This file is indexed.

/usr/include/gamera/plugins/geometry.hpp is in python-gamera-dev 1:3.4.2+git20160808.1725654-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*
 * Copyright (C) 2009-2015 Christoph Dalitz
 *               2010      Oliver Christen
 *               2011      Christian Brandt
 *               2012      David Kolanus
 *               2015      Manuel Jeltsch
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */


#ifndef cd30112009_geometry
#define cd30112009_geometry

#include <map>
#include <set>
#include <stack>
#include <algorithm>
#include "gamera.hpp"
#include "vigra/distancetransform.hxx"
#include "vigra/seededregiongrowing.hxx"
#include "geostructs/kdtree.hpp"
#include "geostructs/delaunaytree.hpp"
#include "graph/graph.hpp"
#include "graph/graphdataderived.hpp"
#include "graph/node.hpp"
#include "plugins/contour.hpp"
#include "plugins/draw.hpp"


using namespace Gamera::Kdtree;
using namespace Gamera::Delaunaytree;
using namespace Gamera::GraphApi;
using namespace std;

namespace Gamera {

  // this implementation is based on a sample program included
  // in the VIGRA library by Ulrich Koethe
  template<class T>
  Image* voronoi_from_labeled_image(const T& src, bool white_edges=false) {
    typedef typename T::value_type value_type;
    typedef typename ImageFactory<T>::data_type data_type;
    typedef typename ImageFactory<T>::view_type view_type;
    // vigra's seeded region growing only works on greyscale images
    Grey16ImageData* voronoi_data = new Grey16ImageData(src.size(), src.origin());
    Grey16ImageView* voronoi = new Grey16ImageView(*voronoi_data);
    size_t x,y;
    value_type val, maxlabel;
    map<value_type, bool> all_labels;

    maxlabel = 0;
    for (y=0; y<src.nrows(); ++y) {
      for (x=0; x<src.ncols(); ++x) {
        val = src.get(Point(x,y));
        if (val > 0) {
          voronoi->set(Point(x,y),val);
          all_labels.insert(make_pair(val,true));
          if (val > maxlabel) maxlabel = val;
        } else {
          voronoi->set(Point(x,y),0);
        }
      }
    }
    if (all_labels.size() <= 2) {
      delete voronoi;
      delete voronoi_data;
      throw std::runtime_error("Black pixels must be labeled for Voronoi tesselation.");
    }

    FloatImageData* dist_data = new FloatImageData(src.size(), src.origin());
    FloatImageView* dist = new FloatImageView(*dist_data);

    try {
      // The Voronoi tesselation is done by a watershed segmentation
      // on the distance transform image, which is quite a bit overhead.
      // The algorithm should be significantly faster when the Voronoi
      // cells are computed directly similar to a distance transform.
      // TODO: implement this based on VIGRA's distance transform code
      vigra::distanceTransform(src_image_range(src), dest_image(*dist), 0, 2);
      vigra::ArrayOfRegionStatistics<vigra::SeedRgDirectValueFunctor<float> > 
        statistics((size_t)maxlabel);
      if (white_edges) {
        vigra::seededRegionGrowing(src_image_range(*dist), src_image(*voronoi),
                                   dest_image(*voronoi), statistics, KeepContours);
      } else {
        vigra::seededRegionGrowing(src_image_range(*dist), src_image(*voronoi),
                                   dest_image(*voronoi), statistics, CompleteGrow);
      }
    } catch (std::exception e) {
      delete dist;
      delete dist_data;
      delete voronoi;
      delete voronoi_data;
      throw;
    }

    // distance image no longer needed
    delete dist;
    delete dist_data;

    // copy over result to return value
    data_type* result_data = new data_type(voronoi->size(), voronoi->origin());
    view_type* result = new view_type(*result_data);
    for (y=0; y<voronoi->nrows(); ++y) {
      for (x=0; x<voronoi->ncols(); ++x) {
        result->set(Point(x,y),(value_type)voronoi->get(Point(x,y)));
      }
    }

    // greyscale image no longer needed
    delete voronoi;
    delete voronoi_data;

    return result;
  }


  template<class T>
  void voronoi_from_points(T& src, const PointVector* points, IntVector* labels) {

