This file is indexed.

/usr/include/gamera/plugins/binarization.hpp is in python-gamera-dev 1:3.4.2+git20160808.1725654-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
/*
 *
 * Copyright (C) 2005 John Ashley Burgoyne and Ichiro Fujinaga
 *               2007 Uma Kompella and Christoph Dalitz
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef jab18112005_binarization
#define jab18112005_binarization

#include "gamera.hpp"
#include "threshold.hpp"
#include "math.h"
#include <numeric>
#include <vector>
#include <algorithm>

#include <iostream>

using namespace Gamera;

/* Adaptive function for summing to double. */
template<class T>
struct double_plus : public std::binary_function<double, double, T>
{
    double operator()(double x, T y) { return x + (double)y; }
};

/* Adaptive function for squaring to doubles. */
template<class T>
struct double_squared : public std::unary_function<double, T> 
{
    double operator()(T x) { return (double)x * (double)x; }
};

/* Adaptive function for adding pairs. */
template<class T>
struct pair_plus : public std::binary_function<T, T, T>
{
    T operator()(T p, T q) 
        {
            return std::make_pair(p.first + q.first, 
                                  p.second + q.second);
        }
};

/* Binary function for accumulating background pixels. */
template<class T, class U, class V>
struct gatos_accumulate 
    : public std::binary_function<T, U, V>
{
    typedef typename T::first_type type1;
    typedef typename T::second_type type2;
    T operator()(U mask, V pixel)
        {
            if (is_black(mask)) return std::make_pair((type1)0, (type2)0);
            else return std::make_pair((type1)1, (type2)pixel);
        }
};

/* Binary function for Gatos thresholding. */
template<class T, class U>
struct gatos_thresholder
    : public std::binary_function<U, T, T>
{
    const double q;
    const double delta;
    const double b;
    const double p1;
    const double p2;

    gatos_thresholder(double q, double delta, double b, double p1, double p2)
        : q(q), delta(delta), b(b), p1(p1), p2(p2) {} 
   
    U operator()(T src, T background)
        {
            return 
                ((double)(background - src) 
                 > (q 
                    * delta 
                    * (((1 - p2) 
                        / (1 
                           + std::exp(((-4 * background) / (b * (1 - p1))) 
                                      + ((2 * (1 + p1)) / (1 - p1))))) 
                       + p2)))
                ? pixel_traits<U>::black()
                : pixel_traits<U>::white();
        }
};

/* FloatPixel image_mean(Image src)
 *
 * Returns the mean value over all pixels of an image.
 */
template<class T>
FloatPixel image_mean(const T &src)
{
    FloatPixel sum 
        = std::accumulate(src.vec_begin(), 
                          src.vec_end(), 
                          (FloatPixel)0,
                          double_plus<typename T::value_type>());
    size_t area = src.nrows() * src.ncols();
    return sum / area;
}

/* FloatPixel image_variance(Image src)
 *
 * Returns the variance over all pixels of an image.
 */
template<class T>
FloatPixel image_variance(const T &src)
{
    FloatImageData* squaredData = new FloatImageData(src.size(), src.origin());
    FloatImageView* squares = new FloatImageView(*squaredData);

    transform(src.vec_begin(), 
              src.vec_end(), 
              squares->vec_begin(), 
              double_squared<typename T::value_type>());

    FloatPixel sum
        = std::accumulate(squares->vec_begin(), 
                          squares->vec_end(), 
                          (FloatPixel)0);
    size_t area = src.nrows() * src.ncols();
    FloatPixel mean = image_mean(src);
    
    delete squaredData;
    delete squares;
    return sum / area - mean * mean;
}

/* Float mean_filter(Image src, size_t region_size);
 *
 * The implementation of region size is not entirely correct because of
 * integer rounding but matches the implementation of the thresholding
 * algorithms.
 */
template<class T>
FloatImageView* mean_filter(const T &src, size_t region_size)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("mean_filter: region_size out of range");

    size_t half_region_size = region_size / 2;

    typename ImageFactory<T>::view_type* copy = ImageFactory<T>::new_view(src);
    FloatImageData* data = new FloatImageData(src.size(), src.origin());
    FloatImageView* view = new FloatImageView(*data);
  
    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            // Define the region.
            Point ul((coord_t)std::max(0, (int)x - (int)half_region_size),
                     (coord_t)std::max(0, (int)y - (int)half_region_size));
            Point lr((coord_t)std::min(x + half_region_size, src.ncols() - 1),
                     (coord_t)std::min(y + half_region_size, src.nrows() - 1));
            copy->rect_set(ul, lr);
            view->set(Point(x, y), image_mean(*copy));
        }
    }

    delete copy;
    return view;
}

/* Image variance_filter(Image src, Float means, size_t region_size);
 *
 * The implementation of region size is not entirely correct because of
 * integer rounding but matches the implementation of the thresholding
 * algorithms.
 */
template<class T>
FloatImageView* variance_filter(const T &src,
                                const FloatImageView &means,
                                size_t region_size) 
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("variance_filter: region_size out of range");
     if (src.size() != means.size())
        throw std::invalid_argument("variance_filter: sizes must match");
 
    size_t half_region_size = region_size / 2;

