This file is indexed.

/usr/include/gamera/plugins/draw.hpp is in python-gamera-dev 1:3.4.2+git20160808.1725654-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
/*
 *
 * Copyright (C) 2001-2009
 * Ichiro Fujinaga, Michael Droettboom, Karl MacMillan, and Christoph Dalitz
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef mgd12032001_draw_hpp
#define mgd12032001_draw_hpp

#include <stack>

namespace Gamera {

  template<class T>
  inline void _clip_points(T& image, size_t& x1, size_t& y1, size_t& x2, size_t& y2) {
    x1 -= image.ul_x();
    x2 -= image.ul_x();
    y1 -= image.ul_y();
    y2 -= image.ul_y();
    x1 = std::min(x1, image.ncols() - 1);
    x2 = std::min(x2, image.ncols() - 1);
    y1 = std::min(y1, image.nrows() - 1);
    y2 = std::min(y2, image.nrows() - 1);
  }

  // computation entry point of line in image
  inline void _cut_line(double &x1, double &y1, double &x2, double &y2, 
                        double x_len, double y_len, double lower, double upper) {
    if (y1 < lower) {
      x1 += (-y1 * x_len) / y_len;
      y1 = 0;
    }

    if (y2 > upper) {
      x2 += (-(y2 - upper) * x_len) / y_len;
      y2 = upper;
    }
  }

  // straightforward implementation of Bresenham's line drawing algorithm
  template<class T, class P>
  void _draw_line(T& image, const P& a, const P& b, 
                  const typename T::value_type value) {
    double x1 = double(a.x());
    double y1 = double(a.y());
    double x2 = double(b.x());
    double y2 = double(b.y());

    y1 -= (double)image.ul_y();
    y2 -= (double)image.ul_y();
    x1 -= (double)image.ul_x();
    x2 -= (double)image.ul_x();

    double y_len = y2 - y1;
    double x_len = x2 - x1;

    // Short circuit for a single pixel.  This speeds up
    // drawing Bezier curves a little bit
    if (((int)y_len) == 0 && ((int)x_len) == 0) {
      if (y1 >= 0 && y1 < image.nrows() &&
          x1 >= 0 && x1 < image.ncols())
        image.set(Point((size_t)x1, (size_t)y1), value);
      return;
    }

    // Cut the line so it doesn't go outside of the image bounding box.
    // It is more efficient to do a little math now than to test when 
    // writing each pixel.
    if (y_len > 0)
      _cut_line(x1, y1, x2, y2, x_len, y_len, 
                0.0, (double)image.nrows() - 1);
    else
      _cut_line(x2, y2, x1, y1, x_len, y_len, 
                0.0, (double)image.nrows() - 1);

    if (x_len > 0)
      _cut_line(y1, x1, y2, x2, y_len, x_len, 
                0.0, (double)image.ncols() - 1);
    else
      _cut_line(y2, x2, y1, x1, y_len, x_len, 
                0.0, (double)image.ncols() - 1);

    if (!(y1 >= 0 && y1 < image.nrows() &&
          x1 >= 0 && x1 < image.ncols() &&
          y2 >= 0 && y2 < image.nrows() &&
          x2 >= 0 && x2 < image.ncols())) {
      return;
    }

    int x_dist = int(x2) - int(x1);
    int y_dist = int(y2) - int(y1);
    int x_dist_abs = abs(x_dist);
    int y_dist_abs = abs(y_dist);

    if (x_dist_abs > y_dist_abs) { // x is controlling axis
      if (x1 > x2) {
        std::swap(x1, x2);
        std::swap(y1, y2);
      }
      int y_sign = Gamera::sign((int)y2 - (int)y1);
      int e = y_dist_abs - x_dist_abs;
      int y = y1;
      for (int x = x1; x <= (int)x2; ++x, e += y_dist_abs) {
        image.set(Point(x, y), value);
        if (e >= 0.0) {
          y += y_sign;
          e -= x_dist_abs;
        }
      }
    } else {
      if (y1 > y2) {
        std::swap(x1, x2);
        std::swap(y1, y2);
      }
      int x_sign = Gamera::sign(int(x2) - int(x1));
      int e = x_dist_abs - y_dist_abs;
      int x = x1;
      for (int y = y1; y <= (int)y2; ++y, e += x_dist_abs) {
        image.set(Point(x, y), value);
        if (e >= 0.0) {
          x += x_sign;
          e -= y_dist_abs;
        }
      }
    }