    // some plausi checks
    if (points->empty())
      throw std::runtime_error("points must not be empty.");
    if (points->size() != labels->size())
      throw std::runtime_error("Number of points must match the number of labels.");

    size_t i,x,y;

    // build kd-tree from points
    KdNodeVector nodes,neighbors;
    CoordPoint p(2);
    for (i=0; i<points->size(); i++) {
      p[0] = (*points)[i].x();
      p[1] = (*points)[i].y();
      KdNode n(p);
      n.data = &((*labels)[i]);
      nodes.push_back(n);
    }
    KdTree tree(&nodes);

    // label all pixels with nearest neighbor label
    for (y=0; y<src.nrows(); ++y) {
      for (x=0; x<src.ncols(); ++x) {
        if (src.get(Point(x,y)) == 0) {
          p[0] = x; p[1] = y;
          tree.k_nearest_neighbors(p, 1, &neighbors);
          src.set(Point(x,y),*((int*)(neighbors[0].data)));
        }
      }
    }
  }


  // returns list of neighboring label pairs
  template<class T>
  PyObject* labeled_region_neighbors(const T& src, bool eight_connectivity=true) {
    size_t x,y,max_x,max_y;

    typedef typename T::value_type value_type;
    max_x = src.ncols()-1;
    max_y = src.nrows()-1;

    // map for storing neighborship relations; to avoid duplicates,
    // we store for each label only *smaller* neighboring labels
    // note that we must use 'int' insetad of 'value_type' because
    // some versions of gcc do not like nested templates
    typedef set<value_type> set_type;
    typedef map<value_type,set_type> map_type;
    map_type neighbors;

    // check bulk of image
    value_type label1,label2;
    //set<value_type> emptyset;
    set_type emptyset;
    for (y=0; y<max_y; ++y) {
      for (x=0; x<max_x; ++x) {
        label1 = src.get(Point(x,y));
        label2 = src.get(Point(x+1,y));
        if (label1 > label2) {
          if (neighbors.find(label1) == neighbors.end())
            neighbors[label1] = emptyset;
          neighbors[label1].insert(label2);
        }
        else if (label2 > label1) {
          if (neighbors.find(label2) == neighbors.end())
            neighbors[label2] = emptyset;
          neighbors[label2].insert(label1);
        }
        label2 = src.get(Point(x,y+1));
        if (label1 > label2) {
          if (neighbors.find(label1) == neighbors.end())
            neighbors[label1] = emptyset;
          neighbors[label1].insert(label2);
        }
        else if (label2 > label1) {
          if (neighbors.find(label2) == neighbors.end())
            neighbors[label2] = emptyset;
          neighbors[label2].insert(label1);
        }
        if (eight_connectivity) {
          label2 = src.get(Point(x+1,y+1));
          if (label1 > label2) {
            if (neighbors.find(label1) == neighbors.end())
              neighbors[label1] = emptyset;
            neighbors[label1].insert(label2);
          }
          else if (label2 > label1) {
            if (neighbors.find(label2) == neighbors.end())
              neighbors[label2] = emptyset;
            neighbors[label2].insert(label1);
          }
        }
      }
    }
    // check last row
    for (x=0; x<max_x; ++x) {
      label1 = src.get(Point(x,max_y));
      label2 = src.get(Point(x+1,max_y));
      if (label1 > label2) {
        if (neighbors.find(label1) == neighbors.end())
          neighbors[label1] = emptyset;
        neighbors[label1].insert(label2);
      }
      else if (label2 > label1) {
        if (neighbors.find(label2) == neighbors.end())
          neighbors[label2] = emptyset;
        neighbors[label2].insert(label1);
      }
    }
    // check last column
    for (y=0; y<max_y; ++y) {
      label1 = src.get(Point(max_x,y));
      label2 = src.get(Point(max_x,y+1));
      if (label1 > label2) {
        if (neighbors.find(label1) == neighbors.end())
          neighbors[label1] = emptyset;
        neighbors[label1].insert(label2);
      }
      else if (label2 > label1) {
        if (neighbors.find(label2) == neighbors.end())
          neighbors[label2] = emptyset;
        neighbors[label2].insert(label1);
      }
    }
    //printf("emptyset.size(): %i\n", emptyset.size());