    // Compute squares of each element. This step avoid repeating the squaring
    // operation for overlapping regions.
    FloatImageData* squaredData = new FloatImageData(src.size(), src.origin());
    FloatImageView* squares = new FloatImageView(*squaredData);

    transform(src.vec_begin(), 
              src.vec_end(), 
              squares->vec_begin(), 
              double_squared<typename T::value_type>());
  
    FloatImageData* data = new FloatImageData(src.size(), src.origin());
    FloatImageView* view = new FloatImageView(*data);  

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            // Define the region.
            Point ul((coord_t)std::max(0, (int)x - (int)half_region_size),
                     (coord_t)std::max(0, (int)y - (int)half_region_size));
            Point lr((coord_t)std::min(x + half_region_size, src.ncols() - 1),
                     (coord_t)std::min(y + half_region_size, src.nrows() - 1));
            squares->rect_set(ul, lr);
            // Compute the variance.
            FloatPixel sum
                = std::accumulate(squares->vec_begin(), 
                                  squares->vec_end(), 
                                  (FloatPixel)0);
            size_t area = squares->nrows() * squares->ncols();
            FloatPixel mean = means.get(Point(x,y));
            view->set(Point(x, y), sum / area - mean * mean);
        }
    }
    
    delete squaredData;
    delete squares;
    return view;
}

/*
 * Image wiener_filter(Image src, size_t region_size, double noise_variance);
 * 
 */
template<class T>
T* wiener_filter(const T &src, size_t region_size, double noise_variance)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("niblack_threshold: region_size out of range");
    
    // Compute regional statistics.
    const FloatImageView* means = mean_filter(src, region_size);
    const FloatImageView* variances = variance_filter(src, *means, region_size);

    // Compute noise variance if needed.
    if (noise_variance < 0) {
        FloatImageData* orderedVariancesData 
            = new FloatImageData(variances->size(), variances->origin());
        FloatImageView* orderedVariances 
            = new FloatImageView(*orderedVariancesData);        
        std::copy(variances->vec_begin(),
                  variances->vec_end(),
                  orderedVariances->vec_begin());
        size_t area = orderedVariances->nrows() * orderedVariances->ncols();
        std::nth_element(orderedVariances->vec_begin(),
                         orderedVariances->vec_begin() + (area - 1) / 2,
                         orderedVariances->vec_end());
        noise_variance 
            = (double)*(orderedVariances->vec_begin() + (area - 1) / 2);
        delete orderedVariancesData;
        delete orderedVariances;
    }

    typedef typename T::value_type value_type;
    typedef typename ImageFactory<T>::data_type data_type;
    typedef typename ImageFactory<T>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            double mean = (double)means->get(Point(x, y));
            double variance = (double)variances->get(Point(x, y));
            // The estimate of noise variance will never be perfect, but in
            // theory, it would be impossible for any region to have a local
            // variance less than it. The following check eliminates that
            // theoretical impossibility and has a side benefit of preventing
            // division by zero.
            if (variance < noise_variance) {
                view->set(Point(x, y), (value_type)mean);
            } else {
                double multiplier = (variance - noise_variance) / variance;
                double value = (double)src.get(Point(x, y));
                view->set(Point(x, y),
                          (value_type)(mean + multiplier * (value - mean)));
            }
        }
    }

    delete means->data(); delete means;
    delete variances->data(); delete variances;
    return view;
}

/*
 * OneBit niblack_threshold(GreyScale src, 
 *                          size_t region_size, 
 *                          double sensitivity,
 *                          int lower_bound,
 *                          int upper_bound);
 */
template<class T>
OneBitImageView* niblack_threshold(const T &src, 
                                   size_t region_size, 
                                   double sensitivity,
                                   int lower_bound,
                                   int upper_bound)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("niblack_threshold: region_size out of range");

    // Compute regional statistics.
    const FloatImageView* means = mean_filter(src, region_size);
    const FloatImageView* variances = variance_filter(src, *means, region_size);

    typedef ImageFactory<OneBitImageView>::data_type data_type;
    typedef ImageFactory<OneBitImageView>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            // Check global thresholds and then threshold adaptively.
            FloatPixel pixel_value = (FloatPixel)src.get(Point(x, y));
            if (pixel_value < (FloatPixel)lower_bound) {
                view->set(Point(x, y), black(*view));
            } else if (pixel_value >= (FloatPixel)upper_bound) {
                view->set(Point(x, y), white(*view));
            } else {
                FloatPixel mean = means->get(Point(x, y));
                FloatPixel deviation = std::sqrt(variances->get(Point(x, y)));
                FloatPixel threshold = mean + sensitivity * deviation;
                view->set(Point(x, y), 
                          pixel_value > threshold ? white(*view) : black(*view));
            }
        }
    }

    delete means->data(); delete means;
    delete variances->data(); delete variances;
    return view;
}

