/usr/include/gamera/knn.hpp is in python-gamera-dev 1:3.4.2+git20160808.1725654-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 | /*
*
* Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, and Karl MacMillan
* 2012 Tobias Bolten
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#ifndef kwm08142002_knn
#define kwm08142002_knn
#include "gamera_limits.hpp"
#include <vector>
#include <map>
#include <cmath>
#include <algorithm>
#include <exception>
#include <stdexcept>
#include <cassert>
namespace Gamera {
namespace kNN {
/*
DISTANCE FUNCTIONS
*/
/*
Compute the weighted distance between a known feature
and an unknown feature using the city block method.
IterA: iterator type for the known feature vector
IterB: iterator type for the unknown feature vector
IterC: iterator tyoe for the selection vector
IterD: iterator type for the weighting vector
*/
template<class IterA, class IterB, class IterC, class IterD>
inline double city_block_distance(IterA known, const IterA end,
IterB unknown, IterC selection,
IterD weight) {
double distance = 0;
for (; known != end; ++known, ++unknown, ++selection, ++weight) {
distance += (*selection) * ((*weight) * std::abs((*unknown) - (*known)));
}
return distance;
}
/*
Compute the weighted distance between a known feature
and an unknown feature using the euclidean method.
IterA: iterator type for the known feature vector
IterB: iterator type for the unknown feature vector
IterC: iterator type for the selection vector
IterD: iterator type for the weighting vector
*/
template<class IterA, class IterB, class IterC, class IterD>
inline double euclidean_distance(IterA known, const IterA end,
IterB unknown, IterC selection,
IterD weight) {
double distance = 0;
for (; known != end; ++known, ++unknown, ++selection, ++weight) {
distance += (*selection) * ((*weight) *
std::sqrt(((*unknown) - (*known)) * ((*unknown) - (*known))));
}
return distance;
}
/*
Compute the weighted distance between a known feature
and an unknown feature using the fast euclidean method.
IterA: iterator type for the known feature vector
IterB: iterator type for the unknown feature vector
IterC: iterator type for the selection vector
IterD: iterator type for the weighting vector
*/
template<class IterA, class IterB, class IterC, class IterD>
inline double fast_euclidean_distance(IterA known, const IterA end,
IterB unknown, IterC selection,
IterD weight) {
double distance = 0;
for (; known != end; ++known, ++unknown, ++selection, ++weight)
distance += (*selection) * ((*weight) *
(((*unknown) - (*known)) * ((*unknown) - (*known))));
return distance;
}
/*
DISTANCE FUNCTIONS with skip.
These distance functions allow you to skip certain features in the
feature vector. This allows you to evaluate a subset of feature
vectors with leave-one-out, for example. This is done by passing
in a list of indexes to be used for the distance calculation. For
example, if you have a feature vector of length 4 and you want to
skip the second feature, you would pass in an iterator pair for a
container of [0, 2, 3].
*/
/*
Compute the weighted distance between a known feature
and an unknown feature using the city block method.
IterA: iterator type for the known feature vector
IterB: iterator type for the unknown feature vector
IterC: iterator type for the selection vector
IterD: iterator type for the weighting vector
*/
template<class IterA, class IterB, class IterC, class IterD, class IterE>
inline double city_block_distance_skip(IterA known, IterB unknown,
IterC selection, IterD weight,
IterE indexes, const IterE end) {
double distance = 0;
for (; indexes != end; ++indexes) {
distance += selection[*indexes] * (weight[*indexes] *
std::abs(unknown[*indexes] - known[*indexes]));
}
return distance;
}
/*
Compute the weighted distance between a known feature
and an unknown feature using the euclidean method.
IterA: iterator type for the known feature vector
IterB: iterator type for the unknown feature vector
IterC: iterator type fot the selection vector
IterD: iterator type for the weighting vector
*/
template<class IterA, class IterB, class IterC, class IterD, class IterE>
inline double euclidean_distance_skip(IterA known, IterB unknown,
IterC selection, IterD weight,
IterE indexes, const IterE end) {
double distance = 0;
for (; indexes != end; ++indexes) {
distance += selection[*indexes] * (weight[*indexes] *
std::sqrt((unknown[*indexes] - known[*indexes]) * (unknown[*indexes] - known[*indexes])));
}
return distance;
}
/*
Compute the weighted distance between a known feature
and an unknown feature using the fast euclidean method.