    // copy result over to return value
    PyObject *retval, *entry, *entry1, *entry2;
    retval = PyList_New(0);
    typename map_type::iterator it1;
    typename set_type::iterator it2;
    for (it1=neighbors.begin(); it1!=neighbors.end(); it1++) {
      entry1 = Py_BuildValue("i", (int)it1->first);
      //printf("Neighbors of %i:", (int)it1->first);
      for (it2=it1->second.begin(); it2!=it1->second.end(); it2++) {
        // beware that PyList_SetItem 'steals' a reference,
        // while PyList_append increases the reference
        entry = PyList_New(2);
        Py_INCREF(entry1);
        PyList_SetItem(entry, 0, entry1);
        entry2 = Py_BuildValue("i", (int)*it2);
        //printf(" %i", (int)*it2);
        PyList_SetItem(entry, 1, entry2);
        PyList_Append(retval, entry);
        Py_DECREF(entry);
      }
      //printf("\n");
      Py_DECREF(entry1);
    }
    return retval;
  }


  //-----------------------------------------------------------------------
  // functions for Delaunay triangulation
  //-----------------------------------------------------------------------
  void delaunay_from_points_cpp(PointVector *pv, IntVector *lv, std::map<int,std::set<int> > *result) {

    // some plausi checks
	if (pv->empty()) {
      throw std::runtime_error("No points for triangulation given.");
    }
    if (pv->size() < 3) {
      throw std::runtime_error("At least three points are required.");
    }
    if (pv->size() != lv->size()) {
      throw std::runtime_error("Number of points must match the number of labels.");
    }

    DelaunayTree dt;
    PointVector::iterator pv_it;
    IntVector::iterator lv_it;
    std::vector<Vertex*> vertices;
    std::vector<Vertex*>::iterator it;

    result->clear();

    pv_it = pv->begin();
    lv_it = lv->begin();

    int x, y;
    while(pv_it != pv->end() && lv_it != lv->end()) {
      x = (*pv_it).x();
      y = (*pv_it).y();
      vertices.push_back(new Vertex(x, y, (*lv_it)));
      ++pv_it;
      ++lv_it;
    }
    random_shuffle(vertices.begin(), vertices.end());
    dt.addVertices(&vertices);
    dt.neighboringLabels(result);
    for(it = vertices.begin() ; it != vertices.end() ; ++it) {
      delete *it;
    }
  }
  
  PyObject* delaunay_from_points(PointVector *pv, IntVector *lv) {
  	PyObject *list, *entry, *label1, *label2;
    std::map<int,std::set<int> > neighbors;
    std::map<int,std::set<int> >::iterator nit1;
    std::set<int>::iterator nit2;
  	
	delaunay_from_points_cpp(pv, lv, &neighbors);
    list = PyList_New(0);
    for (nit1=neighbors.begin(); nit1!=neighbors.end(); ++nit1) {
      for (nit2=nit1->second.begin(); nit2!=nit1->second.end(); nit2++) {
        entry = PyList_New(2);
        label1 = Py_BuildValue("i", nit1->first);
        label2 = Py_BuildValue("i", *nit2);
        PyList_SetItem(entry, 0, label1);
        PyList_SetItem(entry, 1, label2);
        PyList_Append(list, entry);
        Py_DECREF(entry);
      }
    }

  	return list;
  }


  //-----------------------------------------------------------------------
  // functions for graph coloring of Cc's with different colors
  //-----------------------------------------------------------------------
  typedef std::map<unsigned int, Image*> LabelCcMap;
  template<class T>
  Graph *graph_from_ccs(T &image, ImageVector &ccs, int method) {
    Graph *graph = new Graph(FLAG_UNDIRECTED);
    graph->make_singly_connected();