/*
 * OneBit sauvola_threshold(GreyScale src, 
 *                          size_t region_size, 
 *                          double sensitivity,
 *                          int dynamic_range,
 *                          int lower_bound,
 *                          int upper_bound);
 */
template<class T>
OneBitImageView* sauvola_threshold(const T &src, 
                                   size_t region_size, 
                                   double sensitivity,
                                   int dynamic_range,
                                   int lower_bound,
                                   int upper_bound)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("niblack_threshold: region_size out of range");

    // Compute regional statistics.
    const FloatImageView* means = mean_filter(src, region_size);
    const FloatImageView* variances = variance_filter(src, *means, region_size);

    typedef ImageFactory<OneBitImageView>::data_type data_type;
    typedef ImageFactory<OneBitImageView>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            // Check global thresholds and then threshold adaptively.
            FloatPixel pixel_value = (FloatPixel)src.get(Point(x, y));
            if (pixel_value < (FloatPixel)lower_bound) {
                view->set(Point(x, y), black(*view));
            } else if (pixel_value >= (FloatPixel)upper_bound) {
                view->set(Point(x, y), white(*view));
            } else {
                FloatPixel mean = means->get(Point(x, y));
                FloatPixel deviation = std::sqrt(variances->get(Point(x, y)));
                FloatPixel adjusted_deviation 
                    = 1.0 - deviation / (FloatPixel)dynamic_range;
                FloatPixel threshold 
                    = mean + (1.0 - sensitivity * adjusted_deviation);
                view->set(Point(x, y), 
                          pixel_value > threshold ? white(*view) : black(*view));
            }
        }
    }

    delete means->data(); delete means;
    delete variances->data(); delete variances;
    return view;
}

/* 
 * Image* gatos_background(Image src, size_t region_size);
 */
template<class T, class U>
T* gatos_background(const T &src, 
                    const U &binarization, 
                    size_t region_size)
{
    if ((region_size < 1) || (region_size > std::min(src.nrows(), src.ncols())))
        throw std::out_of_range("gatos_background: region_size out of range");
    if (src.size() != binarization.size())
        throw std::invalid_argument("gatos_background: sizes must match");
 
    size_t half_region_size = region_size / 2;

    typename ImageFactory<T>::view_type* scopy 
        = ImageFactory<T>::new_view(src);
    typename ImageFactory<U>::view_type* bcopy
        = ImageFactory<U>::new_view(binarization);

    typedef std::pair<unsigned int, FloatPixel> gatos_pair;
    typedef typename T::value_type src_value_type;
    typedef typename U::value_type binarization_value_type;

    typedef typename ImageFactory<T>::data_type data_type;
    typedef typename ImageFactory<T>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    for (coord_t y = 0; y < src.nrows(); ++y) {
        for (coord_t x = 0; x < src.ncols(); ++x) {
            if (is_white(binarization.get(Point(x, y)))) {
                view->set(Point(x, y), src.get(Point(x, y)));
            } else {
                // Define the region.
                Point ul((coord_t)std::max(0, (int)x - (int)half_region_size),
                         (coord_t)std::max(0, (int)y - (int)half_region_size));
                Point lr((coord_t)std::min(x + half_region_size, src.ncols() - 1),
                         (coord_t)std::min(y + half_region_size, src.nrows() - 1));
                scopy->rect_set(ul, lr);
                bcopy->rect_set(ul, lr);
                // Count and accumulate background pixels.
                gatos_pair sums =
                    std::inner_product(bcopy->vec_begin(),
                                       bcopy->vec_end(),
                                       scopy->vec_begin(),
                                       gatos_pair(0, 0.0),
                                       pair_plus<gatos_pair>(),
                                       gatos_accumulate
                                       <
                                       gatos_pair,
                                       binarization_value_type,
                                       src_value_type
                                       >());
                view->set(Point(x, y), 
                          sums.first > 0
                          ? (src_value_type)(sums.second / sums.first)
                          : white(src));
            }
        }
    }

    delete scopy;
    delete bcopy;
    return view;
}


/*
 * Image gatos_threshold(Image src, 
 *                       Image background, 
 *                       Image binarization,
 *                       double q,
 *                       double p1,
 *                       double p2);
 */
template<class T, class U>
OneBitImageView* gatos_threshold(const T &src, 
                                 const T &background, 
                                 const U &binarization,
                                 double q,
                                 double p1,
                                 double p2)
{
    if (src.size() != background.size())
        throw std::invalid_argument("gatos_threshold: sizes must match");
    if (background.size() != binarization.size())
        throw std::invalid_argument("gatos_threshold: sizes must match");