IterA: iterator type for the known feature vector
IterB: iterator type for the unknown feature vector
IterC:
IterD: iterator type for the weighting vector
*/
template<class IterA, class IterB, class IterC, class IterD, class IterE>
inline double fast_euclidean_distance_skip(IterA known, IterB unknown,
IterC selection, IterD weight,
IterE indexes, const IterE end) {
double distance = 0;
for (; indexes != end; ++indexes) {
distance += selection[*indexes] * (weight[*indexes] *
((unknown[*indexes] - known[*indexes]) * (unknown[*indexes] - known[*indexes])));
}
return distance;
}
/*
NORMALIZE
Normalize is used to compute normalization of the feature vectors in a database
of known feature vectors and then to apply that normalization to feature
vectors. It only works with doubles.
Like the kNearestNeighbors class below, Normalize avoids knowing
anything about the data structures used for storing the feature
vectors. The add method is called for each feature vector,
compute_normalization is called, and then feature vectors can
be normalized by calling apply.
*/
class Normalize {
public:
Normalize(size_t num_features) {
m_num_features = num_features;
m_num_feature_vectors = 0;
m_mean_vector = new double[m_num_features];
std::fill(m_mean_vector, m_mean_vector + m_num_features, 0.0);
m_stdev_vector = new double[m_num_features];
std::fill(m_stdev_vector, m_stdev_vector + m_num_features, 0.0);
m_sum_vector = new double[m_num_features];
std::fill(m_sum_vector, m_sum_vector + m_num_features, 0.0);
m_sum2_vector = new double[m_num_features];
std::fill(m_sum2_vector, m_sum2_vector + m_num_features, 0.0);
}
~Normalize() {
if (m_sum_vector != 0)
delete[] m_sum_vector;
if (m_sum2_vector != 0)
delete[] m_sum2_vector;
delete[] m_mean_vector;
delete[] m_stdev_vector;
}
template<class T>
void add(T begin, const T end) {
assert(m_sum_vector != 0 && m_sum2_vector != 0);
if (size_t(end - begin) != m_num_features)
throw std::range_error("Normalize: number features did not match.");
for (size_t i = 0; begin != end; ++begin, ++i) {
m_sum_vector[i] += *begin;
m_sum2_vector[i] += *begin * *begin;
}
++m_num_feature_vectors;
}
void compute_normalization() {
assert(m_sum_vector != 0 && m_sum2_vector != 0);
double mean, var, stdev, sum, sum2;
for (size_t i = 0; i < m_num_features; ++i) {
sum = m_sum_vector[i];
sum2 = m_sum2_vector[i];
mean = sum / m_num_feature_vectors;
var = (m_num_feature_vectors * sum2 - sum * sum)
/ (m_num_feature_vectors * (m_num_feature_vectors - 1));
stdev = std::sqrt(var);
if (stdev < 0.00001)
stdev = 0.00001;
m_mean_vector[i] = mean;
m_stdev_vector[i] = stdev;
}
delete[] m_sum_vector;
m_sum_vector = 0;
delete[] m_sum2_vector;
m_sum2_vector = 0;
}
// in-place
template<class T>
void apply(T begin, const T end) const {
assert(size_t(end - begin) == m_num_features);
double* mean = m_mean_vector;
double* stdev = m_stdev_vector;
for (; begin != end; ++begin, ++mean, ++stdev)
*begin = (*begin - *mean)/ *stdev;
}
// out-of-place
template<class T, class U>
void apply(T in_begin, const T end, U out_begin) const {
assert(size_t(end - in_begin) == m_num_features);
double *mean = m_mean_vector;
double *stdev = m_stdev_vector;
for (; in_begin != end; ++in_begin, ++mean, ++stdev, ++out_begin)
*out_begin = (*in_begin - *mean) / *stdev;
}
size_t num_features() const {
return m_num_features;
}
double* get_mean_vector() const {
return m_mean_vector;
}
double* get_stdev_vector() const {
return m_stdev_vector;
}
template<class T>
void set_mean_vector(T begin, const T end) {
assert(size_t(end - begin) == m_num_features);
double* cur = m_mean_vector;
for (; begin != end; ++begin, ++cur)
*cur = *begin;
return;
}
template<class T>
void set_stdev_vector(T begin, const T end) {
assert(size_t(end - begin) == m_num_features);
double* cur = m_stdev_vector;
for (; begin != end; ++begin, ++cur)
*cur = *begin;
return;
}
private:
size_t m_num_features;
size_t m_num_feature_vectors;
double* m_mean_vector;
double* m_stdev_vector;
double* m_sum_vector;
double* m_sum2_vector;
};
/*
K NEAREST NEIGHBORS
This class holds a list of the k nearest neighbors and provides
a method of querying for the id of the majority of neighbors. This
class is meant to be used once - after calling add for each item in
a database and majority the state of the class is undefined. If another
search needs to be performed call reset (at which point add for each
element will need to be called again).
