This file is indexed.

/usr/share/doc/python-dask-doc/html/dataframe-create.html is in python-dask-doc 0.16.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Create and Store Dask DataFrames &mdash; dask 0.16.0 documentation</title>
  

  
  
  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  

  
    <link rel="stylesheet" href="_static/style.css" type="text/css" />
  

  
        <link rel="index" title="Index"
              href="genindex.html"/>
        <link rel="search" title="Search" href="search.html"/>
    <link rel="top" title="dask 0.16.0 documentation" href="index.html"/>
        <link rel="up" title="DataFrame" href="dataframe.html"/>
        <link rel="next" title="API" href="dataframe-api.html"/>
        <link rel="prev" title="Overview" href="dataframe-overview.html"/> 

  
  <script src="_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

   
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="index.html" class="icon icon-home"> dask
          

          
          </a>

          
            
            
              <div class="version">
                0.16.0
              </div>
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <p class="caption"><span class="caption-text">Getting Started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="install.html">Install Dask</a></li>
<li class="toctree-l1"><a class="reference internal" href="use-cases.html">Use Cases</a></li>
<li class="toctree-l1"><a class="reference internal" href="examples-tutorials.html">Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="cheatsheet.html">Dask Cheat Sheet</a></li>
</ul>
<p class="caption"><span class="caption-text">Collections</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="array.html">Array</a></li>
<li class="toctree-l1"><a class="reference internal" href="bag.html">Bag</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="dataframe.html">DataFrame</a><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="dataframe-overview.html">Overview</a></li>
<li class="toctree-l2 current"><a class="current reference internal" href="#">Create and Store Dask DataFrames</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#api">API</a></li>
<li class="toctree-l3"><a class="reference internal" href="#locations">Locations</a></li>
<li class="toctree-l3"><a class="reference internal" href="#dask-delayed">Dask Delayed</a></li>
<li class="toctree-l3"><a class="reference internal" href="#from-raw-dask-graphs">From Raw Dask Graphs</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-api.html">API</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-performance.html">Dask DataFrame Performance Tips</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-design.html">Internal Design</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-groupby.html">Shuffling for GroupBy and Join</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-groupby.html#aggregate">Aggregate</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="delayed.html">Delayed</a></li>
<li class="toctree-l1"><a class="reference internal" href="futures.html">Futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="machine-learning.html">Machine Learning</a></li>
</ul>
<p class="caption"><span class="caption-text">Scheduling</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">Distributed Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="scheduler-overview.html">Scheduler Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="scheduler-choice.html">Choosing between Schedulers</a></li>
<li class="toctree-l1"><a class="reference internal" href="shared.html">Shared Memory</a></li>
<li class="toctree-l1"><a class="reference internal" href="scheduling-policy.html">Scheduling in Depth</a></li>
</ul>
<p class="caption"><span class="caption-text">Diagnostics</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="inspect.html">Inspecting Dask objects</a></li>
<li class="toctree-l1"><a class="reference internal" href="diagnostics.html">Diagnostics</a></li>
</ul>
<p class="caption"><span class="caption-text">Graphs</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="graphs.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="spec.html">Specification</a></li>
<li class="toctree-l1"><a class="reference internal" href="custom-graphs.html">Custom Graphs</a></li>
<li class="toctree-l1"><a class="reference internal" href="optimize.html">Optimization</a></li>
</ul>
<p class="caption"><span class="caption-text">Help &amp; reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="debugging.html">Debugging</a></li>
<li class="toctree-l1"><a class="reference internal" href="support.html">Contact and Support</a></li>
<li class="toctree-l1"><a class="reference internal" href="changelog.html">Changelog</a></li>
<li class="toctree-l1"><a class="reference internal" href="presentations.html">Presentations On Dask</a></li>
<li class="toctree-l1"><a class="reference internal" href="develop.html">Development Guidelines</a></li>
<li class="toctree-l1"><a class="reference internal" href="faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="spark.html">Comparison to PySpark</a></li>
<li class="toctree-l1"><a class="reference internal" href="caching.html">Opportunistic Caching</a></li>
<li class="toctree-l1"><a class="reference internal" href="bytes.html">Internal Data Ingestion</a></li>
<li class="toctree-l1"><a class="reference internal" href="remote-data-services.html">Remote Data Services</a></li>
<li class="toctree-l1"><a class="reference internal" href="custom-collections.html">Custom Collections</a></li>
<li class="toctree-l1"><a class="reference internal" href="cite.html">Citations</a></li>
<li class="toctree-l1"><a class="reference internal" href="funding.html">Funding</a></li>
</ul>

            
          