    typedef std::pair<unsigned int, FloatPixel> gatos_pair;
    typedef typename T::value_type base_value_type;
    typedef typename U::value_type binarization_value_type;

    double delta_numerator 
        = std::inner_product(src.vec_begin(),
                             src.vec_end(),
                             background.vec_begin(),
                             (double)0,
                             double_plus<base_value_type>(),
                             std::minus<base_value_type>());
    unsigned int delta_denominator
        = std::count_if(binarization.vec_begin(),
                        binarization.vec_end(),
                        is_black<binarization_value_type>);
    double delta = delta_numerator / (double)delta_denominator;
                             
    gatos_pair b_sums
        = std::inner_product(binarization.vec_begin(),
                             binarization.vec_end(),
                             background.vec_begin(),
                             gatos_pair(0, 0.0),
                             pair_plus<gatos_pair>(),
                             gatos_accumulate
                             <
                             gatos_pair,
                             binarization_value_type,
                             base_value_type
                             >());
    double b = (double)b_sums.second / (double)b_sums.first;

    typedef ImageFactory<OneBitImageView>::data_type data_type;
    typedef ImageFactory<OneBitImageView>::view_type view_type;
    data_type* data = new data_type(src.size(), src.origin());
    view_type* view = new view_type(*data);

    std::transform(src.vec_begin(), 
                   src.vec_end(),
                   background.vec_begin(),
                   view->vec_begin(),
                   gatos_thresholder
                   <
                   typename T::value_type, 
                   typename U::value_type
                   >(q, delta, b, p1, p2));

    return view;
}


/*
 White Rohrer thresholding. This implementation uses code from
 the XITE library. According to its license, it may be freely included
 into Gamera (a GPL licensed software), provided the following
 notice is included into the code:

  Permission to use, copy, modify and distribute this software and its
  documentation for any purpose and without fee is hereby granted, 
  provided that this copyright notice appear in all copies and that 
  both that copyright notice and this permission notice appear in supporting
  documentation and that the name of B-lab, Department of Informatics or
  University of Oslo not be used in advertising or publicity pertaining 
  to distribution of the software without specific, written prior permission.

  B-LAB DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL B-LAB
  BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN 
  CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

 Important notice: this implementation only works with 8-bit greyscale
 images because the maximal value 255 for white is hard coded!!
*/

