/usr/lib/python2.7/dist-packages/deap/cma.py is in python-deap 1.0.2.post2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 | # This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
# Special thanks to Nikolaus Hansen for providing major part of
# this code. The CMA-ES algorithm is provided in many other languages
# and advanced versions at http://www.lri.fr/~hansen/cmaesintro.html.
"""A module that provides support for the Covariance Matrix Adaptation
Evolution Strategy.
"""
import numpy
import copy
from math import sqrt, log, exp
class Strategy(object):
"""
A strategy that will keep track of the basic parameters of the CMA-ES
algorithm.
:param centroid: An iterable object that indicates where to start the
evolution.
:param sigma: The initial standard deviation of the distribution.
:param parameter: One or more parameter to pass to the strategy as
described in the following table, optional.
+----------------+---------------------------+----------------------------+
| Parameter | Default | Details |
+================+===========================+============================+
| ``lambda_`` | ``int(4 + 3 * log(N))`` | Number of children to |
| | | produce at each generation,|
| | | ``N`` is the individual's |
| | | size (integer). |
+----------------+---------------------------+----------------------------+
| ``mu`` | ``int(lambda_ / 2)`` | The number of parents to |
| | | keep from the |
| | | lambda children (integer). |
+----------------+---------------------------+----------------------------+
| ``cmatrix`` | ``identity(N)`` | The initial covariance |
| | | matrix of the distribution |
| | | that will be sampled. |
+----------------+---------------------------+----------------------------+
| ``weights`` | ``"superlinear"`` | Decrease speed, can be |
| | | ``"superlinear"``, |
| | | ``"linear"`` or |
| | | ``"equal"``. |
+----------------+---------------------------+----------------------------+
| ``cs`` | ``(mueff + 2) / | Cumulation constant for |
| | (N + mueff + 3)`` | step-size. |
+----------------+---------------------------+----------------------------+
| ``damps`` | ``1 + 2 * max(0, sqrt(( | Damping for step-size. |
| | mueff - 1) / (N + 1)) - 1)| |
| | + cs`` | |
+----------------+---------------------------+----------------------------+
| ``ccum`` | ``4 / (N + 4)`` | Cumulation constant for |
| | | covariance matrix. |
+----------------+---------------------------+----------------------------+
| ``ccov1`` | ``2 / ((N + 1.3)^2 + | Learning rate for rank-one |
| | mueff)`` | update. |
+----------------+---------------------------+----------------------------+
| ``ccovmu`` | ``2 * (mueff - 2 + 1 / | Learning rate for rank-mu |
| | mueff) / ((N + 2)^2 + | update. |
| | mueff)`` | |
+----------------+---------------------------+----------------------------+
"""
def __init__(self, centroid, sigma, **kargs):
self.params = kargs
# Create a centroid as a numpy array
self.centroid = numpy.array(centroid)
self.dim = len(self.centroid)
self.sigma = sigma
self.pc = numpy.zeros(self.dim)
self.ps = numpy.zeros(self.dim)
self.chiN = sqrt(self.dim) * (1 - 1. / (4. * self.dim) + \
1. / (21. * self.dim**2))
self.C = self.params.get("cmatrix", numpy.identity(self.dim))
self.diagD, self.B = numpy.linalg.eigh(self.C)
indx = numpy.argsort(self.diagD)
self.diagD = self.diagD[indx]**0.5
self.B = self.B[:, indx]
self.BD = self.B * self.diagD
self.cond = self.diagD[indx[-1]]/self.diagD[indx[0]]
self.lambda_ = self.params.get("lambda_", int(4 + 3 * log(self.dim)))
self.update_count = 0
self.computeParams(self.params)
def generate(self, ind_init):
"""Generate a population of :math:`\lambda` individuals of type
*ind_init* from the current strategy.
:param ind_init: A function object that is able to initialize an
individual from a list.
:returns: A list of individuals.
"""
arz = numpy.random.standard_normal((self.lambda_, self.dim))
arz = self.centroid + self.sigma * numpy.dot(arz, self.BD.T)
return map(ind_init, arz)
def update(self, population):
"""Update the current covariance matrix strategy from the
*population*.
:param population: A list of individuals from which to update the
parameters.
"""
population.sort(key=lambda ind: ind.fitness, reverse=True)
old_centroid = self.centroid
self.centroid = numpy.dot(self.weights, population[0:self.mu])
c_diff = self.centroid - old_centroid
# Cumulation : update evolution path
self.ps = (1 - self.cs) * self.ps \
+ sqrt(self.cs * (2 - self.cs) * self.mueff) / self.sigma \
* numpy.dot(self.B, (1. / self.diagD) \
* numpy.dot(self.B.T, c_diff))
hsig = float((numpy.linalg.norm(self.ps) /
sqrt(1. - (1. - self.cs)**(2. * (self.update_count + 1.))) / self.chiN
< (1.4 + 2. / (self.dim + 1.))))
self.update_count += 1
self.pc = (1 - self.cc) * self.pc + hsig \
* sqrt(self.cc * (2 - self.cc) * self.mueff) / self.sigma \
* c_diff
# Update covariance matrix
artmp = population[0:self.mu] - old_centroid
self.C = (1 - self.ccov1 - self.ccovmu + (1 - hsig) \
* self.ccov1 * self.cc * (2 - self.cc)) * self.C \
+ self.ccov1 * numpy.outer(self.pc, self.pc) \
+ self.ccovmu * numpy.dot((self.weights * artmp.T), artmp) \
/ self.sigma**2
self.sigma *= numpy.exp((numpy.linalg.norm(self.ps) / self.chiN - 1.) \
* self.cs / self.damps)
self.diagD, self.B = numpy.linalg.eigh(self.C)
indx = numpy.argsort(self.diagD)
self.cond = self.diagD[indx[-1]]/self.diagD[indx[0]]
self.diagD = self.diagD[indx]**0.5
self.B = self.B[:, indx]
self.BD = self.B * self.diagD
def computeParams(self, params):
"""Computes the parameters depending on :math:`\lambda`. It needs to
be called again if :math:`\lambda` changes during evolution.