        </div>
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="index.html">dask</a>
        
      </nav>


      
      <div class="wy-nav-content">
        <div class="rst-content">
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="index.html">Docs</a> &raquo;</li>
        
          <li><a href="dataframe.html">DataFrame</a> &raquo;</li>
        
      <li>Create and Store Dask DataFrames</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
            
            <a href="_sources/dataframe-create.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="create-and-store-dask-dataframes">
<h1>Create and Store Dask DataFrames<a class="headerlink" href="#create-and-store-dask-dataframes" title="Permalink to this headline"></a></h1>
<p>Dask can create dataframes from various data storage formats like CSV, HDF,
Apache Parquet, and others.  For most formats this data can live on various
storage systems including local disk, network file systems (NFS), the Hadoop
File System (HDFS), and Amazon’s S3 (excepting HDF, which is only available on
POSIX like file systems).</p>
<p>See the <a class="reference external" href="http://dask.pydata.org/en/latest/dataframe-overview.html">Overview section</a> for an in depth
discussion of <code class="docutils literal"><span class="pre">dask.dataframe</span></code> scope, use, limitations.</p>
<div class="section" id="api">
<h2>API<a class="headerlink" href="#api" title="Permalink to this headline"></a></h2>
<p>The following functions provide access to convert between Dask Dataframes,
file formats, and other Dask or Python collections.</p>
<p>File Formats:</p>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%" />
<col width="90%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.read_csv" title="dask.dataframe.read_csv"><code class="xref py py-obj docutils literal"><span class="pre">read_csv</span></code></a>(urlpath[,&nbsp;blocksize,&nbsp;collection,&nbsp;…])</td>
<td>Read CSV files into a Dask.DataFrame</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.read_parquet" title="dask.dataframe.read_parquet"><code class="xref py py-obj docutils literal"><span class="pre">read_parquet</span></code></a>(path[,&nbsp;columns,&nbsp;filters,&nbsp;…])</td>
<td>Read ParquetFile into a Dask DataFrame</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.read_hdf" title="dask.dataframe.read_hdf"><code class="xref py py-obj docutils literal"><span class="pre">read_hdf</span></code></a>(pattern,&nbsp;key[,&nbsp;start,&nbsp;stop,&nbsp;…])</td>
<td>Read HDF files into a Dask DataFrame</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.read_sql_table" title="dask.dataframe.read_sql_table"><code class="xref py py-obj docutils literal"><span class="pre">read_sql_table</span></code></a>(table,&nbsp;uri,&nbsp;index_col[,&nbsp;…])</td>
<td>Create dataframe from an SQL table.</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.from_bcolz" title="dask.dataframe.from_bcolz"><code class="xref py py-obj docutils literal"><span class="pre">from_bcolz</span></code></a>(x[,&nbsp;chunksize,&nbsp;categorize,&nbsp;…])</td>
<td>Read BColz CTable into a Dask Dataframe</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.from_array" title="dask.dataframe.from_array"><code class="xref py py-obj docutils literal"><span class="pre">from_array</span></code></a>(x[,&nbsp;chunksize,&nbsp;columns])</td>
<td>Read any slicable array into a Dask Dataframe</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.to_csv" title="dask.dataframe.to_csv"><code class="xref py py-obj docutils literal"><span class="pre">to_csv</span></code></a>(df,&nbsp;filename[,&nbsp;name_function,&nbsp;…])</td>
<td>Store Dask DataFrame to CSV files</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.to_parquet" title="dask.dataframe.to_parquet"><code class="xref py py-obj docutils literal"><span class="pre">to_parquet</span></code></a>(df,&nbsp;path[,&nbsp;engine,&nbsp;compression,&nbsp;…])</td>
<td>Store Dask.dataframe to Parquet files</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.to_hdf" title="dask.dataframe.to_hdf"><code class="xref py py-obj docutils literal"><span class="pre">to_hdf</span></code></a>(df,&nbsp;path,&nbsp;key[,&nbsp;mode,&nbsp;append,&nbsp;get,&nbsp;…])</td>
<td>Store Dask Dataframe to Hierarchical Data Format (HDF) files</td>
</tr>
</tbody>
</table>
<p>Dask Collections:</p>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%" />
<col width="90%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.from_delayed" title="dask.dataframe.from_delayed"><code class="xref py py-obj docutils literal"><span class="pre">from_delayed</span></code></a>(dfs[,&nbsp;meta,&nbsp;divisions,&nbsp;prefix])</td>
<td>Create Dask DataFrame from many Dask Delayed objects</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.from_dask_array" title="dask.dataframe.from_dask_array"><code class="xref py py-obj docutils literal"><span class="pre">from_dask_array</span></code></a>(x[,&nbsp;columns])</td>
