This file is indexed.

/usr/lib/python2.7/dist-packages/cloudpickle/cloudpickle.py is in python-cloudpickle 0.5.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
"""
This class is defined to override standard pickle functionality

The goals of it follow:
-Serialize lambdas and nested functions to compiled byte code
-Deal with main module correctly
-Deal with other non-serializable objects

It does not include an unpickler, as standard python unpickling suffices.

This module was extracted from the `cloud` package, developed by `PiCloud, Inc.
<https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.

Copyright (c) 2012, Regents of the University of California.
Copyright (c) 2009 `PiCloud, Inc. <https://web.archive.org/web/20140626004012/http://www.picloud.com/>`_.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in the
      documentation and/or other materials provided with the distribution.
    * Neither the name of the University of California, Berkeley nor the
      names of its contributors may be used to endorse or promote
      products derived from this software without specific prior written
      permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
from __future__ import print_function

import dis
from functools import partial
import imp
import io
import itertools
import logging
import opcode
import operator
import pickle
import struct
import sys
import traceback
import types
import weakref


# cloudpickle is meant for inter process communication: we expect all
# communicating processes to run the same Python version hence we favor
# communication speed over compatibility:
DEFAULT_PROTOCOL = pickle.HIGHEST_PROTOCOL


if sys.version < '3':
    from pickle import Pickler
    try:
        from cStringIO import StringIO
    except ImportError:
        from StringIO import StringIO
    PY3 = False
else:
    types.ClassType = type
    from pickle import _Pickler as Pickler
    from io import BytesIO as StringIO
    PY3 = True


def _make_cell_set_template_code():
    """Get the Python compiler to emit LOAD_FAST(arg); STORE_DEREF

    Notes
    -----
    In Python 3, we could use an easier function:

    .. code-block:: python

       def f():
           cell = None

           def _stub(value):
               nonlocal cell
               cell = value

           return _stub

        _cell_set_template_code = f()

    This function is _only_ a LOAD_FAST(arg); STORE_DEREF, but that is
    invalid syntax on Python 2. If we use this function we also don't need
    to do the weird freevars/cellvars swap below
    """
    def inner(value):
        lambda: cell  # make ``cell`` a closure so that we get a STORE_DEREF
        cell = value

    co = inner.__code__

    # NOTE: we are marking the cell variable as a free variable intentionally
    # so that we simulate an inner function instead of the outer function. This
    # is what gives us the ``nonlocal`` behavior in a Python 2 compatible way.
    if not PY3:
        return types.CodeType(
            co.co_argcount,
            co.co_nlocals,
            co.co_stacksize,
            co.co_flags,
            co.co_code,
            co.co_consts,
            co.co_names,
            co.co_varnames,
            co.co_filename,
            co.co_name,
            co.co_firstlineno,
            co.co_lnotab,
            co.co_cellvars,  # this is the trickery
            (),
        )
    else:
        return types.CodeType(
            co.co_argcount,
            co.co_kwonlyargcount,
            co.co_nlocals,
            co.co_stacksize,
            co.co_flags,
            co.co_code,
            co.co_consts,
            co.co_names,
            co.co_varnames,
            co.co_filename,
            co.co_name,
            co.co_firstlineno,
            co.co_lnotab,
            co.co_cellvars,  # this is the trickery
            (),
        )


_cell_set_template_code = _make_cell_set_template_code()


def cell_set(cell, value):
    """Set the value of a closure cell.
    """
    return types.FunctionType(
        _cell_set_template_code,
        {},
        '_cell_set_inner',
        (),
        (cell,),
    )(value)


#relevant opcodes
STORE_GLOBAL = opcode.opmap['STORE_GLOBAL']
DELETE_GLOBAL = opcode.opmap['DELETE_GLOBAL']
LOAD_GLOBAL = opcode.opmap['LOAD_GLOBAL']
GLOBAL_OPS = (STORE_GLOBAL, DELETE_GLOBAL, LOAD_GLOBAL)
HAVE_ARGUMENT = dis.HAVE_ARGUMENT
EXTENDED_ARG = dis.EXTENDED_ARG


def islambda(func):
    return getattr(func,'__name__') == '<lambda>'