static struct {
  int WR1_F_OFFSET;
  int WR1_G_OFFSET;
  int BIN_ERROR;
  int BIN_FOREGROUND;
  int BIN_BACKGROUND;
  int BIN_OK;
  int WR1_BIAS_CROSSOVER;
  int WR1_BLACK_BIAS;
  int WR1_WHITE_BIAS;
  int WR1_BIAS;
  double WR1_BLACK_BIAS_FACTOR;
  double WR1_WHITE_BIAS_FACTOR;
  int wr1_f_tab[512];
  int wr1_g_tab[512];
} wr1_params = {
  /* WR1_F_OFFSET */  255,
  /* WR1_G_OFFSET */  255,
  /* BIN_ERROR */     -1,
  /* BIN_FOREGROUND */ 0,
  /* BIN_BACKGROUND */ 255,
  /* BIN_OK */         0,
  /* WR1_BIAS_CROSSOVER */ 93,
  /* WR1_BLACK_BIAS */ -40,
  /* WR1_WHITE_BIAS */ 40,
  /* WR1_BIAS */       20,
  /* WR1_BLACK_BIAS_FACTOR */ 0.0,
  /* WR1_WHITE_BIAS_FACTOR */ -0.25,
  /* wr1_f_tab */ {
    -62,  -62,  -61,  -61,  -60,  -60,  -59,  -59,
    -58,  -58,  -57,  -57,  -56,  -56,  -54,  -54,
    -53,  -53,  -52,  -52,  -51,  -51,  -50,  -50,
    -49,  -49,  -48,  -48,  -47,  -47,  -46,  -46,
    -45,  -45,  -44,  -44,  -43,  -43,  -42,  -42,
    -41,  -41,  -41,  -41,  -40,  -40,  -39,  -39,
    -38,  -38,  -37,  -37,  -36,  -36,  -36,  -36,
    -35,  -35,  -34,  -34,  -33,  -33,  -33,  -33,
    -32,  -32,  -31,  -31,  -31,  -31,  -30,  -30,
    -29,  -29,  -29,  -29,  -28,  -28,  -27,  -27,
    -27,  -27,  -26,  -26,  -25,  -25,  -25,  -25,
    -24,  -24,  -24,  -24,  -23,  -23,  -23,  -23,
    -22,  -22,  -22,  -22,  -21,  -21,  -21,  -21,
    -20,  -20,  -20,  -20,  -19,  -19,  -19,  -19,
    -18,  -18,  -18,  -18,  -17,  -17,  -17,  -17,
    -16,  -16,  -16,  -16,  -16,  -16,  -15,  -15,
    -15,  -15,  -14,  -14,  -14,  -14,  -14,  -14,
    -13,  -13,  -13,  -13,  -13,  -13,  -12,  -12,
    -12,  -12,  -12,  -12,  -11,  -11,  -11,  -11,
    -11,  -11,  -10,  -10,  -10,  -10,  -10,  -10,
    -9,   -9,   -9,   -9,   -9,   -9,   -8,   -8,
    -8,   -8,   -8,   -8,   -8,   -8,   -7,   -7,
    -7,   -7,   -7,   -7,   -7,   -7,   -6,   -6,
    -6,   -6,   -6,   -6,   -6,   -6,   -5,   -5,
    -5,   -5,   -5,   -5,   -5,   -5,   -4,   -4,
    -3,   -3,   -2,   -2,   -2,   -2,   -2,   -2,
    -2,   -2,   -2,   -2,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,    0,    0,
    1,    1,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    2,    2,    2,    2,    2,    2,    2,    2,
    3,    3,    3,    3,    3,    3,    3,    3,
    3,    3,    3,    3,    3,    3,    3,    3,
    3,    3,    3,    3,    3,    3,    4,    4,
    4,    4,    4,    4,    4,    4,    4,    4,
    4,    4,    4,    4,    4,    4,    4,    4,
    4,    4,    4,    4,    4,    4,    4,    4,
    4,    4,    5,    5,    5,    5,    5,    5,
    5,    5,    5,    5,    5,    5,    5,    5,
    5,    5,    6,    6,    6,    6,    6,    6,
    6,    6,    6,    6,    6,    6,    6,    6,
    6,    6,    6,    6,    6,    6,    6,    6,
    6,    6,    6,    6,    6,    6,    6,    6,
    6,    6,    7,    7,    7,    7,    7,    7,
    7,    7,    7,    7,    7,    7,    7,    7,
    7,    7,    7,    7,    7,    7,    7,    7,
    7,    7,    7,    7,    8,    8,    8,    8,
    8,    8,    8,    8,    8,    8,    8,    8,
    8,    8,    8,    8,    8,    8,    8,    8,
    8,    8,    9,    9,    9,    9,    9,    9,
    9,    9,    9,    9,    9,    9,    9,    9,
    9,    9,    9,    9,    9,    9,    9,    9,
    9,    9,    9,    9,    9,    9,    9,    9,
    9,    9,   10,   10,   10,   10,   10,   10,
    10,   10,   10,   10,   10,   10,   10,   10,
    10,   10,   10,   10,   10,   10,   10,    0
  },
  /* wr1_g_tab */ {
    -126, -126, -125, -125, -124, -124, -123, -123,
    -122, -122, -121, -121, -120, -120, -119, -119,
    -118, -118, -117, -117, -116, -116, -115, -115,
    -114, -114, -113, -113, -112, -112, -111, -111,
    -110, -110, -109, -109, -108, -108, -107, -107,
    -106, -106, -105, -105, -104, -104, -103, -103,
    -102, -102, -101, -101, -100, -100,  -99,  -99,
    -98,  -98,  -97,  -97,  -96,  -96,  -95,  -95,
    -94,  -94,  -93,  -93,  -92,  -92,  -91,  -91,
    -90,  -90,  -89,  -89,  -88,  -88,  -87,  -87,
    -86,  -86,  -85,  -85,  -84,  -84,  -83,  -83,
    -82,  -82,  -81,  -81,  -80,  -80,  -79,  -79,
    -78,  -78,  -77,  -77,  -76,  -76,  -75,  -75,
    -74,  -74,  -73,  -73,  -72,  -72,  -71,  -71,
    -70,  -70,  -69,  -69,  -68,  -68,  -67,  -67,
    -66,  -66,  -65,  -65,  -64,  -64,  -63,  -63,
    -61,  -61,  -59,  -59,  -57,  -57,  -54,  -54,
    -52,  -52,  -50,  -50,  -48,  -48,  -46,  -46,
    -44,  -44,  -42,  -42,  -41,  -41,  -39,  -39,
    -37,  -37,  -36,  -36,  -34,  -34,  -33,  -33,
    -31,  -31,  -30,  -30,  -29,  -29,  -27,  -27,
    -26,  -26,  -25,  -25,  -24,  -24,  -23,  -23,
    -22,  -22,  -21,  -21,  -20,  -20,  -19,  -19,
    -18,  -18,  -17,  -17,  -16,  -16,  -15,  -15,
    -14,  -14,  -14,  -14,  -13,  -13,  -12,  -12,
    -12,  -12,  -11,  -11,  -10,  -10,  -10,  -10,
    -9,   -9,   -8,   -8,   -8,   -8,   -7,   -7,
    -7,   -7,   -6,   -6,   -6,   -6,   -5,   -5,
    -5,   -5,   -4,   -4,   -2,   -2,   -2,   -2,
    -2,   -2,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,   -1,   -1,
    -1,   -1,   -1,   -1,   -1,   -1,    0,    0,
    1,    1,    1,    1,    1,    1,    1,    1,
    1,    1,    1,    1,    1,    1,    1,    1,
    1,    1,    2,    2,    2,    2,    2,    2,
    4,    4,    5,    5,    5,    5,    6,    6,
    6,    6,    7,    7,    7,    7,    8,    8,
    8,    8,    9,    9,   10,   10,   10,   10,
    11,   11,   12,   12,   12,   12,   13,   13,
    14,   14,   14,   14,   15,   15,   16,   16,
    17,   17,   18,   18,   19,   19,   20,   20,
    21,   21,   22,   22,   23,   23,   24,   24,
    25,   25,   26,   26,   27,   27,   29,   29,
    30,   30,   31,   31,   33,   33,   34,   34,
    36,   36,   37,   37,   39,   39,   41,   41,
    42,   42,   44,   44,   46,   46,   48,   48,
    50,   50,   52,   52,   54,   54,   57,   57,
    59,   59,   61,   61,   63,   63,   64,   64,
    65,   65,   66,   66,   67,   67,   68,   68,
    69,   69,   70,   70,   71,   71,   72,   72,
    73,   73,   74,   74,   75,   75,   76,   76,
    77,   77,   78,   78,   79,   79,   80,   80,
    81,   81,   82,   82,   83,   83,   84,   84,
    85,   85,   86,   86,   87,   87,   88,   88,
    89,   89,   90,   90,   91,   91,   92,   92,
    93,   93,   94,   94,   95,   95,   96,   96,
    97,   97,   98,   98,   99,   99,  100,  100,
    101,  101,  102,  102,  103,  103,  104,  104,
    105,  105,  106,  106,  107,  107,  108,  108,
    109,  109,  110,  110,  111,  111,  112,  112,
    113,  113,  114,  114,  115,  115,  116,  116,
    117,  117,  118,  118,  119,  119,  120,  120,
    121,  121,  122,  122,  123,  123,  124,  124,
    125,  125,  126,  126,  127,  127,  127,    0
  }
};