*/
template<class IdType, class CompLT, class CompEQ>
class kNearestNeighbors {
public:
/*
These nested classes are only used in kNearestNeighbors
*/
/*
NEIGHBOR
This class holds the information needed for the Nearest Neighbor
computation.
IdType: the type for the id (possibilities includes longs
and std::string)
*/
class Neighbor {
public:
Neighbor(IdType id_, double distance_) {
id = id_;
distance = distance_;
}
bool operator<(const Neighbor& other) const {
return distance < other.distance;
}
IdType id;
double distance;
};
class IdStat {
public:
IdStat() {
min_distance = std::numeric_limits<double>::max();
count = 0;
}
IdStat(double distance, size_t c) {
min_distance = distance;
count = c;
}
double min_distance;
double total_distance;
size_t count;
};
// typedefs for convenience
typedef IdType id_type;
typedef Neighbor neighbor_type;
typedef std::vector<neighbor_type> vec_type;
// Constructor
kNearestNeighbors(size_t k = 1) : m_k(k) {
m_max_distance = 0;
m_nun = NULL;
}
// Destructor
~kNearestNeighbors() {
if (m_nun) delete m_nun;
}
// Reset the class to its initial state
void reset() {
m_nn.clear();
m_max_distance = 0;
if (m_nun) delete m_nun;
m_nun = NULL;
}
/*
Attempt to add a neighbor to the list of k closest
neighbors. The list of neighbors is always kept sorted
so that the largest distance is the last element.
*/
void add(const id_type id, double distance) {
// update nearest unlike neighbor
if (!m_nn.empty() && !ceq(m_nn[0].id,id)) {
if (!m_nun) {
if (distance < m_nn[0].distance)
m_nun = new neighbor_type(m_nn[0].id, m_nn[0].distance);
else
m_nun = new neighbor_type(id, distance);
} else {
if (distance < m_nn[0].distance) {
m_nun->id = m_nn[0].id;
m_nun->distance = m_nn[0].distance;
}
else if (distance < m_nun->distance) {
m_nun->id = id;
m_nun->distance = distance;
}
}
}
// update list of k nearest neighbors
if (m_nn.size() < m_k) {
m_nn.push_back(neighbor_type(id, distance));
std::sort(m_nn.begin(), m_nn.end());
} else if (distance < m_nn.back().distance) {
m_nn.back().distance = distance;
m_nn.back().id = id;
std::sort(m_nn.begin(), m_nn.end());
}
if (distance > m_max_distance)
m_max_distance = distance;
}
/*
Find the id of the majority of the k nearest neighbors. This
includes tie-breaking if necessary.
*/
void majority() {
answer.clear();
if (m_nn.size() == 0)
throw std::range_error("majority called without enough valid neighbors.");
// short circuit for k == 1
if (m_nn.size() == 1) {
answer.resize(1);
answer[0] = std::make_pair(m_nn[0].id, m_nn[0].distance);
return;
}
/*
Create a histogram of the ids in the nearest neighbors. A map
is used because the id_type could be anything. Additionally, even
if id_type was an integer there is no garuntee that they are small,
ordered numbers (making a vector impractical).
*/
typedef std::map<id_type, IdStat, CompLT> map_type;
map_type id_map;
typename map_type::iterator current;
for (typename vec_type::iterator i = m_nn.begin();
i != m_nn.end(); ++i) {
current = id_map.find(i->id);
if (current == id_map.end()) {
id_map.insert(std::pair<id_type,
IdStat>(i->id, IdStat(i->distance, 1)));
} else {
current->second.count++;
current->second.total_distance += i->distance;
if (current->second.min_distance > i->distance)
current->second.min_distance = i->distance;
}
}
/*
Now that we have the histogram we can take the majority if there
is a clear winner, but if not, we need do some sort of tie breaking.
*/
if (id_map.size() == 1) {
answer.resize(1);
answer[0] = std::make_pair(id_map.begin()->first, id_map.begin()->second.min_distance);
return;
} else {
/*
Find the id(s) with the maximum
*/
std::vector<typename map_type::iterator> max;
max.push_back(id_map.begin());
for (typename map_type::iterator i = id_map.begin();
i != id_map.end(); ++i) {
if (i->second.count > max[0]->second.count) {
max.clear();
max.push_back(i);
} else if (i->second.count == max[0]->second.count) {
max.push_back(i);
}
}
/*
If the vector only has 1 element there are no ties and
we are done.