_BUILTIN_TYPE_NAMES = {}
for k, v in types.__dict__.items():
    if type(v) is type:
        _BUILTIN_TYPE_NAMES[v] = k


def _builtin_type(name):
    return getattr(types, name)


def _make__new__factory(type_):
    def _factory():
        return type_.__new__
    return _factory


# NOTE: These need to be module globals so that they're pickleable as globals.
_get_dict_new = _make__new__factory(dict)
_get_frozenset_new = _make__new__factory(frozenset)
_get_list_new = _make__new__factory(list)
_get_set_new = _make__new__factory(set)
_get_tuple_new = _make__new__factory(tuple)
_get_object_new = _make__new__factory(object)

# Pre-defined set of builtin_function_or_method instances that can be
# serialized.
_BUILTIN_TYPE_CONSTRUCTORS = {
    dict.__new__: _get_dict_new,
    frozenset.__new__: _get_frozenset_new,
    set.__new__: _get_set_new,
    list.__new__: _get_list_new,
    tuple.__new__: _get_tuple_new,
    object.__new__: _get_object_new,
}


if sys.version_info < (3, 4):
    def _walk_global_ops(code):
        """
        Yield (opcode, argument number) tuples for all
        global-referencing instructions in *code*.
        """
        code = getattr(code, 'co_code', b'')
        if not PY3:
            code = map(ord, code)

        n = len(code)
        i = 0
        extended_arg = 0
        while i < n:
            op = code[i]
            i += 1
            if op >= HAVE_ARGUMENT:
                oparg = code[i] + code[i + 1] * 256 + extended_arg
                extended_arg = 0
                i += 2
                if op == EXTENDED_ARG:
                    extended_arg = oparg * 65536
                if op in GLOBAL_OPS:
                    yield op, oparg

else:
    def _walk_global_ops(code):
        """
        Yield (opcode, argument number) tuples for all
        global-referencing instructions in *code*.
        """
        for instr in dis.get_instructions(code):
            op = instr.opcode
            if op in GLOBAL_OPS:
                yield op, instr.arg


class CloudPickler(Pickler):

    dispatch = Pickler.dispatch.copy()

    def __init__(self, file, protocol=None):
        if protocol is None:
            protocol = DEFAULT_PROTOCOL
        Pickler.__init__(self, file, protocol=protocol)
        # set of modules to unpickle
        self.modules = set()
        # map ids to dictionary. used to ensure that functions can share global env
        self.globals_ref = {}

    def dump(self, obj):
        self.inject_addons()
        try:
            return Pickler.dump(self, obj)
        except RuntimeError as e:
            if 'recursion' in e.args[0]:
                msg = """Could not pickle object as excessively deep recursion required."""
                raise pickle.PicklingError(msg)

    def save_memoryview(self, obj):
        self.save(obj.tobytes())
    dispatch[memoryview] = save_memoryview

    if not PY3:
        def save_buffer(self, obj):
            self.save(str(obj))
        dispatch[buffer] = save_buffer

    def save_unsupported(self, obj):
        raise pickle.PicklingError("Cannot pickle objects of type %s" % type(obj))
    dispatch[types.GeneratorType] = save_unsupported

    # itertools objects do not pickle!
    for v in itertools.__dict__.values():
        if type(v) is type:
            dispatch[v] = save_unsupported

    def save_module(self, obj):
        """
        Save a module as an import
        """
        mod_name = obj.__name__
        # If module is successfully found then it is not a dynamically created module
        if hasattr(obj, '__file__'):
            is_dynamic = False
        else:
            try:
                _find_module(mod_name)
                is_dynamic = False
            except ImportError:
                is_dynamic = True

        self.modules.add(obj)
        if is_dynamic:
            self.save_reduce(dynamic_subimport, (obj.__name__, vars(obj)), obj=obj)
        else:
            self.save_reduce(subimport, (obj.__name__,), obj=obj)
    dispatch[types.ModuleType] = save_module