    PointVector *pv = new PointVector();
    IntVector *iv = new IntVector();
    ImageVector::iterator iter;

    if( method == 0 || method == 1 ) {
      if( method == 0 ) {
        // method == 0 --> from the CC center points
        for( iter = ccs.begin(); iter != ccs.end(); iter++) {
          Cc* cc = static_cast<Cc*>((*iter).first);
          pv->push_back( cc->center() );
          iv->push_back( cc->label() );
        }        
      }
      else if( method == 1) {
        // method == 1 --> from a 20 percent sample of the contour points
        for( iter = ccs.begin(); iter != ccs.end(); iter++) {
          Cc* cc = static_cast<Cc*>((*iter).first);
          PointVector *cc_pv = contour_samplepoints(*cc, 20);
          PointVector::iterator point_vec_iter;
          for( point_vec_iter = cc_pv->begin(); point_vec_iter != cc_pv->end(); point_vec_iter++ ) {
            pv->push_back(*point_vec_iter);
            iv->push_back(cc->label());
          }
          delete cc_pv;
        }
      }

      // Build the graph
      std::map<int,std::set<int> > neighbors;
      std::map<int,std::set<int> >::iterator nit1;
      std::set<int>::iterator nit2;
      delaunay_from_points_cpp(pv, iv, &neighbors);
      for (nit1=neighbors.begin(); nit1!=neighbors.end(); ++nit1) {
        for (nit2=nit1->second.begin(); nit2!=nit1->second.end(); nit2++) {
           GraphDataLong* a_p = new GraphDataLong(nit1->first);
           GraphDataLong* b_p = new GraphDataLong(*nit2);
           bool del_a = !graph->add_node(a_p);
           bool del_b = !graph->add_node(b_p);
           graph->add_edge(a_p, b_p); 
           if(del_a)
              delete a_p;
           if(del_b)
              delete b_p;
        }
      }
    }
    else if( method == 2 ) {
      // method == 2 --> from the exact area Voronoi diagram
      typedef typename ImageFactory<T>::view_type view_type;
      Image *voronoi       = voronoi_from_labeled_image(image);
      PyObject *labelpairs = labeled_region_neighbors( *((view_type*) voronoi) );
      for (int i = 0; i < PyList_Size(labelpairs); i++) {
        PyObject *adj_list = PyList_GetItem(labelpairs, i);
        PyObject *region1 = PyList_GetItem(adj_list, 0);
        PyObject *region2 = PyList_GetItem(adj_list, 1);
        GraphDataLong* a_p = new GraphDataLong(PyInt_AsLong(region1));
        GraphDataLong* b_p = new GraphDataLong(PyInt_AsLong(region2));
        bool del_a = !graph->add_node(a_p);
        bool del_b = !graph->add_node(b_p);
        graph->add_edge(a_p, b_p); 
        if(del_a)
           delete a_p;
        if(del_b)
           delete b_p;
      }
      delete voronoi->data();
      delete voronoi;
      Py_DECREF(labelpairs);
    }
    else {
      throw std::runtime_error("Unknown method for construction the neighborhood graph");
    }

    delete pv;
    delete iv;
    return graph;
  }

  // two helper classes for color cluster generation
  class RgbColor4Heap {
  public:
    RGBPixel color;
    double distance;
    RgbColor4Heap(const RGBPixel& c, double d) {color = c; distance = d;}
  };
  class Compare_RgbColor4Heap {
  public:
    bool operator()(const RgbColor4Heap &n, const RgbColor4Heap &m) {
      return (n.distance > m.distance);
    }
  };

  void generate_color_cluster(const RGBPixel* center, size_t ncolors, std::vector<RGBPixel>* cluster) {

    // some local helper functions and classes
    struct local {
      static void rgbneighbors(const RGBPixel& p, std::vector<RGBPixel>* nns) {
        nns->clear();
        int r,g,b;
        int minr, ming, minb;
        int maxr, maxg, maxb;
        if (p.red()<255)   maxr = +1; else maxr = 0;
        if (p.green()<255) maxg = +1; else maxg = 0;
        if (p.blue()<255)  maxb = +1; else maxb = 0;
        if (p.red()>0)   minr = -1; else minr = 0;
        if (p.green()>0) ming = -1; else ming = 0;
        if (p.blue()>0)  minb = -1; else minb = 0;
        for (r=minr; r<=maxr; r++)
          for (g=ming; g<=maxg; g++)
            for (b=minb; b<=maxb; b++)
              if (!(r == 0 && g == 0 && b==0))
                nns->push_back(RGBPixel((int)p.red()+r,p.green()+g,p.blue()+b));
      }
      static double rgbdistance(const RGBPixel& p1, const RGBPixel& p2) {
        return (p1.red()-(double)p2.red())*(p1.red()-(double)p2.red()) +
          (p1.green()-(double)p2.green())*(p1.green()-(double)p2.green()) +
          (p1.blue()-(double)p2.blue())*(p1.blue()-(double)p2.blue());
      }
    };