  }

  template<class T, class P>
  void draw_line(T& image, const P& a, const P& b, 
                 const typename T::value_type value, const double thickness=1.0) {
    const double half_thickness = (thickness - 1.0) / 2.0;
    for (double x = -half_thickness; x <= 0.0; x += 1.0) 
      for (double y = -half_thickness; y <= 0.0; y += 1.0) 
        _draw_line(image, P((double)a.x()+x, (double)a.y()+y), P((double)b.x()+x, (double)b.y()+y), value);
  
    for (double x = half_thickness; x >= 0.0; x -= 1.0) 
      for (double y = half_thickness; y >= 0.0; y -= 1.0) 
        _draw_line(image, P((double)a.x()+x, (double)a.y()+y), P((double)b.x()+x, (double)b.y()+y), value);

    _draw_line(image, a, b, value);
  }

  template<class T, class P>
  void draw_hollow_rect(T& image, const P& a, const P& b, 
                        const typename T::value_type value,
                        const double thickness = 1.0) {
    draw_line(image, a, P(a.x(), b.y()), value, thickness);
    draw_line(image, a, P(b.x(), a.y()), value, thickness);
    draw_line(image, b, P(b.x(), a.y()), value, thickness);
    draw_line(image, b, P(a.x(), b.y()), value, thickness);
  }

  template<class T>
  void draw_hollow_rect(T& image, const Rect& r, const typename T::value_type value) {
    draw_hollow_rect(image, r.ul(), r.lr(), value);
  }

  template<class T, class P>
  void draw_filled_rect(T& image, const P& a, const P& b, const typename T::value_type value) {
    size_t x1, y1, x2, y2;
    size_t x1_ = (size_t)a.x();
    size_t y1_ = (size_t)a.y();
    size_t x2_ = (size_t)b.x();
    size_t y2_ = (size_t)b.y();

    _clip_points(image, x1_, y1_, x2_, y2_);

    if (x1_ > x2_)
      x1 = x2_, x2 = x1_;
    else
      x1 = x1_, x2 = x2_;

    if (y1_ > y2_)
      y1 = y2_, y2 = y1_;
    else
      y1 = y1_, y2 = y2_;

    for (size_t y = y1; y <= y2; ++y) 
      for (size_t x = x1; x <= x2; ++x)
        image.set(Point(x, y), value);
  }

  template<class T>
  void draw_filled_rect(T& image, const Rect& r, const typename T::value_type value) {
    draw_filled_rect(image, r.ul(), r.lr(), value);
  }

  template<class T, class P>
  void draw_marker(T& image, const P& p, const size_t size, const size_t style, 
                   const typename T::value_type value) {
    int half_size = (int)ceil(double(size) / 2.0);
    switch (style) {
    case 0:
      draw_line(image, P(p.x(), p.y() - half_size), P(p.x(), p.y() + half_size), value);
      draw_line(image, P(p.x() - half_size, p.y()), P(p.x() + half_size, p.y()), value);
      break;
    case 1:
      draw_line(image, P(p.x() - half_size, p.y() - half_size), 
                P(p.x() + half_size, p.y() + half_size), value);
      draw_line(image, P(p.x() + half_size, p.y() - half_size), 
                P(p.x() - half_size, p.y() + half_size), value);
      break;
    case 2:
      draw_hollow_rect(image, P(p.x() - half_size, p.y() - half_size), 
                       P(p.x() + half_size, p.y() + half_size), value);
      break;
    case 3: {
      int leftx = std::max((int)p.x() - half_size, 0);
      int rightx = std::min((int)p.x() + half_size, (int)image.ncols()-1);
      int topy = std::max((int)p.y() - half_size, 0);
      int boty = std::min((int)p.y() + half_size, (int)image.nrows()-1);
      draw_filled_rect(image, P(leftx, topy), P(rightx, boty), value);
      break;
    }
    default:
      throw std::runtime_error("Invalid style.");
    }
  }