    def save_codeobject(self, obj):
        """
        Save a code object
        """
        if PY3:
            args = (
                obj.co_argcount, obj.co_kwonlyargcount, obj.co_nlocals, obj.co_stacksize,
                obj.co_flags, obj.co_code, obj.co_consts, obj.co_names, obj.co_varnames,
                obj.co_filename, obj.co_name, obj.co_firstlineno, obj.co_lnotab, obj.co_freevars,
                obj.co_cellvars
            )
        else:
            args = (
                obj.co_argcount, obj.co_nlocals, obj.co_stacksize, obj.co_flags, obj.co_code,
                obj.co_consts, obj.co_names, obj.co_varnames, obj.co_filename, obj.co_name,
                obj.co_firstlineno, obj.co_lnotab, obj.co_freevars, obj.co_cellvars
            )
        self.save_reduce(types.CodeType, args, obj=obj)
    dispatch[types.CodeType] = save_codeobject

    def save_function(self, obj, name=None):
        """ Registered with the dispatch to handle all function types.

        Determines what kind of function obj is (e.g. lambda, defined at
        interactive prompt, etc) and handles the pickling appropriately.
        """
        if obj in _BUILTIN_TYPE_CONSTRUCTORS:
            # We keep a special-cased cache of built-in type constructors at
            # global scope, because these functions are structured very
            # differently in different python versions and implementations (for
            # example, they're instances of types.BuiltinFunctionType in
            # CPython, but they're ordinary types.FunctionType instances in
            # PyPy).
            #
            # If the function we've received is in that cache, we just
            # serialize it as a lookup into the cache.
            return self.save_reduce(_BUILTIN_TYPE_CONSTRUCTORS[obj], (), obj=obj)

        write = self.write

        if name is None:
            name = obj.__name__
        try:
            # whichmodule() could fail, see
            # https://bitbucket.org/gutworth/six/issues/63/importing-six-breaks-pickling
            modname = pickle.whichmodule(obj, name)
        except Exception:
            modname = None
        # print('which gives %s %s %s' % (modname, obj, name))
        try:
            themodule = sys.modules[modname]
        except KeyError:
            # eval'd items such as namedtuple give invalid items for their function __module__
            modname = '__main__'

        if modname == '__main__':
            themodule = None

        try:
            lookedup_by_name = getattr(themodule, name, None)
        except Exception:
            lookedup_by_name = None

        if themodule:
            self.modules.add(themodule)
            if lookedup_by_name is obj:
                return self.save_global(obj, name)

        # a builtin_function_or_method which comes in as an attribute of some
        # object (e.g., itertools.chain.from_iterable) will end
        # up with modname "__main__" and so end up here. But these functions
        # have no __code__ attribute in CPython, so the handling for
        # user-defined functions below will fail.
        # So we pickle them here using save_reduce; have to do it differently
        # for different python versions.
        if not hasattr(obj, '__code__'):
            if PY3:
                rv = obj.__reduce_ex__(self.proto)
            else:
                if hasattr(obj, '__self__'):
                    rv = (getattr, (obj.__self__, name))
                else:
                    raise pickle.PicklingError("Can't pickle %r" % obj)
            return self.save_reduce(obj=obj, *rv)

        # if func is lambda, def'ed at prompt, is in main, or is nested, then
        # we'll pickle the actual function object rather than simply saving a
        # reference (as is done in default pickler), via save_function_tuple.
        if (islambda(obj)
                or getattr(obj.__code__, 'co_filename', None) == '<stdin>'
                or themodule is None):
            self.save_function_tuple(obj)
            return
        else:
            # func is nested
            if lookedup_by_name is None or lookedup_by_name is not obj:
                self.save_function_tuple(obj)
                return