*/
if (max.size() == 1) {
// put the winner in the result vector
answer.push_back(std::make_pair(max[0]->first, max[0]->second.min_distance));
// remove the winner from the id_map
id_map.erase(max[0]);
} else {
/*
Tie-break by average distance
*/
typename map_type::iterator min_dist = max[0];
for (size_t i = 1; i < max.size(); ++i) {
if (max[i]->second.total_distance
< min_dist->second.total_distance)
min_dist = max[i];
}
answer.push_back(std::make_pair(min_dist->first, min_dist->second.min_distance));
id_map.erase(min_dist);
}
for (typename map_type::iterator i = id_map.begin();
i != id_map.end(); ++i) {
// Could not figure out why distance should be < 1 for additional
// classes => let us instead return all classes among kNN (CD)
//if (i->second.min_distance < 1)
answer.push_back(std::make_pair(i->first, i->second.min_distance));
}
return;
}
}
void calculate_confidences() {
size_t i,j;
static double epsilonmin = std::numeric_limits<double>::min();
static double epsilon = std::numeric_limits<double>::epsilon();
confidence.clear();
if (answer.empty()) return;
for (i = 0; i < confidence_types.size(); ++i) {
if (CONFIDENCE_DEFAULT == confidence_types[i]) {
confidence.push_back(get_default_confidence(answer[0].second));
}
// fraction of main class among k nearest neighbors
else if (CONFIDENCE_KNNFRACTION == confidence_types[i]) {
size_t m = 0;
id_type mainid = answer[0].first;
for (j = 0; j < m_nn.size(); ++j) {
if (ceq(m_nn[j].id, mainid)) {
m++;
}
}
confidence.push_back(((double)m)/m_nn.size());
}
// inversely weighted average
else if (CONFIDENCE_INVERSEWEIGHT == confidence_types[i]) {
id_type mainid = answer[0].first;
if (m_nn[0].distance < 256*epsilonmin) {
// zero distance => compute fraction among zero distances
size_t m = 1;
size_t n = 1;
for (j = 1; j < m_nn.size(); ++j) {
if (m_nn[j].distance < 256*epsilonmin) {
n++;
if (ceq(m_nn[j].id, mainid))
m++;
}
}
confidence.push_back(((double)m)/n);
} else {
double numerator = 0.0;
double denominator = 0.0;
double weight;
for (j = 0; j < m_nn.size(); ++j) {
weight = 1 / m_nn[j].distance;
denominator += weight;
if (ceq(m_nn[j].id, mainid))
numerator += weight;
}
confidence.push_back(numerator/denominator);
}
}
// linearly weighted average
else if (CONFIDENCE_LINEARWEIGHT == confidence_types[i]) {
id_type mainid = answer[0].first;
if (1.0 - m_nn[0].distance / m_nn.back().distance < 8*epsilon) {
// distance to all neighbors equal => compute knn fraction
size_t m = 0;
for (j = 0; j < m_nn.size(); ++j) {
if (ceq(m_nn[j].id, mainid))
m++;
}
confidence.push_back(((double)m)/m_nn.size());
} else {
double maxdist = m_nn.back().distance;
double scale = maxdist - m_nn[0].distance;
double numerator = 0.0;
double denominator = 0.0;
double weight;
for (j = 0; j < m_nn.size(); ++j) {
weight = (maxdist - m_nn[j].distance) / scale;
denominator += weight;
if (ceq(m_nn[j].id, mainid))
numerator += weight;
}
confidence.push_back(numerator/denominator);
}
}
// nearest unlike neighbor confidence
else if (CONFIDENCE_NUN == confidence_types[i]) {
if (m_nun) {
confidence.push_back(1 - answer[0].second / (m_nun->distance + epsilonmin));
} else {
confidence.push_back(1.0);
}
}
// distance to nearest neighbor
else if (CONFIDENCE_NNDISTANCE == confidence_types[i]) {
confidence.push_back(answer[0].second);
}
// average distance to k nearest neighbors
else if (CONFIDENCE_AVGDISTANCE == confidence_types[i]) {
double distsum = 0.0;
for (j = 0; j < m_nn.size(); ++j)
distsum += m_nn[j].distance;
confidence.push_back(distsum/m_nn.size());
}
}
// for backward compatibility, we store MDB's confidence
// with each answer class instead of the distance
for (i = 0; i < answer.size(); ++i) {
answer[i].second = get_default_confidence(answer[i].second);
}
}
private:
CompEQ ceq; // test whether two class id's are equal
// simple measure that is defined for all classes and k values
double get_default_confidence(double dist) {
static double epsilonmin = std::numeric_limits<double>::min();
return std::pow(1.0 - (dist / (m_max_distance + epsilonmin)), 10);
}
public:
// list of classes and distances
std::vector<std::pair<id_type, double> > answer;
// confidence types and values for main class
std::vector<int> confidence_types;
std::vector<double> confidence;
std::vector<neighbor_type> m_nn;
neighbor_type* m_nun;
private:
size_t m_k;
double m_max_distance;
};
} // namespace kNN
} //namespace Gamera
#endif
|