This file is indexed.

/usr/share/doc/python-dask-doc/html/dataframe-overview.html is in python-dask-doc 0.16.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Overview &mdash; dask 0.16.0 documentation</title>
  

  
  
  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  

  
    <link rel="stylesheet" href="_static/style.css" type="text/css" />
  

  
        <link rel="index" title="Index"
              href="genindex.html"/>
        <link rel="search" title="Search" href="search.html"/>
    <link rel="top" title="dask 0.16.0 documentation" href="index.html"/>
        <link rel="up" title="DataFrame" href="dataframe.html"/>
        <link rel="next" title="Create and Store Dask DataFrames" href="dataframe-create.html"/>
        <link rel="prev" title="DataFrame" href="dataframe.html"/> 

  
  <script src="_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

   
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="index.html" class="icon icon-home"> dask
          

          
          </a>

          
            
            
              <div class="version">
                0.16.0
              </div>
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <p class="caption"><span class="caption-text">Getting Started</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="install.html">Install Dask</a></li>
<li class="toctree-l1"><a class="reference internal" href="use-cases.html">Use Cases</a></li>
<li class="toctree-l1"><a class="reference internal" href="examples-tutorials.html">Examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="cheatsheet.html">Dask Cheat Sheet</a></li>
</ul>
<p class="caption"><span class="caption-text">Collections</span></p>
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="array.html">Array</a></li>
<li class="toctree-l1"><a class="reference internal" href="bag.html">Bag</a></li>
<li class="toctree-l1 current"><a class="reference internal" href="dataframe.html">DataFrame</a><ul class="current">
<li class="toctree-l2 current"><a class="current reference internal" href="#">Overview</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#design">Design</a></li>
<li class="toctree-l3"><a class="reference internal" href="#common-uses-and-anti-uses">Common Uses and Anti-Uses</a></li>
<li class="toctree-l3"><a class="reference internal" href="#dask-dataframe-copies-the-pandas-api">Dask.dataframe copies the pandas API</a></li>
<li class="toctree-l3"><a class="reference internal" href="#scope">Scope</a></li>
<li class="toctree-l3"><a class="reference internal" href="#execution">Execution</a></li>
<li class="toctree-l3"><a class="reference internal" href="#limitations">Limitations</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-create.html">Create and Store Dask DataFrames</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-api.html">API</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-performance.html">Dask DataFrame Performance Tips</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-design.html">Internal Design</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-groupby.html">Shuffling for GroupBy and Join</a></li>
<li class="toctree-l2"><a class="reference internal" href="dataframe-groupby.html#aggregate">Aggregate</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="delayed.html">Delayed</a></li>
<li class="toctree-l1"><a class="reference internal" href="futures.html">Futures</a></li>
<li class="toctree-l1"><a class="reference internal" href="machine-learning.html">Machine Learning</a></li>
</ul>
<p class="caption"><span class="caption-text">Scheduling</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="distributed.html">Distributed Scheduling</a></li>
<li class="toctree-l1"><a class="reference internal" href="scheduler-overview.html">Scheduler Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="scheduler-choice.html">Choosing between Schedulers</a></li>
<li class="toctree-l1"><a class="reference internal" href="shared.html">Shared Memory</a></li>
<li class="toctree-l1"><a class="reference internal" href="scheduling-policy.html">Scheduling in Depth</a></li>
</ul>
<p class="caption"><span class="caption-text">Diagnostics</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="inspect.html">Inspecting Dask objects</a></li>
<li class="toctree-l1"><a class="reference internal" href="diagnostics.html">Diagnostics</a></li>
</ul>
<p class="caption"><span class="caption-text">Graphs</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="graphs.html">Overview</a></li>
<li class="toctree-l1"><a class="reference internal" href="spec.html">Specification</a></li>
<li class="toctree-l1"><a class="reference internal" href="custom-graphs.html">Custom Graphs</a></li>
<li class="toctree-l1"><a class="reference internal" href="optimize.html">Optimization</a></li>
</ul>
<p class="caption"><span class="caption-text">Help &amp; reference</span></p>
<ul>
<li class="toctree-l1"><a class="reference internal" href="debugging.html">Debugging</a></li>
<li class="toctree-l1"><a class="reference internal" href="support.html">Contact and Support</a></li>
<li class="toctree-l1"><a class="reference internal" href="changelog.html">Changelog</a></li>
<li class="toctree-l1"><a class="reference internal" href="presentations.html">Presentations On Dask</a></li>
<li class="toctree-l1"><a class="reference internal" href="develop.html">Development Guidelines</a></li>
<li class="toctree-l1"><a class="reference internal" href="faq.html">Frequently Asked Questions</a></li>
<li class="toctree-l1"><a class="reference internal" href="spark.html">Comparison to PySpark</a></li>
<li class="toctree-l1"><a class="reference internal" href="caching.html">Opportunistic Caching</a></li>
<li class="toctree-l1"><a class="reference internal" href="bytes.html">Internal Data Ingestion</a></li>
<li class="toctree-l1"><a class="reference internal" href="remote-data-services.html">Remote Data Services</a></li>
<li class="toctree-l1"><a class="reference internal" href="custom-collections.html">Custom Collections</a></li>
<li class="toctree-l1"><a class="reference internal" href="cite.html">Citations</a></li>
<li class="toctree-l1"><a class="reference internal" href="funding.html">Funding</a></li>
</ul>