inline int wr1_bias (int x, int offset)
{
   int result;
   int bias;
   
   x = 256 - x;

   bias = -offset;
   
   if (x < wr1_params.WR1_BIAS_CROSSOVER)
   {
      result = x - bias
	 - (int)(wr1_params.WR1_BLACK_BIAS_FACTOR*(wr1_params.WR1_BIAS_CROSSOVER-x));
   }
   else if (x >= wr1_params.WR1_BIAS_CROSSOVER)
   {
      result = x + bias
	 + (int)(wr1_params.WR1_WHITE_BIAS_FACTOR*(x-wr1_params.WR1_BIAS_CROSSOVER));
   }
   else
      result = x;

/*
   result = x-bias;
*/
   if (result < wr1_params.BIN_FOREGROUND)
      result = wr1_params.BIN_FOREGROUND;
   if (result > wr1_params.BIN_BACKGROUND)
      result = wr1_params.BIN_BACKGROUND;
   
   return  256 - result; 
}


inline int wr1_f (int diff, int *f)
{
  /* if (abs(diff)>wr1_params.WR1_F_OFFSET)
   {
      Warning(2, "wr1_f: Error: diff = %i\n", diff);
      return wr1_params.BIN_ERROR;
      }*/
   f[0] = -wr1_params.wr1_f_tab[wr1_params.WR1_F_OFFSET - diff];
   return wr1_params.BIN_OK;
}

inline int wr1_g (int diff, int *g)
{
  /*   if (abs(diff)>wr1_params.WR1_G_OFFSET)
   {
      Warning(2, "wr1_g: Error: diff = %i\n", diff);   
      return wr1_params.BIN_ERROR;
      }*/
   g[0] = -wr1_params.wr1_g_tab[wr1_params.WR1_G_OFFSET - diff];
   return wr1_params.BIN_OK;
}


/*
 * OneBit white_rohrer_threshold(GreyScale src, 
 *                          int x_lookahead,
 *                          int y_lookahead, 
 *                          int bias_mode,
 *                          int bias_factor,
 *                          int f_factor
 *                          int g_factor);
 */

template<class T>
OneBitImageView* white_rohrer_threshold (const T& in, int x_lookahead, int y_lookahead,
	     int bias_mode, int bias_factor, int f_factor, int g_factor)
{
  int xsize, ysize;
  int x, y;
  int u;
  int prevY;
  int Y = 0;
  int f, g;
  int x_ahead, y_ahead;
  int t;
  int offset = wr1_params.WR1_BIAS;
  //double mu, s_dev;
  FloatPixel mu = 0.0;
  FloatPixel  s_dev = 0.0; 
  int *Z;
  int n;

  typedef ImageFactory<OneBitImageView>::data_type data_type;
  typedef ImageFactory<OneBitImageView>::view_type view_type;
  data_type* bin_data = new data_type(in.size(), in.origin());
  view_type* bin_view = new view_type(*bin_data);  
  

  xsize = in.ncols();
  ysize = in.nrows();
  //  std::cout<<"sizes are "<<ysize<<","<<xsize<<std::endl;
  x_lookahead = x_lookahead % xsize;

  if (bias_mode == 0) 
  {
    mu = image_mean(in);
    s_dev = sqrt(image_variance(in));
    offset = (int)(s_dev - 40) ;
  } 
  else 
    offset = bias_mode;

