/usr/lib/python2.7/dist-packages/boltons/statsutils.py is in python-boltons 17.1.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 | # -*- coding: utf-8 -*-
"""``statsutils`` provides tools aimed primarily at descriptive
statistics for data analysis, such as :func:`mean` (average),
:func:`median`, :func:`variance`, and many others,
The :class:`Stats` type provides all the main functionality of the
``statsutils`` module. A :class:`Stats` object wraps a given dataset,
providing all statistical measures as property attributes. These
attributes cache their results, which allows efficient computation of
multiple measures, as many measures rely on other measures. For
example, relative standard deviation (:attr:`Stats.rel_std_dev`)
relies on both the mean and standard deviation. The Stats object
caches those results so no rework is done.
The :class:`Stats` type's attributes have module-level counterparts for
convenience when the computation reuse advantages do not apply.
>>> stats = Stats(range(42))
>>> stats.mean
20.5
>>> mean(range(42))
20.5
Statistics is a large field, and ``statsutils`` is focused on a few
basic techniques that are useful in software. The following is a brief
introduction to those techniques. For a more in-depth introduction,
`Statistics for Software
<https://www.paypal-engineering.com/2016/04/11/statistics-for-software/>`_,
an article I wrote on the topic. It introduces key terminology vital
to effective usage of statistics.
Statistical moments
-------------------
Python programmers are probably familiar with the concept of the
*mean* or *average*, which gives a rough quantitiative middle value by
which a sample can be can be generalized. However, the mean is just
the first of four `moment`_-based measures by which a sample or
distribution can be measured.
The four `Standardized moments`_ are:
1. `Mean`_ - :func:`mean` - theoretical middle value
2. `Variance`_ - :func:`variance` - width of value dispersion
3. `Skewness`_ - :func:`skewness` - symmetry of distribution
4. `Kurtosis`_ - :func:`kurtosis` - "peakiness" or "long-tailed"-ness
For more information check out `the Moment article on Wikipedia`_.
.. _moment: https://en.wikipedia.org/wiki/Moment_(mathematics)
.. _Standardized moments: https://en.wikipedia.org/wiki/Standardized_moment
.. _Mean: https://en.wikipedia.org/wiki/Mean
.. _Variance: https://en.wikipedia.org/wiki/Variance
.. _Skewness: https://en.wikipedia.org/wiki/Skewness
.. _Kurtosis: https://en.wikipedia.org/wiki/Kurtosis
.. _the Moment article on Wikipedia: https://en.wikipedia.org/wiki/Moment_(mathematics)
Keep in mind that while these moments can give a bit more insight into
the shape and distribution of data, they do not guarantee a complete
picture. Wildly different datasets can have the same values for all
four moments, so generalize wisely.
Robust statistics
-----------------
Moment-based statistics are notorious for being easily skewed by
outliers. The whole field of robust statistics aims to mitigate this
dilemma. ``statsutils`` also includes several robust statistical methods:
* `Median`_ - The middle value of a sorted dataset
* `Trimean`_ - Another robust measure of the data's central tendency
* `Median Absolute Deviation`_ (MAD) - A robust measure of
variability, a natural counterpart to :func:`variance`.
* `Trimming`_ - Reducing a dataset to only the middle majority of
data is a simple way of making other estimators more robust.
.. _Median: https://en.wikipedia.org/wiki/Median
.. _Trimean: https://en.wikipedia.org/wiki/Trimean
.. _Median Absolute Deviation: https://en.wikipedia.org/wiki/Median_absolute_deviation
.. _Trimming: https://en.wikipedia.org/wiki/Trimmed_estimator
Online and Offline Statistics
-----------------------------
Unrelated to computer networking, `online`_ statistics involve
calculating statistics in a `streaming`_ fashion, without all the data
being available. The :class:`Stats` type is meant for the more
traditional offline statistics when all the data is available. For
pure-Python online statistics accumulators, look at the `Lithoxyl`_
system instrumentation package.