            
          
        </div>
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="index.html">dask</a>
        
      </nav>


      
      <div class="wy-nav-content">
        <div class="rst-content">
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="index.html">Docs</a> &raquo;</li>
        
          <li><a href="dataframe.html">DataFrame</a> &raquo;</li>
        
      <li>Overview</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
            
            <a href="_sources/dataframe-overview.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="overview">
<h1>Overview<a class="headerlink" href="#overview" title="Permalink to this headline"></a></h1>
<p>Dask Dataframe implements a subset of the Pandas Dataframe interface using
blocked algorithms, cutting up the large DataFrame into many small Pandas
DataFrames.  This lets us compute on dataframes that are larger than memory
using all of our cores or on many dataframes spread across a cluster.  One
operation on a dask.dataframe triggers many operations on the constituent
Pandas dataframes.</p>
<div class="section" id="design">
<h2>Design<a class="headerlink" href="#design" title="Permalink to this headline"></a></h2>
<a class="reference internal image-reference" href="_images/dask-dataframe.svg"><div align="right" class="align-right"><img alt="Dask DataFrames coordinate many Pandas DataFrames" src="_images/dask-dataframe.svg" width="40%" /></div>
</a>
<p>Dask dataframes coordinate many Pandas DataFrames/Series arranged along the
index.  Dask.dataframe is partitioned <em>row-wise</em>, grouping rows by index value
for efficiency.  These Pandas objects may live on disk or on other machines.</p>
</div>
<div class="section" id="common-uses-and-anti-uses">
<h2>Common Uses and Anti-Uses<a class="headerlink" href="#common-uses-and-anti-uses" title="Permalink to this headline"></a></h2>
<p>Dask.dataframe is particularly useful in the following situations:</p>
<ul class="simple">
<li>Manipulating large datasets on a single machine, even when those datasets
don’t fit comfortably into memory.</li>
<li>Fast computation on large workstation machines by parallelizing many Pandas
calls across many cores.</li>
<li>Distributed computing of very large tables stored in the Hadoop File System
(HDFS), S3, or other parallel file systems.</li>
<li>Parallel groupby, join, or time series computations</li>
</ul>
<p>However in the following situations Dask.dataframe may not be the best choice:</p>
<ul class="simple">
<li>If your dataset fits comfortably into RAM on your laptop then you may be
better off just using <a class="reference external" href="https://pandas.pydata.org/">Pandas</a>.  There may be simpler ways to improve
performance than through parallelism.</li>
<li>If your dataset doesn’t fit neatly into the Pandas tabular model then you
might find more use in <a class="reference internal" href="bag.html"><span class="doc">dask.bag</span></a> or <a class="reference internal" href="array.html"><span class="doc">dask.array</span></a></li>
<li>If you need functions that are not implemented in dask.dataframe then you
might want to look at <a class="reference internal" href="delayed.html"><span class="doc">dask.delayed</span></a> which offers more
flexibility.</li>
<li>If you need a proper database with all that databases offer you might prefer
something like <a class="reference external" href="https://www.postgresql.org/">Postgres</a></li>
</ul>
</div>
<div class="section" id="dask-dataframe-copies-the-pandas-api">
<h2>Dask.dataframe copies the pandas API<a class="headerlink" href="#dask-dataframe-copies-the-pandas-api" title="Permalink to this headline"></a></h2>
<p>Because the <code class="docutils literal"><span class="pre">dask.dataframe</span></code> application programming interface (API) is a
subset of the pandas API it should be familiar to pandas users.  There are some
slight alterations due to the parallel nature of dask:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">dask.dataframe</span> <span class="kn">as</span> <span class="nn">dd</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df</span> <span class="o">=</span> <span class="n">dd</span><span class="o">.</span><span class="n">read_csv</span><span class="p">(</span><span class="s1">&#39;2014-*.csv&#39;</span><span class="p">)</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">df</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
<span class="go">   x  y</span>
<span class="go">0  1  a</span>
<span class="go">1  2  b</span>
<span class="go">2  3  c</span>
<span class="go">3  4  a</span>
<span class="go">4  5  b</span>
<span class="go">5  6  c</span>

