/usr/lib/python2.7/dist-packages/boltons/setutils.py is in python-boltons 17.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | # -*- coding: utf-8 -*-
"""\
The :class:`set` type brings the practical expressiveness of
set theory to Python. It has a very rich API overall, but lacks a
couple of fundamental features. For one, sets are not ordered. On top
of this, sets are not indexable, i.e, ``my_set[8]`` will raise an
:exc:`TypeError`. The :class:`IndexedSet` type remedies both of these
issues without compromising on the excellent complexity
characteristics of Python's built-in set implementation.
"""
from __future__ import print_function
from bisect import bisect_left
from itertools import chain, islice
from collections import MutableSet
import operator
try:
from typeutils import make_sentinel
_MISSING = make_sentinel(var_name='_MISSING')
except ImportError:
_MISSING = object()
__all__ = ['IndexedSet']
_COMPACTION_FACTOR = 8
# TODO: inherit from set()
# TODO: .discard_many(), .remove_many()
# TODO: raise exception on non-set params?
# TODO: technically reverse operators should probably reverse the
# order of the 'other' inputs and put self last (to try and maintain
# insertion order)
class IndexedSet(MutableSet):
"""``IndexedSet`` is a :class:`collections.MutableSet` that maintains
insertion order and uniqueness of inserted elements. It's a hybrid
type, mostly like an OrderedSet, but also :class:`list`-like, in
that it supports indexing and slicing.
Args:
other (iterable): An optional iterable used to initialize the set.
>>> x = IndexedSet(list(range(4)) + list(range(8)))
>>> x
IndexedSet([0, 1, 2, 3, 4, 5, 6, 7])
>>> x - set(range(2))
IndexedSet([2, 3, 4, 5, 6, 7])
>>> x[-1]
7
>>> fcr = IndexedSet('freecreditreport.com')
>>> ''.join(fcr[:fcr.index('.')])
'frecditpo'
Standard set operators and interoperation with :class:`set` are
all supported:
>>> fcr & set('cash4gold.com')
IndexedSet(['c', 'd', 'o', '.', 'm'])
As you can see, the ``IndexedSet`` is almost like a ``UniqueList``,
retaining only one copy of a given value, in the order it was
first added. For the curious, the reason why IndexedSet does not
support setting items based on index (i.e, ``__setitem__()``),
consider the following dilemma::
my_indexed_set = [A, B, C, D]
my_indexed_set[2] = A
At this point, a set requires only one *A*, but a :class:`list` would
overwrite *C*. Overwriting *C* would change the length of the list,
meaning that ``my_indexed_set[2]`` would not be *A*, as expected with a
list, but rather *D*. So, no ``__setitem__()``.
Otherwise, the API strives to be as complete a union of the
:class:`list` and :class:`set` APIs as possible.
"""
def __init__(self, other=None):
self.item_index_map = dict()
self.item_list = []
self.dead_indices = []
self._compactions = 0
self._c_max_size = 0
if other:
self.update(other)
# internal functions
@property
def _dead_index_count(self):
return len(self.item_list) - len(self.item_index_map)
def _compact(self):
if not self.dead_indices:
return
self._compactions += 1
dead_index_count = self._dead_index_count
items, index_map = self.item_list, self.item_index_map
self._c_max_size = max(self._c_max_size, len(items))
for i, item in enumerate(self):
items[i] = item
index_map[item] = i
del items[-dead_index_count:]
del self.dead_indices[:]
def _cull(self):
ded = self.dead_indices
if not ded:
return
items, ii_map = self.item_list, self.item_index_map
if not ii_map:
del items[:]
del ded[:]
elif len(ded) > 384:
self._compact()
elif self._dead_index_count > (len(items) / _COMPACTION_FACTOR):
self._compact()
elif items[-1] is _MISSING: # get rid of dead right hand side
num_dead = 1
while items[-(num_dead + 1)] is _MISSING:
num_dead += 1
if ded and ded[-1][1] == len(items):
del ded[-1]
del items[-num_dead:]
def _get_real_index(self, index):
if index < 0:
index += len(self)
if not self.dead_indices:
return index
real_index = index
for d_start, d_stop in self.dead_indices:
if real_index < d_start:
break
real_index += d_stop - d_start
return real_index
def _add_dead(self, start, stop=None):
# TODO: does not handle when the new interval subsumes
# multiple existing intervals
dints = self.dead_indices
if stop is None:
stop = start + 1
cand_int = [start, stop]
if not dints:
dints.append(cand_int)
return
int_idx = bisect_left(dints, cand_int)
dint = dints[int_idx - 1]
d_start, d_stop = dint
if start <= d_start <= stop:
dint[0] = start
elif start <= d_stop <= stop:
dint[1] = stop
else:
dints.insert(int_idx, cand_int)
return
# common operations (shared by set and list)
def __len__(self):
return len(self.item_index_map)
def __contains__(self, item):
return item in self.item_index_map
def __iter__(self):
return (item for item in self.item_list if item is not _MISSING)
def __reversed__(self):
item_list = self.item_list
return (item for item in reversed(item_list) if item is not _MISSING)
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, list(self))
def __eq__(self, other):
if isinstance(other, IndexedSet):
return len(self) == len(other) and list(self) == list(other)
return set(self) == set(other)
@classmethod
def from_iterable(cls, it):
"from_iterable(it) -> create a set from an iterable"
return cls(it)
# set operations
def add(self, item):
"add(item) -> add item to the set"
if item not in self.item_index_map:
self.item_index_map[item] = len(self.item_list)
self.item_list.append(item)
def remove(self, item):
"remove(item) -> remove item from the set, raises if not present"
try:
didx = self.item_index_map.pop(item)