.. _Online: https://en.wikipedia.org/wiki/Online_algorithm
.. _streaming: https://en.wikipedia.org/wiki/Streaming_algorithm
.. _Lithoxyl: https://github.com/mahmoud/lithoxyl
"""
from __future__ import print_function
import bisect
from math import floor, ceil
class _StatsProperty(object):
def __init__(self, name, func):
self.name = name
self.func = func
self.internal_name = '_' + name
doc = func.__doc__ or ''
pre_doctest_doc, _, _ = doc.partition('>>>')
self.__doc__ = pre_doctest_doc
def __get__(self, obj, objtype=None):
if obj is None:
return self
if not obj.data:
return obj.default
try:
return getattr(obj, self.internal_name)
except AttributeError:
setattr(obj, self.internal_name, self.func(obj))
return getattr(obj, self.internal_name)
class Stats(object):
"""The ``Stats`` type is used to represent a group of unordered
statistical datapoints for calculations such as mean, median, and
variance.
Args:
data (list): List or other iterable containing numeric values.
default (float): A value to be returned when a given
statistical measure is not defined. 0.0 by default, but
``float('nan')`` is appropriate for stricter applications.
use_copy (bool): By default Stats objects copy the initial
data into a new list to avoid issues with
modifications. Pass ``False`` to disable this behavior.
is_sorted (bool): Presorted data can skip an extra sorting
step for a little speed boost. Defaults to False.
"""
def __init__(self, data, default=0.0, use_copy=True, is_sorted=False):
self._use_copy = use_copy
self._is_sorted = is_sorted
if use_copy:
self.data = list(data)
else:
self.data = data
self.default = default
cls = self.__class__
self._prop_attr_names = [a for a in dir(self)
if isinstance(getattr(cls, a, None),
_StatsProperty)]
self._pearson_precision = 0
def __len__(self):
return len(self.data)
def __iter__(self):
return iter(self.data)
def _get_sorted_data(self):
"""When using a copy of the data, it's better to have that copy be
sorted, but we do it lazily using this method, in case no
sorted measures are used. I.e., if median is never called,
sorting would be a waste.
When not using a copy, it's presumed that all optimizations
are on the user.
"""
if not self._use_copy:
return sorted(self.data)
elif not self._is_sorted:
self.data.sort()
return self.data
def clear_cache(self):
"""``Stats`` objects automatically cache intermediary calculations
that can be reused. For instance, accessing the ``std_dev``
attribute after the ``variance`` attribute will be
significantly faster for medium-to-large datasets.
If you modify the object by adding additional data points,
call this function to have the cached statistics recomputed.
"""
for attr_name in self._prop_attr_names:
attr_name = getattr(self.__class__, attr_name).internal_name
if not hasattr(self, attr_name):
continue
delattr(self, attr_name)
return
def _calc_count(self):
"""The number of items in this Stats object. Returns the same as
:func:`len` on a Stats object, but provided for pandas terminology
parallelism.
>>> Stats(range(20)).count
20
"""
return len(self.data)
count = _StatsProperty('count', _calc_count)
def _calc_mean(self):
"""
The arithmetic mean, or "average". Sum of the values divided by
the number of values.
>>> mean(range(20))
9.5
>>> mean(list(range(19)) + [949]) # 949 is an arbitrary outlier
56.0
"""
return sum(self.data, 0.0) / len(self.data)
mean = _StatsProperty('mean', _calc_mean)
def _calc_max(self):
"""
The maximum value present in the data.
>>> Stats([2, 1, 3]).max
3
"""
if self._is_sorted:
return self.data[-1]
return max(self.data)
max = _StatsProperty('max', _calc_max)
def _calc_min(self):
"""
The minimum value present in the data.
>>> Stats([2, 1, 3]).min
1
"""
if self._is_sorted:
return self.data[0]
return min(self.data)
min = _StatsProperty('min', _calc_min)
def _calc_median(self):
"""
The median is either the middle value or the average of the two
middle values of a sample. Compared to the mean, it's generally
more resilient to the presence of outliers in the sample.