  inline double square(double a) {
    return a * a;
  }

  template<class T, class P>
  void draw_bezier(T& image, const P& start, const P& c1, const P& c2, 
                   const P& end, const typename T::value_type value,
                   const double thickness = 1.0, const double accuracy = 0.1) {
    double start_x = double(start.x());
    double start_y = double(start.y());
    double c1_x = double(c1.x());
    double c1_y = double(c1.y());
    double c2_x = double(c2.x());
    double c2_y = double(c2.y());
    double end_x = double(end.x());
    double end_y = double(end.y());

    // All of this is just to calculate epsilon given the accuracy and
    // the length and "waviness" of the curve
    double dd0 = square(start_x - 2*c1_x + c2_x) + square(start_y - 2*c1_y + c2_y);
    double dd1 = square(c1_x - 2*c2_x + end_x) + square(c1_y - 2*c2_y + end_y);
    double dd = 6.0 * sqrt(std::max(dd0, dd1));
    double e2 = 8.0 * accuracy <= dd ? 8 * accuracy / dd : 1.0;
    double epsilon = sqrt(e2);

    double y = start_y;
    double x = start_x;
    for (double a = 1.0, b = 0.0; a > 0.0; a -= epsilon, b += epsilon) {
      double a_3 = a * a * a;
      double a_2_b = a * a * b * 3.0;
      double b_3 = b * b * b;
      double b_2_a = b * b * a * 3.0;

      double new_x = start_x*a_3 + c1_x*a_2_b + c2_x*b_2_a + end_x*b_3;
      double new_y = start_y*a_3 + c1_y*a_2_b + c2_y*b_2_a + end_y*b_3;
      draw_line(image, P(x, y), P(new_x, new_y), value, thickness);
      y = new_y; x = new_x;
    }
    draw_line(image, P(x, y), end, value, thickness);
  }

  template<class T, class P>
  void draw_circle(T& image, const P& c, const double r, const typename T::value_type value,
                   const double thickness = 1.0, const double accuracy = 0.1) {
    static const double kappa = 4.0 * ((sqrt(2.0) - 1.0) / 3.0);
  
    // Bezier circle approximation from 
    // http://www.whizkidtech.redprince.net/bezier/circle/
    const double z = kappa * r;

    draw_bezier(image, P(c.x(), c.y() - r), P(c.x() + z, c.y() - r),
                P(c.x() + r, c.y() - z), P(c.x() + r, c.y()), 
                value, thickness, accuracy);
    draw_bezier(image, P(c.x() + r, c.y()), P(c.x() + r, c.y() + z),
                P(c.x() + z, c.y() + r), P(c.x(), c.y() + r),
                value, thickness, accuracy);
    draw_bezier(image, P(c.x(), c.y() + r), P(c.x() - z, c.y() + r),
                P(c.x() - r, c.y() + z), P(c.x() - r, c.y()),
                value, thickness, accuracy);
    draw_bezier(image, P(c.x() - r, c.y()), P(c.x() - r, c.y() - z),
                P(c.x() - z, c.y() - r), P(c.x(), c.y() - r),
                value, thickness, accuracy);
  }

