/usr/lib/python2.7/dist-packages/FIAT/enriched.py is in python-fiat 2017.2.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | # Copyright (C) 2013 Andrew T. T. McRae, 2015-2016 Jan Blechta, and others
#
# This file is part of FIAT.
#
# FIAT is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FIAT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FIAT. If not, see <http://www.gnu.org/licenses/>.
from __future__ import absolute_import, print_function, division
from itertools import chain
import numpy
from FIAT.finite_element import FiniteElement
from FIAT.dual_set import DualSet
from FIAT.mixed import concatenate_entity_dofs
__all__ = ['EnrichedElement']
class EnrichedElement(FiniteElement):
"""Class implementing a finite element that combined the degrees of freedom
of two existing finite elements.
This is an implementation which does not care about orthogonality of
primal and dual basis.
"""
def __init__(self, *elements):
# Firstly, check it makes sense to enrich. Elements must have:
# - same reference element
# - same mapping
# - same value shape
if len(set(e.get_reference_element() for e in elements)) > 1:
raise ValueError("Elements must be defined on the same reference element")
if len(set(m for e in elements for m in e.mapping())) > 1:
raise ValueError("Elements must have same mapping")
if len(set(e.value_shape() for e in elements)) > 1:
raise ValueError("Elements must have the same value shape")
# order is at least max, possibly more, though getting this
# right isn't important AFAIK
order = max(e.get_order() for e in elements)
# form degree is essentially max (not true for Hdiv/Hcurl,
# but this will raise an error above anyway).
# E.g. an H^1 function enriched with an L^2 is now just L^2.
if any(e.get_formdegree() is None for e in elements):
formdegree = None
else:
formdegree = max(e.get_formdegree() for e in elements)
# set up reference element and mapping, following checks above
ref_el, = set(e.get_reference_element() for e in elements)
mapping, = set(m for e in elements for m in e.mapping())
# set up entity_ids - for each geometric entity, just concatenate
# the entities of the constituent elements
entity_ids = concatenate_entity_dofs(ref_el, elements)
# set up dual basis - just concatenation
nodes = list(chain.from_iterable(e.dual_basis() for e in elements))
dual = DualSet(nodes, ref_el, entity_ids)
super(EnrichedElement, self).__init__(ref_el, dual, order, formdegree, mapping)
# required degree (for quadrature) is definitely max
self.polydegree = max(e.degree() for e in elements)
# Store subelements
self._elements = elements
def elements(self):
"Return reference to original subelements"
return self._elements
def degree(self):
"""Return the degree of the (embedding) polynomial space."""
return self.polydegree
def get_nodal_basis(self):
"""Return the nodal basis, encoded as a PolynomialSet object,
for the finite element."""
raise NotImplementedError("get_nodal_basis not implemented")
def get_coeffs(self):
"""Return the expansion coefficients for the basis of the
finite element."""
raise NotImplementedError("get_coeffs not implemented")
def tabulate(self, order, points, entity=None):
"""Return tabulated values of derivatives up to given order of
basis functions at given points."""
num_components = numpy.prod(self.value_shape())
table_shape = (self.space_dimension(), num_components, len(points))
table = {}
irange = slice(0)
for element in self._elements:
etable = element.tabulate(order, points, entity)
irange = slice(irange.stop, irange.stop + element.space_dimension())
# Insert element table into table
for dtuple in etable.keys():
if dtuple not in table:
if num_components == 1:
table[dtuple] = numpy.zeros((self.space_dimension(), len(points)),
dtype=etable[dtuple].dtype)
else:
table[dtuple] = numpy.zeros(table_shape,
dtype=etable[dtuple].dtype)
table[dtuple][irange][:] = etable[dtuple]
return table
def value_shape(self):
"""Return the value shape of the finite element functions."""
result, = set(e.value_shape() for e in self._elements)
return result
def dmats(self):
"""Return dmats: expansion coefficients for basis function
derivatives."""
raise NotImplementedError("dmats not implemented")
def get_num_members(self, arg):
"""Return number of members of the expansion set."""
raise NotImplementedError("get_num_members not implemented")
|