
return cur
# TODO: get_path/set_path
# TODO: recollect()
# TODO: reiter()
# GUID iterators: 10x faster and somewhat more compact than uuid.
class GUIDerator(object):
"""The GUIDerator is an iterator that yields a globally-unique
identifier (GUID) on every iteration. The GUIDs produced are
hexadecimal strings.
Testing shows it to be around 12x faster than the uuid module. By
default it is also more compact, partly due to its default 96-bit
(12-byte) length. 96 bits of randomness means that there is a 1 in
2 ^ 32 chance of collision after 2 ^ 64 iterations. If more or
less uniqueness is desired, the *size* argument can be adjusted
accordingly.
Args:
size (int): character length of the GUID, defaults to 12. Lengths
between 10 and 20 are considered valid.
The GUIDerator has built-in fork protection that causes it to
detect a fork on next iteration and reseed accordingly.
"""
def __init__(self, size=12):
self.size = size
if size < 10 or size > 20:
raise ValueError('expected 10 < size <= 20')
self.count = itertools.count()
self.reseed()
def reseed(self):
self.pid = os.getpid()
self.salt = '-'.join([str(self.pid),
socket.gethostname() or b'<nohostname>',
str(time.time()),
codecs.encode(os.urandom(6),
'hex_codec').decode('ascii')])
# that codecs trick is the best/only way to get a bytes to
# hexbytes in py2/3
return
def __iter__(self):
return self
if _IS_PY3:
def __next__(self):
if os.getpid() != self.pid:
self.reseed()
target_bytes = (self.salt + str(next(self.count))).encode('utf8')
hash_text = hashlib.sha1(target_bytes).hexdigest()[:self.size]
return hash_text
else:
def __next__(self):
if os.getpid() != self.pid:
self.reseed()
return hashlib.sha1(self.salt +
str(next(self.count))).hexdigest()[:self.size]
next = __next__
class SequentialGUIDerator(GUIDerator):
"""Much like the standard GUIDerator, the SequentialGUIDerator is an
iterator that yields a globally-unique identifier (GUID) on every
iteration. The GUIDs produced are hexadecimal strings.
The SequentialGUIDerator differs in that it picks a starting GUID
value and increments every iteration. This yields GUIDs which are
of course unique, but also ordered and lexicographically sortable.
The SequentialGUIDerator is aronud 50% faster than the normal
GUIDerator, making it almost 20x as fast as the built-in uuid
module. By default it is also more compact, partly due to its
96-bit (12-byte) default length. 96 bits of randomness means that
there is a 1 in 2 ^ 32 chance of collision after 2 ^ 64
iterations. If more or less uniqueness is desired, the *size*
argument can be adjusted accordingly.
Args:
size (int): character length of the GUID, defaults to 12.
Note that with SequentialGUIDerator there is a chance of GUIDs
growing larger than the size configured. The SequentialGUIDerator
has built-in fork protection that causes it to detect a fork on
next iteration and reseed accordingly.
"""
if _IS_PY3:
def reseed(self):
super(SequentialGUIDerator, self).reseed()
start_str = hashlib.sha1(self.salt.encode('utf8')).hexdigest()
self.start = int(start_str[:self.size], 16)
self.start |= (1 << ((self.size * 4) - 2))
else:
def reseed(self):
super(SequentialGUIDerator, self).reseed()
start_str = hashlib.sha1(self.salt).hexdigest()
self.start = int(start_str[:self.size], 16)
self.start |= (1 << ((self.size * 4) - 2))
def __next__(self):
if os.getpid() != self.pid:
self.reseed()
return '%x' % (next(self.count) + self.start)
next = __next__
guid_iter = GUIDerator()
seq_guid_iter = SequentialGUIDerator()
"""
May actually be faster to do an isinstance check for a str path
$ python -m timeit -s "x = [1]" "x[0]"
10000000 loops, best of 3: 0.0207 usec per loop
$ python -m timeit -s "x = [1]" "try: x[0] \nexcept: pass"
10000000 loops, best of 3: 0.029 usec per loop
$ python -m timeit -s "x = [1]" "try: x[1] \nexcept: pass"
1000000 loops, best of 3: 0.315 usec per loop
# setting up try/except is fast, only around 0.01us
# actually triggering the exception takes almost 10x as long
$ python -m timeit -s "x = [1]" "isinstance(x, basestring)"
10000000 loops, best of 3: 0.141 usec per loop
$ python -m timeit -s "x = [1]" "isinstance(x, str)"
10000000 loops, best of 3: 0.131 usec per loop
$ python -m timeit -s "x = [1]" "try: x.split('.')\n except: pass"
1000000 loops, best of 3: 0.443 usec per loop
$ python -m timeit -s "x = [1]" "try: x.split('.') \nexcept AttributeError: pass"
1000000 loops, best of 3: 0.544 usec per loop
"""
|