except KeyError:
raise KeyError(item)
self.item_list[didx] = _MISSING
self._add_dead(didx)
self._cull()
def discard(self, item):
"discard(item) -> discard item from the set (does not raise)"
try:
self.remove(item)
except KeyError:
pass
def clear(self):
"clear() -> empty the set"
del self.item_list[:]
del self.dead_indices[:]
self.item_index_map.clear()
def isdisjoint(self, other):
"isdisjoint(other) -> return True if no overlap with other"
iim = self.item_index_map
for k in other:
if k in iim:
return False
return True
def issubset(self, other):
"issubset(other) -> return True if other contains this set"
if len(other) < len(self):
return False
for k in self.item_index_map:
if k not in other:
return False
return True
def issuperset(self, other):
"issuperset(other) -> return True if set contains other"
if len(other) > len(self):
return False
iim = self.item_index_map
for k in other:
if k not in iim:
return False
return True
def union(self, *others):
"union(*others) -> return a new set containing this set and others"
return self.from_iterable(chain(self, *others))
def iter_intersection(self, *others):
"iter_intersection(*others) -> iterate over elements also in others"
for k in self:
for other in others:
if k not in other:
break
else:
yield k
return
def intersection(self, *others):
"intersection(*others) -> get a set with overlap of this and others"
if len(others) == 1:
other = others[0]
return self.from_iterable(k for k in self if k in other)
return self.from_iterable(self.iter_intersection(*others))
def iter_difference(self, *others):
"iter_difference(*others) -> iterate over elements not in others"
for k in self:
for other in others:
if k in other:
break
else:
yield k
return
def difference(self, *others):
"difference(*others) -> get a new set with elements not in others"
if len(others) == 1:
other = others[0]
return self.from_iterable(k for k in self if k not in other)
return self.from_iterable(self.iter_difference(*others))
def symmetric_difference(self, *others):
"symmetric_difference(*others) -> XOR set of this and others"
ret = self.union(*others)
return ret.difference(self.intersection(*others))
__or__ = __ror__ = union
__and__ = __rand__ = intersection
__sub__ = __rsub__ = difference
__xor__ = __rxor__ = symmetric_difference
# in-place set operations
def update(self, *others):
"update(*others) -> add values from one or more iterables"
if not others:
return # raise?
elif len(others) == 1:
other = others[0]
else:
other = chain(others)
for o in other:
self.add(o)
def intersection_update(self, *others):
"intersection_update(*others) -> discard self.difference(*others)"
for val in self.difference(*others):
self.discard(val)
def difference_update(self, *others):
"difference_update(*others) -> discard self.intersection(*others)"
if self in others:
self.clear()
for val in self.intersection(*others):
self.discard(val)
def symmetric_difference_update(self, other): # note singular 'other'
"symmetric_difference_update(other) -> in-place XOR with other"
if self is other:
self.clear()
for val in other:
if val in self:
self.discard(val)
else:
self.add(val)
def __ior__(self, *others):
self.update(*others)
return self
def __iand__(self, *others):
self.intersection_update(*others)
return self
def __isub__(self, *others):
self.difference_update(*others)
return self
def __ixor__(self, *others):
self.symmetric_difference_update(*others)
return self
def iter_slice(self, start, stop, step=None):
"iterate over a slice of the set"
iterable = self
if start is not None:
start = self._get_real_index(start)
if stop is not None:
stop = self._get_real_index(stop)
if step is not None and step < 0:
step = -step
iterable = reversed(self)
return islice(iterable, start, stop, step)
# list operations
def __getitem__(self, index):
try:
start, stop, step = index.start, index.stop, index.step
except AttributeError:
index = operator.index(index)
else:
iter_slice = self.iter_slice(start, stop, step)
return self.from_iterable(iter_slice)
if index < 0:
index += len(self)
real_index = self._get_real_index(index)
try:
ret = self.item_list[real_index]
except IndexError:
raise IndexError('IndexedSet index out of range')
return ret
def pop(self, index=None):
"pop(index) -> remove the item at a given index (-1 by default)"
item_index_map = self.item_index_map
len_self = len(item_index_map)
if index is None or index == -1 or index == len_self - 1:
ret = self.item_list.pop()
del item_index_map[ret]
else:
real_index = self._get_real_index(index)
ret = self.item_list[real_index]
self.item_list[real_index] = _MISSING
del item_index_map[ret]
self._add_dead(real_index)
self._cull()
return ret
def count(self, val):
"count(val) -> count number of instances of value (0 or 1)"
if val in self.item_index_map:
return 1
return 0
def reverse(self):
"reverse() -> reverse the contents of the set in-place"
reversed_list = list(reversed(self))
self.item_list[:] = reversed_list
for i, item in enumerate(self.item_list):
self.item_index_map[item] = i
del self.dead_indices[:]
def sort(self):
"sort() -> sort the contents of the set in-place"
sorted_list = sorted(self)
if sorted_list == self.item_list:
return
self.item_list[:] = sorted_list
for i, item in enumerate(self.item_list):
self.item_index_map[item] = i
del self.dead_indices[:]
def index(self, val):
"index(val) -> get the index of a value, raises if not present"
try:
return self.item_index_map[val]
except KeyError:
cn = self.__class__.__name__
raise ValueError('%r is not in %s' % (val, cn))
|