        if obj.__dict__:
            # essentially save_reduce, but workaround needed to avoid recursion
            self.save(_restore_attr)
            write(pickle.MARK + pickle.GLOBAL + modname + '\n' + name + '\n')
            self.memoize(obj)
            self.save(obj.__dict__)
            write(pickle.TUPLE + pickle.REDUCE)
        else:
            write(pickle.GLOBAL + modname + '\n' + name + '\n')
            self.memoize(obj)
    dispatch[types.FunctionType] = save_function

    def _save_subimports(self, code, top_level_dependencies):
        """
        Ensure de-pickler imports any package child-modules that
        are needed by the function
        """
        # check if any known dependency is an imported package
        for x in top_level_dependencies:
            if isinstance(x, types.ModuleType) and hasattr(x, '__package__') and x.__package__:
                # check if the package has any currently loaded sub-imports
                prefix = x.__name__ + '.'
                for name, module in sys.modules.items():
                    # Older versions of pytest will add a "None" module to sys.modules.
                    if name is not None and name.startswith(prefix):
                        # check whether the function can address the sub-module
                        tokens = set(name[len(prefix):].split('.'))
                        if not tokens - set(code.co_names):
                            # ensure unpickler executes this import
                            self.save(module)
                            # then discards the reference to it
                            self.write(pickle.POP)

    def save_dynamic_class(self, obj):
        """
        Save a class that can't be stored as module global.

        This method is used to serialize classes that are defined inside
        functions, or that otherwise can't be serialized as attribute lookups
        from global modules.
        """
        clsdict = dict(obj.__dict__)  # copy dict proxy to a dict
        clsdict.pop('__weakref__', None)

        # On PyPy, __doc__ is a readonly attribute, so we need to include it in
        # the initial skeleton class.  This is safe because we know that the
        # doc can't participate in a cycle with the original class.
        type_kwargs = {'__doc__': clsdict.pop('__doc__', None)}

        # If type overrides __dict__ as a property, include it in the type kwargs.
        # In Python 2, we can't set this attribute after construction.
        __dict__ = clsdict.pop('__dict__', None)
        if isinstance(__dict__, property):
            type_kwargs['__dict__'] = __dict__

        save = self.save
        write = self.write

        # We write pickle instructions explicitly here to handle the
        # possibility that the type object participates in a cycle with its own
        # __dict__. We first write an empty "skeleton" version of the class and
        # memoize it before writing the class' __dict__ itself. We then write
        # instructions to "rehydrate" the skeleton class by restoring the
        # attributes from the __dict__.
        #
        # A type can appear in a cycle with its __dict__ if an instance of the
        # type appears in the type's __dict__ (which happens for the stdlib
        # Enum class), or if the type defines methods that close over the name
        # of the type, (which is common for Python 2-style super() calls).

        # Push the rehydration function.
        save(_rehydrate_skeleton_class)

        # Mark the start of the args tuple for the rehydration function.
        write(pickle.MARK)

        # Create and memoize an skeleton class with obj's name and bases.
        tp = type(obj)
        self.save_reduce(tp, (obj.__name__, obj.__bases__, type_kwargs), obj=obj)

        # Now save the rest of obj's __dict__. Any references to obj
        # encountered while saving will point to the skeleton class.
        save(clsdict)

        # Write a tuple of (skeleton_class, clsdict).
        write(pickle.TUPLE)

        # Call _rehydrate_skeleton_class(skeleton_class, clsdict)
        write(pickle.REDUCE)

    def save_function_tuple(self, func):
        """  Pickles an actual func object.

        A func comprises: code, globals, defaults, closure, and dict.  We
        extract and save these, injecting reducing functions at certain points
        to recreate the func object.  Keep in mind that some of these pieces
        can contain a ref to the func itself.  Thus, a naive save on these
        pieces could trigger an infinite loop of save's.  To get around that,
        we first create a skeleton func object using just the code (this is
        safe, since this won't contain a ref to the func), and memoize it as
        soon as it's created.  The other stuff can then be filled in later.
        """
        if is_tornado_coroutine(func):
            self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,),
                             obj=func)
            return

        save = self.save
        write = self.write

        code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func)

        save(_fill_function)  # skeleton function updater
        write(pickle.MARK)    # beginning of tuple that _fill_function expects

        self._save_subimports(
            code,
            itertools.chain(f_globals.values(), closure_values or ()),
        )

