This file is indexed.

/usr/lib/python2.7/dist-packages/emcee/utils.py is in python-emcee 2.2.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
# -*- coding: utf-8 -*-

from __future__ import (division, print_function, absolute_import,
                        unicode_literals)

__all__ = ["sample_ball", "MH_proposal_axisaligned", "MPIPool"]


import numpy as np

from .mpi_pool import MPIPool


def sample_ball(p0, std, size=1):
    """
    Produce a ball of walkers around an initial parameter value.

    :param p0: The initial parameter value.
    :param std: The axis-aligned standard deviation.
    :param size: The number of samples to produce.

    """
    assert(len(p0) == len(std))
    return np.vstack([p0 + std * np.random.normal(size=len(p0))
                      for i in range(size)])


def sample_ellipsoid(p0, covmat, size=1):
    """
    Produce an ellipsoid of walkers around an initial parameter value,
    according to a covariance matrix.

    :param p0: The initial parameter value.
    :param covmat:
        The covariance matrix.  Must be symmetric-positive definite or
        it will raise the exception numpy.linalg.LinAlgError
    :param size: The number of samples to produce.

    """
    return np.random.multivariate_normal(np.atleast_1d(p0),
                                         np.atleast_2d(covmat),
                                         size=size)


class MH_proposal_axisaligned(object):
    """
    A Metropolis-Hastings proposal, with axis-aligned Gaussian steps,
    for convenient use as the ``mh_proposal`` option to
    :func:`EnsembleSampler.sample` .

    """
    def __init__(self, stdev):
        self.stdev = stdev

    def __call__(self, X):
        (nw, npar) = X.shape
        assert(len(self.stdev) == npar)
        return X + self.stdev * np.random.normal(size=X.shape)