  Z = new int[2*xsize+1];
  for(n = 0; n< 2*xsize+1; ++n)
    Z[n] = 0;
   
  //Z[1] = prevY = (int)mu;
  Z[0] = prevY = (int)mu;

   for (y=0; y< 1+y_lookahead; y++)
   {
      if (y < y_lookahead)
	 t = xsize;
      else
	 t = x_lookahead;
      for (x=0; x< t; x++)
      {
	 u = in.get(Point(x,y));
	 wr1_f (u-prevY, &f);
	 Y = prevY + f;
	 if (y == 1)
	    Z[x] = (int)mu;
	 else
	 {
	    wr1_g(Y-Z[x], &g);
	    Z[x] = Z[x] + g; 
	 }
      }
      
   }
   x_ahead = 1 + x_lookahead;
   y_ahead = 1 + y_lookahead;
 
   for (y = 0; y < ysize; y++)
   {
      for (x = 0; x < xsize; x++)
      {
	 if (in.get(Point(x,y)) < (bias_factor  
			     * wr1_bias(Z[x_ahead],offset) / 100))
	 {
	    bin_view->set(Point(x,y),black(*bin_view));
	 }
	 
	 else	
	 {
	    bin_view->set(Point(x,y),white(*bin_view));
	 }

	 x_ahead++;
	 if (x_ahead > xsize)
	 {
	    x_ahead = 1;
	    y_ahead++;
	 }
	 if (y_ahead <= ysize)
	 {
	    prevY = Y;
	    wr1_f(in.get(Point(x_ahead,y_ahead))-prevY, &f);    
	    Y = prevY + f_factor * f / 100;
	    wr1_g(Y-Z[x_ahead], &g);
	    Z[x_ahead] = Z[x_ahead] + g_factor * g / 100;
	 }
	 else
	    Z[x_ahead] = Z[x_ahead-1];
      }
   }
 
 delete [] Z;
 Z = NULL;
  
 return bin_view;

}

/*
 *  FloatVector histogram_real_values(GreyScale|Grey16 image);
 *
 *  Returns a histogram of the values in an image. 
 */
template<class T>
FloatVector* histogram_real_values(const T& image) {
    // The histogram is the size of all of the possible values of
    // the pixel type.
    size_t l = std::numeric_limits<typename T::value_type>::max() + 1;
    FloatVector* values = new FloatVector(l);

    // set the list to 0
    std::fill(values->begin(), values->end(), 0);

    typename T::const_row_iterator row = image.row_begin();
    typename T::const_col_iterator col;
    ImageAccessor<typename T::value_type> acc;

    // create the histogram
    for (; row != image.row_end(); ++row)
      for (col = row.begin(); col != row.end(); ++col)
    (*values)[acc.get(col)]++;

    return values;
}

/*
 *  Image* brink_threshold(const T& image);
 *
 *  Calculates threshold for image with Brink and Pendock's minimum-cross    
 *  entropy method and returns corrected image.
 *
 *  References: Brink, A., and Pendock, N. 1996. Minimum cross-entropy
 *  threshold selection. Pattern Recognition 29: 179-188. 
 *
 */
template<class T>
Image* brink_threshold(const T& image)
{
  int i,j;  // for iteration

  static const size_t VEC_DBL_SZ = sizeof(double) * 256; //size of vector
  unsigned long vecSum = 0;     // sum of histogram
  double invHistSum;            // inverse of histogram sum
  int Topt = 0;                 // threshold value
  double locMin = std::numeric_limits<double>::max(); // local minimum
  int isMinInit = 0;            // flat for minimum initialization

  FloatVector *histoFV;
  histoFV = histogram_real_values(image);   // compute gray histogram 
  unsigned long histo[256];
  for (i = 0; i < 256; i++)
    histo[i] = (*histoFV)[i];   // copy from FloatVector to an array of longs
  delete histoFV;

  double pmf[256];          // pmf (i.e. normalized histogram)
  double m_f[256];          // first foreground moment
  double m_b[256];          // first background moment

  double tmpVec1[256];      // temporary vector 1
  double tmpVec2[256];      // temporary vector 2
  double tmpVec3[256];      // temporary vector 3

  double tmp1[256][256];    // temporary matrix 1
  double tmp2[256][256];    // temporary matrix 2 
  double tmp3[256][256];    // temporary matrix 3
  double tmp4[256][256];    // temporary matrix 4

  double tmpMat1[256][256];  // local temporary matrix 1
  double tmpMat2[256][256];  // local temporary matrix 2
  
  // compute sum of the histogram
  for (i = 0; i < 256; ++i)
        vecSum += histo[i];
        
  // compute inverse of vecSum
  invHistSum = 1.0 / vecSum;    

  // compute normalized histogram (pmf)  
  for (i = 0; i < 256; i++)
    pmf[i] = histo[i] * invHistSum;     // equivalent to dividing by the sum, but faster!
    
