This file is indexed.

/usr/include/gamera/knn.hpp is in python-gamera-dev 1:3.4.2+git20160808.1725654-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
/*
 *
 * Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, and Karl MacMillan
 *               2012      Tobias Bolten
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef kwm08142002_knn
#define kwm08142002_knn

#include "gamera_limits.hpp"
#include <vector>
#include <map>
#include <cmath>
#include <algorithm>
#include <exception>
#include <stdexcept>
#include <cassert>

namespace Gamera {
  namespace kNN {
    /*
      DISTANCE FUNCTIONS
    */

    /*
      Compute the weighted distance between a known feature
      and an unknown feature using the city block method.

      IterA: iterator type for the known feature vector
      IterB: iterator type for the unknown feature vector
      IterC: iterator tyoe for the selection vector
      IterD: iterator type for the weighting vector
    */
    template<class IterA, class IterB, class IterC, class IterD>
    inline double city_block_distance(IterA known, const IterA end,
                                      IterB unknown, IterC selection,
                                      IterD weight) {
      double distance = 0;
      for (; known != end; ++known, ++unknown, ++selection, ++weight) {
        distance += (*selection) * ((*weight) * std::abs((*unknown) - (*known)));
      }
      return distance;
    }


    /*
      Compute the weighted distance between a known feature
      and an unknown feature using the euclidean method.

      IterA: iterator type for the known feature vector
      IterB: iterator type for the unknown feature vector
      IterC: iterator type for the selection vector
      IterD: iterator type for the weighting vector
    */
    template<class IterA, class IterB, class IterC, class IterD>
    inline double euclidean_distance(IterA known, const IterA end,
                                     IterB unknown, IterC selection,
                                     IterD weight) {
      double distance = 0;
      for (; known != end; ++known, ++unknown, ++selection, ++weight) {
        distance += (*selection) * ((*weight) *
            std::sqrt(((*unknown) - (*known)) * ((*unknown) - (*known))));
      }
      return distance;
    }


    /*
      Compute the weighted distance between a known feature
      and an unknown feature using the fast euclidean method.

      IterA: iterator type for the known feature vector
      IterB: iterator type for the unknown feature vector
      IterC: iterator type for the selection vector
      IterD: iterator type for the weighting vector
    */
    template<class IterA, class IterB, class IterC, class IterD>
    inline double fast_euclidean_distance(IterA known, const IterA end,
                                          IterB unknown, IterC selection,
                                          IterD weight) {
      double distance = 0;
      for (; known != end; ++known, ++unknown, ++selection, ++weight)
        distance += (*selection) * ((*weight) *
            (((*unknown) - (*known)) * ((*unknown) - (*known))));
      return distance;
    }

    /*
      DISTANCE FUNCTIONS with skip.
      
      These distance functions allow you to skip certain features in the
      feature vector. This allows you to evaluate a subset of feature
      vectors with leave-one-out, for example. This is done by passing
      in a list of indexes to be used for the distance calculation. For
      example, if you have a feature vector of length 4 and you want to
      skip the second feature, you would pass in an iterator pair for a
      container of [0, 2, 3].
    */

    /*
      Compute the weighted distance between a known feature
      and an unknown feature using the city block method.

      IterA: iterator type for the known feature vector
      IterB: iterator type for the unknown feature vector
      IterC: iterator type for the selection vector
      IterD: iterator type for the weighting vector
    */
    template<class IterA, class IterB, class IterC, class IterD, class IterE>
    inline double city_block_distance_skip(IterA known, IterB unknown,
                                           IterC selection, IterD weight,
                                           IterE indexes, const IterE end) {
      double distance = 0;
      for (; indexes != end; ++indexes) {
        distance += selection[*indexes] * (weight[*indexes] *
            std::abs(unknown[*indexes] - known[*indexes]));
      }
      return distance;
    }


    /*
      Compute the weighted distance between a known feature
      and an unknown feature using the euclidean method.