        # create a skeleton function object and memoize it
        save(_make_skel_func)
        save((
            code,
            len(closure_values) if closure_values is not None else -1,
            base_globals,
        ))
        write(pickle.REDUCE)
        self.memoize(func)

        # save the rest of the func data needed by _fill_function
        state = {
            'globals': f_globals,
            'defaults': defaults,
            'dict': dct,
            'module': func.__module__,
            'closure_values': closure_values,
        }
        if hasattr(func, '__qualname__'):
            state['qualname'] = func.__qualname__
        save(state)
        write(pickle.TUPLE)
        write(pickle.REDUCE)  # applies _fill_function on the tuple

    _extract_code_globals_cache = (
        weakref.WeakKeyDictionary()
        if not hasattr(sys, "pypy_version_info")
        else {})

    @classmethod
    def extract_code_globals(cls, co):
        """
        Find all globals names read or written to by codeblock co
        """
        out_names = cls._extract_code_globals_cache.get(co)
        if out_names is None:
            try:
                names = co.co_names
            except AttributeError:
                # PyPy "builtin-code" object
                out_names = set()
            else:
                out_names = set(names[oparg]
                                for op, oparg in _walk_global_ops(co))

                # see if nested function have any global refs
                if co.co_consts:
                    for const in co.co_consts:
                        if type(const) is types.CodeType:
                            out_names |= cls.extract_code_globals(const)

            cls._extract_code_globals_cache[co] = out_names

        return out_names

    def extract_func_data(self, func):
        """
        Turn the function into a tuple of data necessary to recreate it:
            code, globals, defaults, closure_values, dict
        """
        code = func.__code__

        # extract all global ref's
        func_global_refs = self.extract_code_globals(code)

        # process all variables referenced by global environment
        f_globals = {}
        for var in func_global_refs:
            if var in func.__globals__:
                f_globals[var] = func.__globals__[var]

        # defaults requires no processing
        defaults = func.__defaults__

        # process closure
        closure = (
            list(map(_get_cell_contents, func.__closure__))
            if func.__closure__ is not None
            else None
        )

        # save the dict
        dct = func.__dict__

        base_globals = self.globals_ref.get(id(func.__globals__), {})
        self.globals_ref[id(func.__globals__)] = base_globals

        return (code, f_globals, defaults, closure, dct, base_globals)

    def save_builtin_function(self, obj):
        if obj.__module__ == "__builtin__":
            return self.save_global(obj)
        return self.save_function(obj)
    dispatch[types.BuiltinFunctionType] = save_builtin_function

    def save_global(self, obj, name=None, pack=struct.pack):
        """
        Save a "global".

        The name of this method is somewhat misleading: all types get
        dispatched here.
        """
        if obj.__module__ == "__main__":
            return self.save_dynamic_class(obj)

        try:
            return Pickler.save_global(self, obj, name=name)
        except Exception:
            if obj.__module__ == "__builtin__" or obj.__module__ == "builtins":
                if obj in _BUILTIN_TYPE_NAMES:
                    return self.save_reduce(
                        _builtin_type, (_BUILTIN_TYPE_NAMES[obj],), obj=obj)

            typ = type(obj)
            if typ is not obj and isinstance(obj, (type, types.ClassType)):
                return self.save_dynamic_class(obj)

            raise

    dispatch[type] = save_global
    dispatch[types.ClassType] = save_global

    def save_instancemethod(self, obj):
        # Memoization rarely is ever useful due to python bounding
        if obj.__self__ is None:
            self.save_reduce(getattr, (obj.im_class, obj.__name__))
        else:
            if PY3:
                self.save_reduce(types.MethodType, (obj.__func__, obj.__self__), obj=obj)
            else:
                self.save_reduce(types.MethodType, (obj.__func__, obj.__self__, obj.__self__.__class__),
                         obj=obj)
    dispatch[types.MethodType] = save_instancemethod

    def save_inst(self, obj):
        """Inner logic to save instance. Based off pickle.save_inst"""
        cls = obj.__class__