>>> median([2, 1, 3])
2
>>> median(range(97))
48
>>> median(list(range(96)) + [1066]) # 1066 is an arbitrary outlier
48
"""
return self._get_quantile(self._get_sorted_data(), 0.5)
median = _StatsProperty('median', _calc_median)
def _calc_iqr(self):
"""Inter-quartile range (IQR) is the difference between the 75th
percentile and 25th percentile. IQR is a robust measure of
dispersion, like standard deviation, but safer to compare
between datasets, as it is less influenced by outliers.
>>> iqr([1, 2, 3, 4, 5])
2
>>> iqr(range(1001))
500
"""
return self.get_quantile(0.75) - self.get_quantile(0.25)
iqr = _StatsProperty('iqr', _calc_iqr)
def _calc_trimean(self):
"""The trimean is a robust measure of central tendency, like the
median, that takes the weighted average of the median and the
upper and lower quartiles.
>>> trimean([2, 1, 3])
2.0
>>> trimean(range(97))
48.0
>>> trimean(list(range(96)) + [1066]) # 1066 is an arbitrary outlier
48.0
"""
sorted_data = self._get_sorted_data()
gq = lambda q: self._get_quantile(sorted_data, q)
return (gq(0.25) + (2 * gq(0.5)) + gq(0.75)) / 4.0
trimean = _StatsProperty('trimean', _calc_trimean)
def _calc_variance(self):
"""\
Variance is the average of the squares of the difference between
each value and the mean.
>>> variance(range(97))
784.0
"""
return mean(self._get_pow_diffs(2))
variance = _StatsProperty('variance', _calc_variance)
def _calc_std_dev(self):
"""\
Standard deviation. Square root of the variance.
>>> std_dev(range(97))
28.0
"""
return self.variance ** 0.5
std_dev = _StatsProperty('std_dev', _calc_std_dev)
def _calc_median_abs_dev(self):
"""\
Median Absolute Deviation is a robust measure of statistical
dispersion: http://en.wikipedia.org/wiki/Median_absolute_deviation
>>> median_abs_dev(range(97))
24.0
"""
sorted_vals = sorted(self.data)
x = float(median(sorted_vals)) # programmatically defined below
return median([abs(x - v) for v in sorted_vals])
median_abs_dev = _StatsProperty('median_abs_dev', _calc_median_abs_dev)
mad = median_abs_dev # convenience
def _calc_rel_std_dev(self):
"""\
Standard deviation divided by the absolute value of the average.
http://en.wikipedia.org/wiki/Relative_standard_deviation
>>> print('%1.3f' % rel_std_dev(range(97)))
0.583
"""
abs_mean = abs(self.mean)
if abs_mean:
return self.std_dev / abs_mean
else:
return self.default
rel_std_dev = _StatsProperty('rel_std_dev', _calc_rel_std_dev)
def _calc_skewness(self):
"""\
Indicates the asymmetry of a curve. Positive values mean the bulk
of the values are on the left side of the average and vice versa.
http://en.wikipedia.org/wiki/Skewness
See the module docstring for more about statistical moments.
>>> skewness(range(97)) # symmetrical around 48.0
0.0
>>> left_skewed = skewness(list(range(97)) + list(range(10)))
>>> right_skewed = skewness(list(range(97)) + list(range(87, 97)))
>>> round(left_skewed, 3), round(right_skewed, 3)
(0.114, -0.114)
"""
data, s_dev = self.data, self.std_dev
if len(data) > 1 and s_dev > 0:
return (sum(self._get_pow_diffs(3)) /
float((len(data) - 1) * (s_dev ** 3)))
else:
return self.default
skewness = _StatsProperty('skewness', _calc_skewness)
def _calc_kurtosis(self):
"""\
Indicates how much data is in the tails of the distribution. The
result is always positive, with the normal "bell-curve"
distribution having a kurtosis of 3.
http://en.wikipedia.org/wiki/Kurtosis
See the module docstring for more about statistical moments.
>>> kurtosis(range(9))
1.99125
With a kurtosis of 1.99125, [0, 1, 2, 3, 4, 5, 6, 7, 8] is more
centrally distributed than the normal curve.