      IterA: iterator type for the known feature vector
      IterB: iterator type for the unknown feature vector
      IterC: iterator type fot the selection vector
      IterD: iterator type for the weighting vector
    */
    template<class IterA, class IterB, class IterC, class IterD, class IterE>
    inline double euclidean_distance_skip(IterA known, IterB unknown,
                                          IterC selection, IterD weight,
                                          IterE indexes, const IterE end) {
      double distance = 0;
      for (; indexes != end; ++indexes) {
        distance += selection[*indexes] * (weight[*indexes] *
            std::sqrt((unknown[*indexes] - known[*indexes]) * (unknown[*indexes] - known[*indexes])));
      }
      return distance;
    }


    /*
      Compute the weighted distance between a known feature
      and an unknown feature using the fast euclidean method.

      IterA: iterator type for the known feature vector
      IterB: iterator type for the unknown feature vector
      IterC:
      IterD: iterator type for the weighting vector
    */
    template<class IterA, class IterB, class IterC, class IterD, class IterE>
    inline double fast_euclidean_distance_skip(IterA known, IterB unknown,
                                               IterC selection, IterD weight,
                                               IterE indexes, const IterE end) {
      double distance = 0;
      for (; indexes != end; ++indexes) {
        distance += selection[*indexes] * (weight[*indexes] *
            ((unknown[*indexes] - known[*indexes]) * (unknown[*indexes] - known[*indexes])));
      }
      return distance;
    }

    /*
      NORMALIZE
      
      Normalize is used to compute normalization of the feature vectors in a database
      of known feature vectors and then to apply that normalization to feature
      vectors. It only works with doubles.

      Like the kNearestNeighbors class below, Normalize avoids knowing
      anything about the data structures used for storing the feature
      vectors. The add method is called for each feature vector,
      compute_normalization is called, and then feature vectors can
      be normalized by calling apply.
    */
    class Normalize {
    public:
      Normalize(size_t num_features) {
        m_num_features = num_features;
        m_num_feature_vectors = 0;
        m_mean_vector = new double[m_num_features];
        std::fill(m_mean_vector, m_mean_vector + m_num_features, 0.0);
        m_stdev_vector = new double[m_num_features];
        std::fill(m_stdev_vector, m_stdev_vector + m_num_features, 0.0);
        m_sum_vector = new double[m_num_features];
        std::fill(m_sum_vector, m_sum_vector + m_num_features, 0.0);
        m_sum2_vector = new double[m_num_features];
        std::fill(m_sum2_vector, m_sum2_vector + m_num_features, 0.0);
      }
      ~Normalize() {
        if (m_sum_vector != 0)
          delete[] m_sum_vector;
        if (m_sum2_vector != 0)
          delete[] m_sum2_vector;