        # Try the dispatch table (pickle module doesn't do it)
        f = self.dispatch.get(cls)
        if f:
            f(self, obj)  # Call unbound method with explicit self
            return

        memo = self.memo
        write = self.write
        save = self.save

        if hasattr(obj, '__getinitargs__'):
            args = obj.__getinitargs__()
            len(args)  # XXX Assert it's a sequence
            pickle._keep_alive(args, memo)
        else:
            args = ()

        write(pickle.MARK)

        if self.bin:
            save(cls)
            for arg in args:
                save(arg)
            write(pickle.OBJ)
        else:
            for arg in args:
                save(arg)
            write(pickle.INST + cls.__module__ + '\n' + cls.__name__ + '\n')

        self.memoize(obj)

        try:
            getstate = obj.__getstate__
        except AttributeError:
            stuff = obj.__dict__
        else:
            stuff = getstate()
            pickle._keep_alive(stuff, memo)
        save(stuff)
        write(pickle.BUILD)

    if not PY3:
        dispatch[types.InstanceType] = save_inst

    def save_property(self, obj):
        # properties not correctly saved in python
        self.save_reduce(property, (obj.fget, obj.fset, obj.fdel, obj.__doc__), obj=obj)
    dispatch[property] = save_property

    def save_classmethod(self, obj):
        orig_func = obj.__func__
        self.save_reduce(type(obj), (orig_func,), obj=obj)
    dispatch[classmethod] = save_classmethod
    dispatch[staticmethod] = save_classmethod

    def save_itemgetter(self, obj):
        """itemgetter serializer (needed for namedtuple support)"""
        class Dummy:
            def __getitem__(self, item):
                return item
        items = obj(Dummy())
        if not isinstance(items, tuple):
            items = (items, )
        return self.save_reduce(operator.itemgetter, items)

    if type(operator.itemgetter) is type:
        dispatch[operator.itemgetter] = save_itemgetter

    def save_attrgetter(self, obj):
        """attrgetter serializer"""
        class Dummy(object):
            def __init__(self, attrs, index=None):
                self.attrs = attrs
                self.index = index
            def __getattribute__(self, item):
                attrs = object.__getattribute__(self, "attrs")
                index = object.__getattribute__(self, "index")
                if index is None:
                    index = len(attrs)
                    attrs.append(item)
                else:
                    attrs[index] = ".".join([attrs[index], item])
                return type(self)(attrs, index)
        attrs = []
        obj(Dummy(attrs))
        return self.save_reduce(operator.attrgetter, tuple(attrs))

    if type(operator.attrgetter) is type:
        dispatch[operator.attrgetter] = save_attrgetter

    def save_file(self, obj):
        """Save a file"""
        try:
            import StringIO as pystringIO #we can't use cStringIO as it lacks the name attribute
        except ImportError:
            import io as pystringIO

        if not hasattr(obj, 'name') or  not hasattr(obj, 'mode'):
            raise pickle.PicklingError("Cannot pickle files that do not map to an actual file")
        if obj is sys.stdout:
            return self.save_reduce(getattr, (sys,'stdout'), obj=obj)
        if obj is sys.stderr:
            return self.save_reduce(getattr, (sys,'stderr'), obj=obj)
        if obj is sys.stdin:
            raise pickle.PicklingError("Cannot pickle standard input")
        if obj.closed:
            raise pickle.PicklingError("Cannot pickle closed files")
        if hasattr(obj, 'isatty') and obj.isatty():
            raise pickle.PicklingError("Cannot pickle files that map to tty objects")
        if 'r' not in obj.mode and '+' not in obj.mode:
            raise pickle.PicklingError("Cannot pickle files that are not opened for reading: %s" % obj.mode)

        name = obj.name

        retval = pystringIO.StringIO()