<td>Create a Dask DataFrame from a Dask Array.</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="bag-creation.html#dask.bag.core.Bag.to_dataframe" title="dask.bag.core.Bag.to_dataframe"><code class="xref py py-obj docutils literal"><span class="pre">dask.bag.core.Bag.to_dataframe</span></code></a>([meta,&nbsp;columns])</td>
<td>Create Dask Dataframe from a Dask Bag.</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.to_delayed" title="dask.dataframe.to_delayed"><code class="xref py py-obj docutils literal"><span class="pre">to_delayed</span></code></a>(df)</td>
<td>Create Dask Delayed objects from a Dask Dataframe</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.to_records" title="dask.dataframe.to_records"><code class="xref py py-obj docutils literal"><span class="pre">to_records</span></code></a>(df)</td>
<td>Create Dask Array from a Dask Dataframe</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.to_bag" title="dask.dataframe.to_bag"><code class="xref py py-obj docutils literal"><span class="pre">to_bag</span></code></a>(df[,&nbsp;index])</td>
<td>Create Dask Bag from a Dask DataFrame</td>
</tr>
</tbody>
</table>
<p>Pandas:</p>
<table border="1" class="longtable docutils">
<colgroup>
<col width="10%" />
<col width="90%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="dataframe-api.html#dask.dataframe.from_pandas" title="dask.dataframe.from_pandas"><code class="xref py py-obj docutils literal"><span class="pre">from_pandas</span></code></a>(data[,&nbsp;npartitions,&nbsp;chunksize,&nbsp;…])</td>
<td>Construct a Dask DataFrame from a Pandas DataFrame</td>
</tr>
</tbody>
</table>
</div>
<div class="section" id="locations">
<h2>Locations<a class="headerlink" href="#locations" title="Permalink to this headline"></a></h2>
<p>For text, CSV, and Apache Parquet formats data can come from local disk, from
the Hadoop File System, from S3FS, or others, by prepending the filenames with
a protocol.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df</span> <span class="o">=</span> <span class="n">dd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;my-data-*.csv&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df</span> <span class="o">=</span> <span class="n">dd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;hdfs:///path/to/my-data-*.csv&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df</span> <span class="o">=</span> <span class="n">dd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;s3://bucket-name/my-data-*.csv&#39;</span><span class="p">)</span>
</pre></div>
</div>
<p>For remote systems like HDFS or S3 credentials may be an issue.  Usually these
are handled by configuration files on disk (such as a <code class="docutils literal"><span class="pre">.boto</span></code> file for S3)
but in some cases you may want to pass storage-specific options through to the
storage backend.  You can do this with the <code class="docutils literal"><span class="pre">storage_options=</span></code> keyword.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df</span> <span class="o">=</span> <span class="n">dd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;s3://bucket-name/my-data-*.csv&#39;</span><span class="p">,</span>
<span class="gp">... </span>                 <span class="n">storage_options</span><span class="o">=</span><span class="p">{</span><span class="s1">&#39;anon&#39;</span><span class="p">:</span> <span class="bp">True</span><span class="p">})</span>
</pre></div>
</div>
</div>
<div class="section" id="dask-delayed">
<h2>Dask Delayed<a class="headerlink" href="#dask-delayed" title="Permalink to this headline"></a></h2>
<p>For more complex situations not covered by the functions above you may want to
use <a class="reference internal" href="delayed-overview.html"><span class="doc">dask.delayed</span></a> , which lets you construct
Dask.dataframes out of arbitrary Python function calls that load dataframes.
This can allow you to handle new formats easily, or bake in particular logic
around loading data if, for example, your data is stored with some special</p>
<p>See <a class="reference internal" href="delayed-collections.html"><span class="doc">documentation on using dask.delayed with
collections</span></a> or an <a class="reference external" href="https://gist.github.com/mrocklin/e7b7b3a65f2835cda813096332ec73ca">example notebook</a> showing
how to create a Dask DataFrame from a nested directory structure of Feather
files (as a stand in for any custom file format).</p>
<p>Dask.delayed is particularly useful when simple <code class="docutils literal"><span class="pre">map</span></code> operations aren’t
sufficient to capture the complexity of your data layout.</p>
</div>
<div class="section" id="from-raw-dask-graphs">
<h2>From Raw Dask Graphs<a class="headerlink" href="#from-raw-dask-graphs" title="Permalink to this headline"></a></h2>
<p>This section is mainly for developers wishing to extend dask.dataframe.  It
discusses internal API not normally needed by users.  Everything below can be
done just as effectively with <a class="reference internal" href="delayed-overview.html"><span class="doc">dask.delayed</span></a>  described
just above.  You should never need to create a dataframe object by hand.</p>