        delete[] m_mean_vector;
        delete[] m_stdev_vector;
      }
      template<class T>
      void add(T begin, const T end) {
        assert(m_sum_vector != 0 && m_sum2_vector != 0);
        if (size_t(end - begin) != m_num_features)
          throw std::range_error("Normalize: number features did not match.");
        for (size_t i = 0; begin != end; ++begin, ++i) {
          m_sum_vector[i] += *begin;
          m_sum2_vector[i] += *begin * *begin;
        }
        ++m_num_feature_vectors;
      }
      void compute_normalization() {
        assert(m_sum_vector != 0 && m_sum2_vector != 0);
        double mean, var, stdev, sum, sum2;
        for (size_t i = 0; i < m_num_features; ++i) {
          sum = m_sum_vector[i];
          sum2 = m_sum2_vector[i];
          mean = sum / m_num_feature_vectors;
          var = (m_num_feature_vectors * sum2 - sum * sum)
            / (m_num_feature_vectors * (m_num_feature_vectors - 1));
          stdev = std::sqrt(var);
          if (stdev < 0.00001)
            stdev = 0.00001;
          m_mean_vector[i] = mean;
          m_stdev_vector[i] = stdev;
        }
        delete[] m_sum_vector;
        m_sum_vector = 0;
        delete[] m_sum2_vector;
        m_sum2_vector = 0;
      }
      // in-place
      template<class T>
      void apply(T begin, const T end) const {
        assert(size_t(end - begin) == m_num_features);
        double* mean = m_mean_vector;
        double* stdev = m_stdev_vector;
        for (; begin != end; ++begin, ++mean, ++stdev)
          *begin = (*begin - *mean)/ *stdev;
      }
      // out-of-place
      template<class T, class U>
      void apply(T in_begin, const T end, U out_begin) const {
        assert(size_t(end - in_begin) == m_num_features);
        double *mean = m_mean_vector;
        double *stdev = m_stdev_vector;
        for (; in_begin != end; ++in_begin, ++mean, ++stdev, ++out_begin)
          *out_begin = (*in_begin - *mean) / *stdev;
      }
      size_t num_features() const {
        return m_num_features;
      }
      double* get_mean_vector() const {
        return m_mean_vector;
      }
      double* get_stdev_vector() const {
        return m_stdev_vector;
      }
      template<class T>
      void set_mean_vector(T begin, const T end) {
        assert(size_t(end - begin) == m_num_features);
        double* cur = m_mean_vector;
        for (; begin != end; ++begin, ++cur)
          *cur = *begin;
        return;
      }
      template<class T>
      void set_stdev_vector(T begin, const T end) {
        assert(size_t(end - begin) == m_num_features);
        double* cur = m_stdev_vector;
        for (; begin != end; ++begin, ++cur)
          *cur = *begin;
        return;
      }
    private:
      size_t m_num_features;
      size_t m_num_feature_vectors;
      double* m_mean_vector;
      double* m_stdev_vector;
      double* m_sum_vector;
      double* m_sum2_vector;
    };

    /*
      K NEAREST NEIGHBORS

      This class holds a list of the k nearest neighbors and provides
      a method of querying for the id of the majority of neighbors. This
      class is meant to be used once - after calling add for each item in
      a database and majority the state of the class is undefined. If another
      search needs to be performed call reset (at which point add for each
      element will need to be called again).
    */
    template<class IdType, class CompLT, class CompEQ>
    class kNearestNeighbors {
    public:
      /*
        These nested classes are only used in kNearestNeighbors
      */

      /*
        NEIGHBOR
        
        This class holds the information needed for the Nearest Neighbor
        computation.
        
        IdType: the type for the id (possibilities includes longs
        and std::string)
      */
      class Neighbor {
      public:
        Neighbor(IdType id_, double distance_) {
          id = id_;
          distance = distance_;
        }
        bool operator<(const Neighbor& other) const {
          return distance < other.distance;
        }
        IdType id;
        double distance;
      };

      class IdStat {
      public:
        IdStat() {
          min_distance = std::numeric_limits<double>::max();
          count = 0;
        }
        IdStat(double distance, size_t c) {
          min_distance = distance;
          count = c;
        }
        double min_distance;
        double total_distance;
        size_t count;
      };

      // typedefs for convenience
      typedef IdType id_type;
      typedef Neighbor neighbor_type;
      typedef std::vector<neighbor_type> vec_type;

      // Constructor
      kNearestNeighbors(size_t k = 1) : m_k(k) {
        m_max_distance = 0;
        m_nun = NULL;
      }
      // Destructor
      ~kNearestNeighbors() {
        if (m_nun) delete m_nun;
      }
      // Reset the class to its initial state
      void reset() {
        m_nn.clear();
        m_max_distance = 0;
        if (m_nun) delete m_nun;
        m_nun = NULL;
      }
      /*
        Attempt to add a neighbor to the list of k closest
        neighbors. The list of neighbors is always kept sorted
        so that the largest distance is the last element.
      */
      void add(const id_type id, double distance) {
        // update nearest unlike neighbor
        if (!m_nn.empty() && !ceq(m_nn[0].id,id)) {
          if (!m_nun) {
            if (distance < m_nn[0].distance)
              m_nun = new neighbor_type(m_nn[0].id, m_nn[0].distance);
            else
              m_nun = new neighbor_type(id, distance);
          } else {
            if (distance < m_nn[0].distance) {
              m_nun->id = m_nn[0].id;
              m_nun->distance = m_nn[0].distance;
            }
            else if (distance < m_nun->distance) {
              m_nun->id = id;
              m_nun->distance = distance;
            }
          }
        }
        // update list of k nearest neighbors
        if (m_nn.size() < m_k) {
          m_nn.push_back(neighbor_type(id, distance));
          std::sort(m_nn.begin(), m_nn.end());
        } else if (distance < m_nn.back().distance) {
          m_nn.back().distance = distance;
          m_nn.back().id = id;
          std::sort(m_nn.begin(), m_nn.end());
        }
        if (distance > m_max_distance)
          m_max_distance = distance;
      }
      /*
        Find the id of the majority of the k nearest neighbors. This
        includes tie-breaking if necessary.
      */
      void majority() {
        answer.clear();
        