        try:
            # Read the whole file
            curloc = obj.tell()
            obj.seek(0)
            contents = obj.read()
            obj.seek(curloc)
        except IOError:
            raise pickle.PicklingError("Cannot pickle file %s as it cannot be read" % name)
        retval.write(contents)
        retval.seek(curloc)

        retval.name = name
        self.save(retval)
        self.memoize(obj)

    def save_ellipsis(self, obj):
        self.save_reduce(_gen_ellipsis, ())

    def save_not_implemented(self, obj):
        self.save_reduce(_gen_not_implemented, ())

    if PY3:
        dispatch[io.TextIOWrapper] = save_file
    else:
        dispatch[file] = save_file

    dispatch[type(Ellipsis)] = save_ellipsis
    dispatch[type(NotImplemented)] = save_not_implemented

    def save_weakset(self, obj):
        self.save_reduce(weakref.WeakSet, (list(obj),))

    dispatch[weakref.WeakSet] = save_weakset

    def save_logger(self, obj):
        self.save_reduce(logging.getLogger, (obj.name,), obj=obj)

    dispatch[logging.Logger] = save_logger

    """Special functions for Add-on libraries"""
    def inject_addons(self):
        """Plug in system. Register additional pickling functions if modules already loaded"""
        pass


# Tornado support

def is_tornado_coroutine(func):
    """
    Return whether *func* is a Tornado coroutine function.
    Running coroutines are not supported.
    """
    if 'tornado.gen' not in sys.modules:
        return False
    gen = sys.modules['tornado.gen']
    if not hasattr(gen, "is_coroutine_function"):
        # Tornado version is too old
        return False
    return gen.is_coroutine_function(func)


def _rebuild_tornado_coroutine(func):
    from tornado import gen
    return gen.coroutine(func)


# Shorthands for legacy support

def dump(obj, file, protocol=None):
    """Serialize obj as bytes streamed into file

    protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
    pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
    between processes running the same Python version.

    Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
    compatibility with older versions of Python.
    """
    CloudPickler(file, protocol=protocol).dump(obj)


def dumps(obj, protocol=None):
    """Serialize obj as a string of bytes allocated in memory

    protocol defaults to cloudpickle.DEFAULT_PROTOCOL which is an alias to
    pickle.HIGHEST_PROTOCOL. This setting favors maximum communication speed
    between processes running the same Python version.

    Set protocol=pickle.DEFAULT_PROTOCOL instead if you need to ensure
    compatibility with older versions of Python.
    """
    file = StringIO()
    try:
        cp = CloudPickler(file, protocol=protocol)
        cp.dump(obj)
        return file.getvalue()
    finally:
        file.close()


# including pickles unloading functions in this namespace
load = pickle.load
loads = pickle.loads


# hack for __import__ not working as desired
def subimport(name):
    __import__(name)
    return sys.modules[name]


def dynamic_subimport(name, vars):
    mod = imp.new_module(name)
    mod.__dict__.update(vars)
    sys.modules[name] = mod
    return mod


# restores function attributes
def _restore_attr(obj, attr):
    for key, val in attr.items():
        setattr(obj, key, val)
    return obj


def _get_module_builtins():
    return pickle.__builtins__


def print_exec(stream):
    ei = sys.exc_info()
    traceback.print_exception(ei[0], ei[1], ei[2], None, stream)


def _modules_to_main(modList):
    """Force every module in modList to be placed into main"""
    if not modList:
        return

    main = sys.modules['__main__']
    for modname in modList:
        if type(modname) is str:
            try:
                mod = __import__(modname)
            except Exception as e:
                sys.stderr.write('warning: could not import %s\n.  '
                                 'Your function may unexpectedly error due to this import failing;'
                                 'A version mismatch is likely.  Specific error was:\n' % modname)
                print_exec(sys.stderr)
            else:
                setattr(main, mod.__name__, mod)


#object generators:
def _genpartial(func, args, kwds):
    if not args:
        args = ()
    if not kwds:
        kwds = {}
    return partial(func, *args, **kwds)

def _gen_ellipsis():
    return Ellipsis

def _gen_not_implemented():
    return NotImplemented


def _get_cell_contents(cell):
    try:
        return cell.cell_contents
    except ValueError:
        # sentinel used by ``_fill_function`` which will leave the cell empty
        return _empty_cell_value


def instance(cls):
    """Create a new instance of a class.