  // compute foreground moment
  m_f[0] = 0.0;
  for (i = 1; i < 256; ++i)         
    m_f[i] = i * pmf[i] + m_f[i - 1];

  // compute background moment
  memcpy(m_b, m_f, VEC_DBL_SZ);      

  for (i = 0; i < 256; ++i)
    m_b[i] = m_f[255] - m_b[i];     
    
  // compute brink entropy binarization
  for (i = 0; i < 256; ++i)     
  {
    for (j = 0; j < 256; ++j)
    {
      tmp1[i][j] = m_f[j] / i;

      if ((m_f[j] == 0) || (i == 0)) 
      {
        tmp2[i][j] = 0.0;               
        tmp3[i][j] = 0.0;
      }
      else
      {
        tmp2[i][j] = log(tmp1[i][j]);
        tmp3[i][j] = log(1.0 / tmp1[i][j]);;
      }
      tmp4[i][j] = pmf[i] * (m_f[j] * tmp2[i][j] + i * tmp3[i][j]);
    }
  }

  // compute the diagonal of the cumulative sum of tmp4 and store result in tmpVec1
  memcpy(tmpMat1[0], tmp4[0], VEC_DBL_SZ);   // copies first row of tmp4 to the first row of tmpMat1
  for (i = 1; i < 256; ++i)         // get cumulative sum
    for (j = 0; j < 256; ++j)
      tmpMat1[i][j] = tmpMat1[i-1][j] + tmp4[i][j];
    for (i = 0; i < 256; ++i)       // set to diagonal
      tmpVec1[i] = tmpMat1[i][i];   // tmpVec1 is now the diagonal of the cumulative sum of tmp4
 

  // same operation but for background moment, NOTE: tmp1 through tmp4 get overwritten
  for (i = 0; i < 256; ++i)     
  {
    for (j = 0; j < 256; ++j)
    {
      tmp1[i][j] = m_b[j] / i;          // tmpb0 = m_b_rep ./ g_rep;
      if ((m_b[j] == 0) || (i == 0)) 
      {
        tmp2[i][j] = 0.0;               // replace inf or NaN values with 0
        tmp3[i][j] = 0.0;
            }
            else
            {  
                tmp2[i][j] = log(tmp1[i][j]);
                tmp3[i][j] = log(1.0 / tmp1[i][j]);;
            }
            tmp4[i][j] = pmf[i] * (m_b[j] * tmp2[i][j] + i * tmp3[i][j]);
        }
    }

    // sum columns, subtract diagonal of cumulative sum of tmp4 
    memcpy(tmpVec2, tmp4[0], VEC_DBL_SZ);   // copies first row of tmp4 to the first row of tmpMat2 
    for (i = 1; i < 256; ++i)           
        for (j = 0; j < 256; ++j)
            tmpVec2[j] += tmp4[i][j];   // sums of columns of tmp4 and store result in tmpVec2

    // compute the diagonal of the cumulative sum of tmp4 and store result in tmpVec1
    memcpy(tmpMat2[0], tmp4[0], VEC_DBL_SZ);    // copies first row of tmp4 to the first row of tmpMat2 
    for (i = 1; i < 256; ++i)       // get cumulative sum
        for (j = 0; j < 256; ++j)
          tmpMat2[i][j] = tmpMat2[i-1][j] + tmp4[i][j]; 
    for (i = 0; i < 256; ++i)       // set to diagonal
        tmpVec3[i] = tmpMat2[i][i]; // tmpVec3 is now the diagonal of the cumulative sum of tmpMat2

    for (i = 0; i < 256; ++i)       
        tmpVec2[i] -= tmpVec3[i];
    for (int i = 0; i < 256; ++i)
        tmpVec1[i] += tmpVec2[i];

    // calculate the threshold value
    for (i = 0; i < 256; ++i)
    {
        if (m_f[i] != 0 && m_b[i] != 0)
        {
            if (!isMinInit || tmpVec1[i] < locMin)
            {
                isMinInit = 1;
                locMin = tmpVec1[i];    // gets a new minimum
                Topt = i;
            }
        }
    }
        
    Topt++; // DO I NEED TO ADD ONE
    
    // call threshold from threshold.hpp with image and Topt and return the output
    return threshold(image, Topt, 0);   
}

#endif