<span class="gp">&gt;&gt;&gt; </span><span class="n">df2</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="o">.</span><span class="n">y</span> <span class="o">==</span> <span class="s1">&#39;a&#39;</span><span class="p">]</span><span class="o">.</span><span class="n">x</span> <span class="o">+</span> <span class="mi">1</span>
</pre></div>
</div>
<p>As with all dask collections (for example Array, Bag, DataFrame) one triggers
computation by calling the <code class="docutils literal"><span class="pre">.compute()</span></code> method:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">df2</span><span class="o">.</span><span class="n">compute</span><span class="p">()</span>
<span class="go">0    2</span>
<span class="go">3    5</span>
<span class="go">Name: x, dtype: int64</span>
</pre></div>
</div>
</div>
<div class="section" id="scope">
<h2>Scope<a class="headerlink" href="#scope" title="Permalink to this headline"></a></h2>
<p>Dask.dataframe covers a small but well-used portion of the pandas API.
This limitation is for two reasons:</p>
<ol class="arabic simple">
<li>The pandas API is <em>huge</em></li>
<li>Some operations are genuinely hard to do in parallel (for example sort).</li>
</ol>
<p>Additionally, some important operations like <code class="docutils literal"><span class="pre">set_index</span></code> work, but are slower
than in pandas because they may write out to disk.</p>
<p>The following class of computations works well:</p>
<ul class="simple">
<li><dl class="first docutils">
<dt>Trivially parallelizable operations (fast):</dt>
<dd><ul class="first last">
<li>Elementwise operations:  <code class="docutils literal"><span class="pre">df.x</span> <span class="pre">+</span> <span class="pre">df.y</span></code>, <code class="docutils literal"><span class="pre">df</span> <span class="pre">*</span> <span class="pre">df</span></code></li>
<li>Row-wise selections:  <code class="docutils literal"><span class="pre">df[df.x</span> <span class="pre">&gt;</span> <span class="pre">0]</span></code></li>
<li>Loc:  <code class="docutils literal"><span class="pre">df.loc[4.0:10.5]</span></code></li>
<li>Common aggregations:  <code class="docutils literal"><span class="pre">df.x.max()</span></code>, <code class="docutils literal"><span class="pre">df.max()</span></code></li>
<li>Is in:  <code class="docutils literal"><span class="pre">df[df.x.isin([1,</span> <span class="pre">2,</span> <span class="pre">3])]</span></code></li>
<li>Datetime/string accessors:  <code class="docutils literal"><span class="pre">df.timestamp.month</span></code></li>
</ul>
</dd>
</dl>
</li>
<li><dl class="first docutils">
<dt>Cleverly parallelizable operations (fast):</dt>
<dd><ul class="first last">
<li>groupby-aggregate (with common aggregations): <code class="docutils literal"><span class="pre">df.groupby(df.x).y.max()</span></code>,
<code class="docutils literal"><span class="pre">df.groupby('x').max()</span></code></li>
<li>groupby-apply on index: <code class="docutils literal"><span class="pre">df.groupby(['idx',</span> <span class="pre">'x']).apply(myfunc)</span></code>, where
<code class="docutils literal"><span class="pre">idx</span></code> is the index level name</li>
<li>value_counts:  <code class="docutils literal"><span class="pre">df.x.value_counts()</span></code></li>
<li>Drop duplicates:  <code class="docutils literal"><span class="pre">df.x.drop_duplicates()</span></code></li>
<li>Join on index:  <code class="docutils literal"><span class="pre">dd.merge(df1,</span> <span class="pre">df2,</span> <span class="pre">left_index=True,</span> <span class="pre">right_index=True)</span></code></li>
<li>Join with Pandas DataFrames: <code class="docutils literal"><span class="pre">dd.merge(df1,</span> <span class="pre">df2,</span> <span class="pre">on='id')</span></code></li>
<li>Elementwise operations with different partitions / divisions: <code class="docutils literal"><span class="pre">df1.x</span> <span class="pre">+</span> <span class="pre">df2.y</span></code></li>
<li>Datetime resampling: <code class="docutils literal"><span class="pre">df.resample(...)</span></code></li>