"""
data, s_dev = self.data, self.std_dev
if len(data) > 1 and s_dev > 0:
return (sum(self._get_pow_diffs(4)) /
float((len(data) - 1) * (s_dev ** 4)))
else:
return 0.0
kurtosis = _StatsProperty('kurtosis', _calc_kurtosis)
def _calc_pearson_type(self):
precision = self._pearson_precision
skewness = self.skewness
kurtosis = self.kurtosis
beta1 = skewness ** 2.0
beta2 = kurtosis * 1.0
# TODO: range checks?
c0 = (4 * beta2) - (3 * beta1)
c1 = skewness * (beta2 + 3)
c2 = (2 * beta2) - (3 * beta1) - 6
if round(c1, precision) == 0:
if round(beta2, precision) == 3:
return 0 # Normal
else:
if beta2 < 3:
return 2 # Symmetric Beta
elif beta2 > 3:
return 7
elif round(c2, precision) == 0:
return 3 # Gamma
else:
k = c1 ** 2 / (4 * c0 * c2)
if k < 0:
return 1 # Beta
raise RuntimeError('missed a spot')
pearson_type = _StatsProperty('pearson_type', _calc_pearson_type)
@staticmethod
def _get_quantile(sorted_data, q):
data, n = sorted_data, len(sorted_data)
idx = q / 1.0 * (n - 1)
idx_f, idx_c = int(floor(idx)), int(ceil(idx))
if idx_f == idx_c:
return data[idx_f]
return (data[idx_f] * (idx_c - idx)) + (data[idx_c] * (idx - idx_f))
def get_quantile(self, q):
"""Get a quantile from the dataset. Quantiles are floating point
values between ``0.0`` and ``1.0``, with ``0.0`` representing
the minimum value in the dataset and ``1.0`` representing the
maximum. ``0.5`` represents the median:
>>> Stats(range(100)).get_quantile(0.5)
49.5
"""
q = float(q)
if not 0.0 <= q <= 1.0:
raise ValueError('expected q between 0.0 and 1.0, not %r' % q)
elif not self.data:
return self.default
return self._get_quantile(self._get_sorted_data(), q)
def get_zscore(self, value):
"""Get the z-score for *value* in the group. If the standard deviation
is 0, 0 inf or -inf will be returned to indicate whether the value is
equal to, greater than or below the group's mean.
"""
mean = self.mean
if self.std_dev == 0:
if value == mean:
return 0
if value > mean:
return float('inf')
if value < mean:
return float('-inf')
return (float(value) - mean) / self.std_dev
def trim_relative(self, amount=0.15):
"""A utility function used to cut a proportion of values off each end
of a list of values. This has the effect of limiting the
effect of outliers.
Args:
amount (float): A value between 0.0 and 0.5 to trim off of
each side of the data.
.. note:
This operation modifies the data in-place. It does not
make or return a copy.
"""
trim = float(amount)
if not 0.0 <= trim < 0.5:
raise ValueError('expected amount between 0.0 and 0.5, not %r'
% trim)
size = len(self.data)
size_diff = int(size * trim)
if size_diff == 0.0:
return
self.data = self._get_sorted_data()[size_diff:-size_diff]
self.clear_cache()
def _get_pow_diffs(self, power):
"""
A utility function used for calculating statistical moments.
"""
m = self.mean
return [(v - m) ** power for v in self.data]
def _get_bin_bounds(self, count=None, with_max=False):
if not self.data:
return [0.0] # TODO: raise?
data = self.data
len_data, min_data, max_data = len(data), min(data), max(data)
if len_data < 4:
if not count:
count = len_data
dx = (max_data - min_data) / float(count)
bins = [min_data + (dx * i) for i in range(count)]
elif count is None:
# freedman algorithm for fixed-width bin selection
q25, q75 = self.get_quantile(0.25), self.get_quantile(0.75)
dx = 2 * (q75 - q25) / (len_data ** (1 / 3.0))
bin_count = max(1, int(ceil((max_data - min_data) / dx)))
bins = [min_data + (dx * i) for i in range(bin_count + 1)]
bins = [b for b in bins if b < max_data]
else:
dx = (max_data - min_data) / float(count)
bins = [min_data + (dx * i) for i in range(count)]
if with_max:
bins.append(float(max_data))
return bins
def get_histogram_counts(self, bins=None, **kw):
"""Produces a list of ``(bin, count)`` pairs comprising a histogram of
the Stats object's data, using fixed-width bins. See
:meth:`Stats.format_histogram` for more details.