:param params: A dictionary of the manually set parameters.
"""
self.mu = params.get("mu", int(self.lambda_ / 2))
rweights = params.get("weights", "superlinear")
if rweights == "superlinear":
self.weights = log(self.mu + 0.5) - \
numpy.log(numpy.arange(1, self.mu + 1))
elif rweights == "linear":
self.weights = self.mu + 0.5 - numpy.arange(1, self.mu + 1)
elif rweights == "equal":
self.weights = numpy.ones(self.mu)
else:
raise RuntimeError("Unknown weights : %s" % rweights)
self.weights /= sum(self.weights)
self.mueff = 1. / sum(self.weights**2)
self.cc = params.get("ccum", 4. / (self.dim + 4.))
self.cs = params.get("cs", (self.mueff + 2.) /
(self.dim + self.mueff + 3.))
self.ccov1 = params.get("ccov1", 2. / ((self.dim + 1.3)**2 + \
self.mueff))
self.ccovmu = params.get("ccovmu", 2. * (self.mueff - 2. + \
1. / self.mueff) / \
((self.dim + 2.)**2 + self.mueff))
self.ccovmu = min(1 - self.ccov1, self.ccovmu)
self.damps = 1. + 2. * max(0, sqrt((self.mueff - 1.) / \
(self.dim + 1.)) - 1.) + self.cs
self.damps = params.get("damps", self.damps)
class StrategyOnePlusLambda(object):
"""
A CMA-ES strategy that uses the :math:`1 + \lambda` paradigme.
:param parent: An iterable object that indicates where to start the
evolution. The parent requires a fitness attribute.
:param sigma: The initial standard deviation of the distribution.
:param parameter: One or more parameter to pass to the strategy as
described in the following table, optional.
"""
def __init__(self, parent, sigma, **kargs):
self.parent = parent
self.sigma = sigma
self.dim = len(self.parent)
self.C = numpy.identity(self.dim)
self.A = numpy.identity(self.dim)
self.pc = numpy.zeros(self.dim)
self.computeParams(kargs)
self.psucc = self.ptarg
def computeParams(self, params):
"""Computes the parameters depending on :math:`\lambda`. It needs to
be called again if :math:`\lambda` changes during evolution.
:param params: A dictionary of the manually set parameters.
"""
# Selection :
self.lambda_ = params.get("lambda_", 1)
# Step size control :
self.d = params.get("d", 1.0 + self.dim/(2.0*self.lambda_))
self.ptarg = params.get("ptarg", 1.0/(5+sqrt(self.lambda_)/2.0))
self.cp = params.get("cp", self.ptarg*self.lambda_/(2+self.ptarg*self.lambda_))
# Covariance matrix adaptation
self.cc = params.get("cc", 2.0/(self.dim+2.0))
self.ccov = params.get("ccov", 2.0/(self.dim**2 + 6.0))
self.pthresh = params.get("pthresh", 0.44)
def generate(self, ind_init):
"""Generate a population of :math:`\lambda` individuals of type
*ind_init* from the current strategy.
:param ind_init: A function object that is able to initialize an
individual from a list.
:returns: A list of individuals.
"""
# self.y = numpy.dot(self.A, numpy.random.standard_normal(self.dim))
arz = numpy.random.standard_normal((self.lambda_, self.dim))
arz = self.parent + self.sigma * numpy.dot(arz, self.A.T)
return map(ind_init, arz)
def update(self, population):
"""Update the current covariance matrix strategy from the
*population*.
:param population: A list of individuals from which to update the
parameters.
"""
population.sort(key=lambda ind: ind.fitness, reverse=True)
lambda_succ = sum(self.parent.fitness <= ind.fitness for ind in population)
p_succ = float(lambda_succ) / self.lambda_
self.psucc = (1-self.cp)*self.psucc + self.cp*p_succ
if self.parent.fitness <= population[0].fitness:
x_step = (population[0] - numpy.array(self.parent)) / self.sigma
self.parent = copy.deepcopy(population[0])
if self.psucc < self.pthresh:
self.pc = (1 - self.cc)*self.pc + sqrt(self.cc * (2 - self.cc)) * x_step
self.C = (1-self.ccov)*self.C + self.ccov * numpy.outer(self.pc, self.pc)
else:
self.pc = (1 - self.cc)*self.pc
self.C = (1-self.ccov)*self.C + self.ccov * (numpy.outer(self.pc, self.pc) + self.cc*(2-self.cc)*self.C)
self.sigma = self.sigma * exp(1.0/self.d * (self.psucc - self.ptarg)/(1.0-self.ptarg))
# We use Cholesky since for now we have no use of eigen decomposition
# Basically, Cholesky returns a matrix A as C = A*A.T
# Eigen decomposition returns two matrix B and D^2 as C = B*D^2*B.T = B*D*D*B.T
# So A == B*D
# To compute the new individual we need to multiply each vector z by A
# as y = centroid + sigma * A*z
# So the Cholesky is more straightforward as we don't need to compute
# the squareroot of D^2, and multiply B and D in order to get A, we directly get A.
# This can't be done (without cost) with the standard CMA-ES as the eigen decomposition is used
# to compute covariance matrix inverse in the step-size evolutionary path computation.
self.A = numpy.linalg.cholesky(self.C)
|