<p>To construct a DataFrame manually from a dask graph you need the following
information:</p>
<ol class="arabic simple">
<li>dask: a dask graph with keys like <code class="docutils literal"><span class="pre">{(name,</span> <span class="pre">0):</span> <span class="pre">...,</span> <span class="pre">(name,</span> <span class="pre">1):</span> <span class="pre">...}</span></code> as
well as any other tasks on which those tasks depend.  The tasks
corresponding to <code class="docutils literal"><span class="pre">(name,</span> <span class="pre">i)</span></code> should produce <code class="docutils literal"><span class="pre">pandas.DataFrame</span></code> objects
that correspond to the columns and divisions information discussed below.</li>
<li>name: The special name used above</li>
<li>columns: A list of column names</li>
<li>divisions: A list of index values that separate the different partitions.
Alternatively, if you don’t know the divisions (this is common) you can
provide a list of <code class="docutils literal"><span class="pre">[None,</span> <span class="pre">None,</span> <span class="pre">None,</span> <span class="pre">...]</span></code> with as many partitions as
you have plus one.  For more information see the Partitions section in the
<a class="reference internal" href="dataframe.html"><span class="doc">dataframe documentation</span></a>.</li>
</ol>
<p>As an example, we build a DataFrame manually that reads several CSV files that
have a datetime index separated by day.  Note, you should never do this.  The
<code class="docutils literal"><span class="pre">dd.read_csv</span></code> function does this for you.</p>
<div class="highlight-Python"><div class="highlight"><pre><span></span><span class="n">dsk</span> <span class="o">=</span> <span class="p">{(</span><span class="s1">&#39;mydf&#39;</span><span class="p">,</span> <span class="mi">0</span><span class="p">):</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">,</span> <span class="s1">&#39;data/2000-01-01.csv&#39;</span><span class="p">),</span>
       <span class="p">(</span><span class="s1">&#39;mydf&#39;</span><span class="p">,</span> <span class="mi">1</span><span class="p">):</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">,</span> <span class="s1">&#39;data/2000-01-02.csv&#39;</span><span class="p">),</span>
       <span class="p">(</span><span class="s1">&#39;mydf&#39;</span><span class="p">,</span> <span class="mi">2</span><span class="p">):</span> <span class="p">(</span><span class="n">pd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">,</span> <span class="s1">&#39;data/2000-01-03.csv&#39;</span><span class="p">)}</span>
<span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;mydf&#39;</span>
<span class="n">columns</span> <span class="o">=</span> <span class="p">[</span><span class="s1">&#39;price&#39;</span><span class="p">,</span> <span class="s1">&#39;name&#39;</span><span class="p">,</span> <span class="s1">&#39;id&#39;</span><span class="p">]</span>
<span class="n">divisions</span> <span class="o">=</span> <span class="p">[</span><span class="n">Timestamp</span><span class="p">(</span><span class="s1">&#39;2000-01-01 00:00:00&#39;</span><span class="p">),</span>
             <span class="n">Timestamp</span><span class="p">(</span><span class="s1">&#39;2000-01-02 00:00:00&#39;</span><span class="p">),</span>
             <span class="n">Timestamp</span><span class="p">(</span><span class="s1">&#39;2000-01-03 00:00:00&#39;</span><span class="p">),</span>
             <span class="n">Timestamp</span><span class="p">(</span><span class="s1">&#39;2000-01-03 23:59:59&#39;</span><span class="p">)]</span>

<span class="n">df</span> <span class="o">=</span> <span class="n">dd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">dsk</span><span class="p">,</span> <span class="n">name</span><span class="p">,</span> <span class="n">columns</span><span class="p">,</span> <span class="n">divisions</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>


           </div>
           <div class="articleComments">
            
           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="dataframe-api.html" class="btn btn-neutral float-right" title="API" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="dataframe-overview.html" class="btn btn-neutral" title="Overview" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2017, Anaconda.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'./',
            VERSION:'0.16.0',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: '.txt'
        };
    </script>
      <script type="text/javascript" src="_static/jquery.js"></script>
      <script type="text/javascript" src="_static/underscore.js"></script>
      <script type="text/javascript" src="_static/doctools.js"></script>
      <script type="text/javascript" src="file:///usr/share/javascript/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>

  

  
  
    <script type="text/javascript" src="_static/js/theme.js"></script>
  

  
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   

</body>
</html>