Args:
bins (int): maximum number of bins, or list of
floating-point bin boundaries. Defaults to the output of
Freedman's algorithm.
bin_digits (int): Number of digits used to round down the
bin boundaries. Defaults to 1.
The output of this method can be stored and/or modified, and
then passed to :func:`statsutils.format_histogram_counts` to
achieve the same text formatting as the
:meth:`~Stats.format_histogram` method. This can be useful for
snapshotting over time.
"""
bin_digits = int(kw.pop('bin_digits', 1))
if kw:
raise TypeError('unexpected keyword arguments: %r' % kw.keys())
if not bins:
bins = self._get_bin_bounds()
else:
try:
bin_count = int(bins)
except TypeError:
try:
bins = [float(x) for x in bins]
except Exception:
raise ValueError('bins expected integer bin count or list'
' of float bin boundaries, not %r' % bins)
if self.min < bins[0]:
bins = [self.min] + bins
else:
bins = self._get_bin_bounds(bin_count)
# floor and ceil really should have taken ndigits, like round()
round_factor = 10.0 ** bin_digits
bins = [floor(b * round_factor) / round_factor for b in bins]
bins = sorted(set(bins))
idxs = [bisect.bisect(bins, d) - 1 for d in self.data]
count_map = {} # would have used Counter, but py26 support
for idx in idxs:
try:
count_map[idx] += 1
except KeyError:
count_map[idx] = 1
bin_counts = [(b, count_map.get(i, 0)) for i, b in enumerate(bins)]
return bin_counts
def format_histogram(self, bins=None, **kw):
"""Produces a textual histogram of the data, using fixed-width bins,
allowing for simple visualization, even in console environments.
>>> data = list(range(20)) + list(range(5, 15)) + [10]
>>> print(Stats(data).format_histogram())
0.0: 5 ################################
4.4: 8 ###################################################
8.9: 11 ######################################################################
13.3: 5 ################################
17.8: 2 #############
In this histogram, five values are between 0.0 and 4.4, eight
are between 4.4 and 8.9, and two values lie between 17.8 and
the max.
You can specify the number of bins, or provide a list of
bin boundaries themselves. If no bins are provided, as in the
example above, `Freedman's algorithm`_ for bin selection is
used.
Args:
bins (int): Maximum number of bins for the
histogram. Also accepts a list of floating-point
bin boundaries. If the minimum boundary is still
greater than the minimum value in the data, that
boundary will be implicitly added. Defaults to the bin
boundaries returned by `Freedman's algorithm`_.
bin_digits (int): Number of digits to round each bin
to. Note that bins are always rounded down to avoid
clipping any data. Defaults to 1.
width (int): integer number of columns in the longest line
in the histogram. Defaults to console width on Python
3.3+, or 80 if that is not available.
format_bin (callable): Called on each bin to create a
label for the final output. Use this function to add
units, such as "ms" for milliseconds.
Should you want something more programmatically reusable, see
the :meth:`~Stats.get_histogram_counts` method, the output of
is used by format_histogram. The :meth:`~Stats.describe`
method is another useful summarization method, albeit less
visual.
.. _Freedman's algorithm: https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
"""
width = kw.pop('width', None)
format_bin = kw.pop('format_bin', None)
bin_counts = self.get_histogram_counts(bins=bins, **kw)
return format_histogram_counts(bin_counts,
width=width,
format_bin=format_bin)
def describe(self, quantiles=None, format=None):
"""Provides standard summary statistics for the data in the Stats
object, in one of several convenient formats.
Args:
quantiles (list): A list of numeric values to use as
quantiles in the resulting summary. All values must be
0.0-1.0, with 0.5 representing the median. Defaults to
``[0.25, 0.5, 0.75]``, representing the standard
quartiles.
format (str): Controls the return type of the function,
with one of three valid values: ``"dict"`` gives back
a :class:`dict` with the appropriate keys and
values. ``"list"`` is a list of key-value pairs in an
order suitable to pass to an OrderedDict or HTML
table. ``"text"`` converts the values to text suitable
for printing, as seen below.