<li>Rolling averages:  <code class="docutils literal"><span class="pre">df.rolling(...)</span></code></li>
<li>Pearson Correlations: <code class="docutils literal"><span class="pre">df[['col1',</span> <span class="pre">'col2']].corr()</span></code></li>
</ul>
</dd>
</dl>
</li>
<li><dl class="first docutils">
<dt>Operations requiring a shuffle (slow-ish, unless on index)</dt>
<dd><ul class="first last">
<li>Set index:  <code class="docutils literal"><span class="pre">df.set_index(df.x)</span></code></li>
<li>groupby-apply not on index (with anything):  <code class="docutils literal"><span class="pre">df.groupby(df.x).apply(myfunc)</span></code></li>
<li>Join not on the index:  <code class="docutils literal"><span class="pre">dd.merge(df1,</span> <span class="pre">df2,</span> <span class="pre">on='name')</span></code></li>
</ul>
</dd>
</dl>
</li>
</ul>
<p>See <a class="reference internal" href="dataframe-api.html"><span class="doc">DataFrame API documentation</span></a> for a more extensive
list.</p>
</div>
<div class="section" id="execution">
<h2>Execution<a class="headerlink" href="#execution" title="Permalink to this headline"></a></h2>
<p>By default <code class="docutils literal"><span class="pre">dask.dataframe</span></code> uses the multi-threaded scheduler.
This exposes some parallelism when pandas or the underlying numpy operations
release the global interpreter lock (GIL).  Generally pandas is more GIL
bound than NumPy, so multi-core speed-ups are not as pronounced for
<code class="docutils literal"><span class="pre">dask.dataframe</span></code> as they are for <code class="docutils literal"><span class="pre">dask.array</span></code>.  This is changing, and
the pandas development team is actively working on releasing the GIL.</p>
<p>In some cases you may experience speedups by switching to the multiprocessing
or distributed scheduler.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">dask</span><span class="o">.</span><span class="n">set_options</span><span class="p">(</span><span class="n">get</span><span class="o">=</span><span class="n">dask</span><span class="o">.</span><span class="n">multiprocessing</span><span class="o">.</span><span class="n">get</span><span class="p">)</span>
</pre></div>
</div>
<p>See <a class="reference internal" href="scheduler-overview.html"><span class="doc">scheduler docs</span></a> for more information.</p>
</div>
<div class="section" id="limitations">
<h2>Limitations<a class="headerlink" href="#limitations" title="Permalink to this headline"></a></h2>
<p>Dask.DataFrame does not implement the entire Pandas interface.  Users expecting this
will be disappointed.  Notably, dask.dataframe has the following limitations:</p>
<ol class="arabic simple">
<li>Setting a new index from an unsorted column is expensive</li>
<li>Many operations, like groupby-apply and join on unsorted columns require
setting the index, which as mentioned above, is expensive</li>
<li>The Pandas API is very large.  Dask.dataframe does not attempt to implement
many pandas features or any of the more exotic data structures like NDFrames</li>
</ol>
</div>
</div>


           </div>
           <div class="articleComments">
            
           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="dataframe-create.html" class="btn btn-neutral float-right" title="Create and Store Dask DataFrames" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="dataframe.html" class="btn btn-neutral" title="DataFrame" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2017, Anaconda.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'./',
            VERSION:'0.16.0',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: '.txt'
        };
    </script>
      <script type="text/javascript" src="_static/jquery.js"></script>
      <script type="text/javascript" src="_static/underscore.js"></script>
      <script type="text/javascript" src="_static/doctools.js"></script>
      <script type="text/javascript" src="file:///usr/share/javascript/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>

  

  
  
    <script type="text/javascript" src="_static/js/theme.js"></script>
  

  
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   

</body>
</html>