        if (m_nn.size() == 0)
          throw std::range_error("majority called without enough valid neighbors.");
        // short circuit for k == 1
        if (m_nn.size() == 1) {
          answer.resize(1);
          answer[0] = std::make_pair(m_nn[0].id, m_nn[0].distance);
          return;
        }
        /*
          Create a histogram of the ids in the nearest neighbors. A map
          is used because the id_type could be anything. Additionally, even
          if id_type was an integer there is no garuntee that they are small,
          ordered numbers (making a vector impractical).
        */
        typedef std::map<id_type, IdStat, CompLT> map_type;
        map_type id_map;
        typename map_type::iterator current;
        for (typename vec_type::iterator i = m_nn.begin();
             i != m_nn.end(); ++i) {
          current = id_map.find(i->id);
          if (current == id_map.end()) {
            id_map.insert(std::pair<id_type,
                          IdStat>(i->id, IdStat(i->distance, 1)));
          } else {
            current->second.count++;
            current->second.total_distance += i->distance;
            if (current->second.min_distance > i->distance)
              current->second.min_distance = i->distance;
          }
        }
        /*
          Now that we have the histogram we can take the majority if there
          is a clear winner, but if not, we need do some sort of tie breaking.
        */
        if (id_map.size() == 1) {
          answer.resize(1);
          answer[0] = std::make_pair(id_map.begin()->first, id_map.begin()->second.min_distance);
          return;
        } else {
          /*
            Find the id(s) with the maximum
          */
          std::vector<typename map_type::iterator> max;
          max.push_back(id_map.begin());
          for (typename map_type::iterator i = id_map.begin();
               i != id_map.end(); ++i) {
            if (i->second.count > max[0]->second.count) {
              max.clear();
              max.push_back(i);
            } else if (i->second.count == max[0]->second.count) {
              max.push_back(i);
            }
          }
          /*
            If the vector only has 1 element there are no ties and
            we are done.
          */
          if (max.size() == 1) {
            // put the winner in the result vector
            answer.push_back(std::make_pair(max[0]->first, max[0]->second.min_distance));
            // remove the winner from the id_map
            id_map.erase(max[0]);
          } else {
            /*
              Tie-break by average distance
            */
            typename map_type::iterator min_dist = max[0];
            for (size_t i = 1; i < max.size(); ++i) {
              if (max[i]->second.total_distance
                  < min_dist->second.total_distance)
                min_dist = max[i];
            }
            answer.push_back(std::make_pair(min_dist->first, min_dist->second.min_distance));
            id_map.erase(min_dist);
          }
          for (typename map_type::iterator i = id_map.begin();
               i != id_map.end(); ++i) {
            // Could not figure out why distance should be < 1 for additional
            // classes => let us instead return all classes among kNN (CD)
            //if (i->second.min_distance < 1)
            answer.push_back(std::make_pair(i->first, i->second.min_distance));
          }
          return;
        }
      }
      void calculate_confidences() {
        size_t i,j;
        static double epsilonmin = std::numeric_limits<double>::min();
        static double epsilon = std::numeric_limits<double>::epsilon();
        confidence.clear();
        if (answer.empty()) return;
        for (i = 0; i < confidence_types.size(); ++i) {
          if (CONFIDENCE_DEFAULT == confidence_types[i]) {
            confidence.push_back(get_default_confidence(answer[0].second));
          }
          // fraction of main class among k nearest neighbors
          else if (CONFIDENCE_KNNFRACTION == confidence_types[i]) {
            size_t m = 0;
            id_type mainid = answer[0].first;
            for (j = 0; j < m_nn.size(); ++j) {