Here is the information returned by a default ``describe``, as
presented in the ``"text"`` format:
>>> stats = Stats(range(1, 8))
>>> print(stats.describe(format='text'))
count: 7
mean: 4.0
std_dev: 2.0
mad: 2.0
min: 1
0.25: 2.5
0.5: 4
0.75: 5.5
max: 7
For more advanced descriptive statistics, check out my blog
post on the topic `Statistics for Software
<https://www.paypal-engineering.com/2016/04/11/statistics-for-software/>`_.
"""
if format is None:
format = 'dict'
elif format not in ('dict', 'list', 'text'):
raise ValueError('invalid format for describe,'
' expected one of "dict"/"list"/"text", not %r'
% format)
quantiles = quantiles or [0.25, 0.5, 0.75]
q_items = []
for q in quantiles:
q_val = self.get_quantile(q)
q_items.append((str(q), q_val))
items = [('count', self.count),
('mean', self.mean),
('std_dev', self.std_dev),
('mad', self.mad),
('min', self.min)]
items.extend(q_items)
items.append(('max', self.max))
if format == 'dict':
ret = dict(items)
elif format == 'list':
ret = items
elif format == 'text':
ret = '\n'.join(['%s%s' % ((label + ':').ljust(10), val)
for label, val in items])
return ret
def describe(data, quantiles=None, format=None):
"""A convenience function to get standard summary statistics useful
for describing most data. See :meth:`Stats.describe` for more
details.
>>> print(describe(range(7), format='text'))
count: 7
mean: 3.0
std_dev: 2.0
mad: 2.0
min: 0
0.25: 1.5
0.5: 3
0.75: 4.5
max: 6
See :meth:`Stats.format_histogram` for another very useful
summarization that uses textual visualization.
"""
return Stats(data).describe(quantiles=quantiles, format=format)
def _get_conv_func(attr_name):
def stats_helper(data, default=0.0):
return getattr(Stats(data, default=default, use_copy=False),
attr_name)
return stats_helper
for attr_name, attr in list(Stats.__dict__.items()):
if isinstance(attr, _StatsProperty):
if attr_name in ('max', 'min', 'count'): # don't shadow builtins
continue
if attr_name in ('mad',): # convenience aliases
continue
func = _get_conv_func(attr_name)
func.__doc__ = attr.func.__doc__
globals()[attr_name] = func
delattr(Stats, '_calc_' + attr_name)
# cleanup
del attr
del attr_name
del func
def format_histogram_counts(bin_counts, width=None, format_bin=None):
"""The formatting logic behind :meth:`Stats.format_histogram`, which
takes the output of :meth:`Stats.get_histogram_counts`, and passes
them to this function.
Args:
bin_counts (list): A list of bin values to counts.
width (int): Number of character columns in the text output,
defaults to 80 or console width in Python 3.3+.
format_bin (callable): Used to convert bin values into string
labels.
"""
lines = []
if not format_bin:
format_bin = lambda v: v
if not width:
try:
import shutil # python 3 convenience
width = shutil.get_terminal_size()[0]
except Exception:
width = 80
bins = [b for b, _ in bin_counts]
count_max = max([count for _, count in bin_counts])
count_cols = len(str(count_max))
labels = ['%s' % format_bin(b) for b in bins]
label_cols = max([len(l) for l in labels])
tmp_line = '%s: %s #' % ('x' * label_cols, count_max)
bar_cols = max(width - len(tmp_line), 3)
line_k = float(bar_cols) / count_max
tmpl = "{label:>{label_cols}}: {count:>{count_cols}} {bar}"
for label, (bin_val, count) in zip(labels, bin_counts):
bar_len = int(round(count * line_k))
bar = ('#' * bar_len) or '|'
line = tmpl.format(label=label,
label_cols=label_cols,
count=count,
count_cols=count_cols,
bar=bar)
lines.append(line)
return '\n'.join(lines)
|