    Parameters
    ----------
    cls : type
        The class to create an instance of.

    Returns
    -------
    instance : cls
        A new instance of ``cls``.
    """
    return cls()


@instance
class _empty_cell_value(object):
    """sentinel for empty closures
    """
    @classmethod
    def __reduce__(cls):
        return cls.__name__


def _fill_function(*args):
    """Fills in the rest of function data into the skeleton function object

    The skeleton itself is create by _make_skel_func().
    """
    if len(args) == 2:
        func = args[0]
        state = args[1]
    elif len(args) == 5:
        # Backwards compat for cloudpickle v0.4.0, after which the `module`
        # argument was introduced
        func = args[0]
        keys = ['globals', 'defaults', 'dict', 'closure_values']
        state = dict(zip(keys, args[1:]))
    elif len(args) == 6:
        # Backwards compat for cloudpickle v0.4.1, after which the function
        # state was passed as a dict to the _fill_function it-self.
        func = args[0]
        keys = ['globals', 'defaults', 'dict', 'module', 'closure_values']
        state = dict(zip(keys, args[1:]))
    else:
        raise ValueError('Unexpected _fill_value arguments: %r' % (args,))

    func.__globals__.update(state['globals'])
    func.__defaults__ = state['defaults']
    func.__dict__ = state['dict']
    if 'module' in state:
        func.__module__ = state['module']
    if 'qualname' in state:
        func.__qualname__ = state['qualname']

    cells = func.__closure__
    if cells is not None:
        for cell, value in zip(cells, state['closure_values']):
            if value is not _empty_cell_value:
                cell_set(cell, value)

    return func


def _make_empty_cell():
    if False:
        # trick the compiler into creating an empty cell in our lambda
        cell = None
        raise AssertionError('this route should not be executed')

    return (lambda: cell).__closure__[0]


def _make_skel_func(code, cell_count, base_globals=None):
    """ Creates a skeleton function object that contains just the provided
        code and the correct number of cells in func_closure.  All other
        func attributes (e.g. func_globals) are empty.
    """
    if base_globals is None:
        base_globals = {}
    base_globals['__builtins__'] = __builtins__

    closure = (
        tuple(_make_empty_cell() for _ in range(cell_count))
        if cell_count >= 0 else
        None
    )
    return types.FunctionType(code, base_globals, None, None, closure)


def _rehydrate_skeleton_class(skeleton_class, class_dict):
    """Put attributes from `class_dict` back on `skeleton_class`.

    See CloudPickler.save_dynamic_class for more info.
    """
    for attrname, attr in class_dict.items():
        setattr(skeleton_class, attrname, attr)
    return skeleton_class


def _find_module(mod_name):
    """
    Iterate over each part instead of calling imp.find_module directly.
    This function is able to find submodules (e.g. sickit.tree)
    """
    path = None
    for part in mod_name.split('.'):
        if path is not None:
            path = [path]
        file, path, description = imp.find_module(part, path)
        if file is not None:
            file.close()
    return path, description

"""Constructors for 3rd party libraries
Note: These can never be renamed due to client compatibility issues"""

def _getobject(modname, attribute):
    mod = __import__(modname, fromlist=[attribute])
    return mod.__dict__[attribute]


""" Use copy_reg to extend global pickle definitions """

if sys.version_info < (3, 4):
    method_descriptor = type(str.upper)

    def _reduce_method_descriptor(obj):
        return (getattr, (obj.__objclass__, obj.__name__))

    try:
        import copy_reg as copyreg
    except ImportError:
        import copyreg
    copyreg.pickle(method_descriptor, _reduce_method_descriptor)