  /* From John R. Shaw's QuickFill code which is based on
     "An Efficient Flood Visit Algorithm" by Anton Treuenfels,
     C/C++ Users Journal Vol 12, No. 8, Aug 1994 */

  template<class T>
  struct FloodFill {
    typedef std::stack<Point> Stack;

    inline static void travel(T& image, Stack& s,
                              const typename T::value_type& interior, 
                              const typename T::value_type& color,
                              const size_t left, const size_t right,
                              const size_t y) {
      if (left + 1 <= right) {
        typename T::value_type col1, col2;
        for (size_t x = left + 1; x <= right; ++x) {
          col1 = image.get(Point(x-1, y));
          col2 = image.get(Point(x, y));
          if (col1 == interior && col2 != interior) {
            s.push(Point(x-1, y));
          }
        }
        if (col2 == interior) {
          s.push(Point(right, y));
        }
      }
    }

    static void fill_seeds(T& image, Stack& s, 
                           const typename T::value_type& interior, 
                           const typename T::value_type& color) {
      //typedef typename T::value_type pixel_t;
      size_t left, right;
      while (!s.empty()) {
        Point p = s.top();
        s.pop();
        if (image.get(p) == interior) {
          for (right = p.x();
               right < image.ncols();
               ++right) {
            if (image.get(Point(right, p.y())) != interior)
              break;
            image.set(Point(right, p.y()), color);
          }
          --right;

          long int l = p.x() - 1;
          for (; l >= 0; --l) {
            if (image.get(Point(l, p.y())) != interior)
              break;
            image.set(Point(l, p.y()), color);
          }
          left = (size_t)l + 1;

          if (left != right) {
            if (p.y() < image.nrows() - 1)
              travel(image, s, interior, color, left, right, p.y() + 1);
            if (p.y() > 0)
              travel(image, s, interior, color, left, right, p.y() - 1);
          } else {
            if (p.y() < image.nrows() - 1)
              if (image.get(Point(left, p.y() + 1)) != color)
                s.push(Point(left, p.y() + 1));
            if (p.y() > 1)
              if (image.get(Point(left, p.y() - 1)) != color)
                s.push(Point(left, p.y() - 1));
          }
        }
      }
    }
  };

  template<class T, class P>
  void flood_fill(T& image, const P& p, const typename T::value_type& color) {
    double x = double(p.x()) - double(image.ul_x());
    double y = double(p.y()) - double(image.ul_y());
    if (y >= image.nrows() || x >= image.ncols())
      throw std::runtime_error("Coordinate out of range.");
    typename T::value_type interior = image.get(Point((size_t)x, (size_t)y));
    if (color == interior)
      return;
    typename FloodFill<T>::Stack s;
    s.push(Point((size_t)x, (size_t)y));
    FloodFill<T>::fill_seeds(image, s, interior, color);
  }

  template<class T>
  void remove_border(T& image) {
    size_t bottom = image.nrows() - 1;
    size_t right = image.ncols() - 1;
    for (size_t x = 0; x < image.ncols(); ++x) {
      if (image.get(Point(x, 0)) != 0)
        flood_fill(image, Point(x, 0), white(image));
      if (image.get(Point(x, bottom)) != 0)
        flood_fill(image, Point(x, bottom), white(image));
    }
    for (size_t y = 0; y < image.nrows(); ++y) {
      if (image.get(Point(0, y)) != 0)
        flood_fill(image, Point(0, y), white(image));
      if (image.get(Point(right, y)) != 0)
        flood_fill(image, Point(right, y), white(image));
    }
  }

  template<class T, class U>
  void highlight(T& a, const U& b, const typename T::value_type& color) {
    size_t ul_y = std::max(a.ul_y(), b.ul_y());
    size_t ul_x = std::max(a.ul_x(), b.ul_x());
    size_t lr_y = std::min(a.lr_y(), b.lr_y());
    size_t lr_x = std::min(a.lr_x(), b.lr_x());
  
    if (ul_y > lr_y || ul_x > lr_x)
      return;
    for (size_t y = ul_y, ya = y-a.ul_y(), yb=y-b.ul_y(); 
         y <= lr_y; ++y, ++ya, ++yb)
      for (size_t x = ul_x, xa = x-a.ul_x(), xb=x-b.ul_x(); 
           x <= lr_x; ++x, ++xa, ++xb) {
        if (is_black(b.get(Point(xb, yb)))) 
          a.set(Point(xa, ya), color);
      }
  }

} // namespace Gamera

#endif