              if (ceq(m_nn[j].id, mainid)) {
                m++;
              }
            }
            confidence.push_back(((double)m)/m_nn.size());
          }
          // inversely weighted average
          else if (CONFIDENCE_INVERSEWEIGHT == confidence_types[i]) {
            id_type mainid = answer[0].first;
            if (m_nn[0].distance < 256*epsilonmin) {
              // zero distance => compute fraction among zero distances
              size_t m = 1;
              size_t n = 1;
              for (j = 1; j < m_nn.size(); ++j) {
                if (m_nn[j].distance < 256*epsilonmin) {
                  n++;
                  if (ceq(m_nn[j].id, mainid))
                    m++;
                }
              }
              confidence.push_back(((double)m)/n);
            } else {
              double numerator = 0.0;
              double denominator = 0.0;
              double weight;
              for (j = 0; j < m_nn.size(); ++j) {
                weight = 1 / m_nn[j].distance;
                denominator += weight;
                if (ceq(m_nn[j].id, mainid))
                  numerator += weight;
              }
              confidence.push_back(numerator/denominator);
            }
          }
          // linearly weighted average
          else if (CONFIDENCE_LINEARWEIGHT == confidence_types[i]) {
            id_type mainid = answer[0].first;
            if (1.0 - m_nn[0].distance / m_nn.back().distance < 8*epsilon) {
              // distance to all neighbors equal => compute knn fraction
              size_t m = 0;
              for (j = 0; j < m_nn.size(); ++j) {
                if (ceq(m_nn[j].id, mainid))
                  m++;
              }
              confidence.push_back(((double)m)/m_nn.size());
            } else {
              double maxdist = m_nn.back().distance;
              double scale = maxdist - m_nn[0].distance;
              double numerator = 0.0;
              double denominator = 0.0;
              double weight;
              for (j = 0; j < m_nn.size(); ++j) {
                weight = (maxdist - m_nn[j].distance) / scale;
                denominator += weight;
                if (ceq(m_nn[j].id, mainid))
                  numerator += weight;
              }
              confidence.push_back(numerator/denominator);
            }
          }
          // nearest unlike neighbor confidence
          else if (CONFIDENCE_NUN == confidence_types[i]) {
            if (m_nun) {
              confidence.push_back(1 - answer[0].second / (m_nun->distance + epsilonmin));
            } else {
              confidence.push_back(1.0);
            }
          }
          // distance to nearest neighbor
          else if (CONFIDENCE_NNDISTANCE == confidence_types[i]) {
            confidence.push_back(answer[0].second);
          }
          // average distance to k nearest neighbors
          else if (CONFIDENCE_AVGDISTANCE == confidence_types[i]) {
            double distsum = 0.0;
            for (j = 0; j < m_nn.size(); ++j)
              distsum += m_nn[j].distance;
            confidence.push_back(distsum/m_nn.size());
          }
        }
        // for backward compatibility, we store MDB's confidence
        // with each answer class instead of the distance
        for (i = 0; i < answer.size(); ++i) {
          answer[i].second = get_default_confidence(answer[i].second);
        }
      }
    private:
      CompEQ ceq; // test whether two class id's are equal
      // simple measure that is defined for all classes and k values
      double get_default_confidence(double dist) {
        static double epsilonmin = std::numeric_limits<double>::min();
        return std::pow(1.0 - (dist / (m_max_distance + epsilonmin)), 10);
      }
    public:
      // list of classes and distances
      std::vector<std::pair<id_type, double> > answer;
      // confidence types and values for main class
      std::vector<int> confidence_types;
      std::vector<double> confidence;
      std::vector<neighbor_type> m_nn;
      neighbor_type* m_nun;
    private:
      size_t m_k;
      double m_max_distance;
    };

  } // namespace kNN
} //namespace Gamera

#endif