    // here starts the function code
    cluster->clear();
    if (ncolors < 1) return;
    cluster->push_back(*center);
    if (ncolors < 2) return;

    RGBPixel color;
    size_t i,j;
    // set of selected colors for quick check for existence
    std::set<RGBPixel> selectedcolors;
    selectedcolors.insert(*center);
    // neighbors of new point
    std::vector<RGBPixel> neighbors;
    // queue of color candidates
    std::priority_queue<RgbColor4Heap, std::vector<RgbColor4Heap>, Compare_RgbColor4Heap> candidateheap;
    local::rgbneighbors(*center, &neighbors);
    for (i=0; i<neighbors.size(); i++) {
      candidateheap.push(RgbColor4Heap(neighbors[i],local::rgbdistance(*center, neighbors[i])));
      selectedcolors.insert(neighbors[i]);
    }

    for (i=1; i<ncolors; i++) {
      //printf("neighbors: %i, candidates: %i\n", neighbors.size(), candidateheap.size()); fflush(stdout);
      if (candidateheap.empty()) {
        throw std::runtime_error("no new color candidates found");
      }
      color = candidateheap.top().color;
      candidateheap.pop();
      cluster->push_back(color);
      // add neighbors of new color to candidates
      local::rgbneighbors(color, &neighbors);
      for (j=0; j<neighbors.size(); j++) {
        if (selectedcolors.find(neighbors[j]) == selectedcolors.end()) {
          candidateheap.push(RgbColor4Heap(neighbors[j],local::rgbdistance(*center,neighbors[j])));
          selectedcolors.insert(neighbors[j]);
        }
      }
    }

  }

  template<class T>
  RGBImageView* graph_color_ccs(T &image, ImageVector &ccs, PyObject *colors, int method, bool unique=false) {
    Graph *graph = NULL;
    std::vector<RGBPixel*> RGBColors;
    size_t ncolors;
    std::vector<std::vector<RGBPixel>*> colorclusters;
    std::vector<RGBPixel>* cluster;

    // check input parameters
    if( ccs.size() == 0 ) {
      throw std::runtime_error("graph_color_ccs: no CCs given.");
    }
    if( !PyList_Check(colors) ) {
      throw std::runtime_error("graph_color_ccs: colors is no list");
    }
    if( PyList_Size(colors) < 6 ) {
      throw std::runtime_error("graph_color_ccs: coloring algorithm only works "
            "with more than five colors");
    }
    ncolors = PyList_Size(colors);
    std::vector<size_t> colorcount(ncolors, 0);

    // extract the colors
    for(size_t i = 0; i < ncolors; i++) {
      PyObject *Py_RGBPixel = PyList_GetItem(colors, i);
      RGBPixel *RGBPixel    = ((RGBPixelObject*) Py_RGBPixel )->m_x;
      RGBColors.push_back(RGBPixel);
    }

    // special case: only one cc (=> no edges in graph)
    if (ccs.size() == 1) {
      TypeIdImageFactory<RGB, DENSE>::image_type *coloredImage = 
        TypeIdImageFactory<RGB, DENSE>::create(image.origin(), image.dim());
      unsigned int label = static_cast<Cc*>(ccs.begin()->first)->label();
      for (size_t y = 0; y < image.nrows(); y++) {
        for(size_t x = 0; x < image.ncols(); x++) {
          if (image.get(Point(x,y))){
            if (image.get(Point(x,y)) == label)
              coloredImage->set(Point(x,y), *RGBColors[0]);
            else
              coloredImage->set(Point(x,y), RGBPixel(0,0,0));
          }
        }
      }
      return coloredImage;
    }

    // build the graph from the given ccs
    graph = graph_from_ccs(image, ccs, method);

    // color the graph
    graph->colorize(ncolors);

    // for unique coloring, generate color clusters around each color
    if (unique) {
      // count color frequencies
      NodePtrIterator *nit = graph->get_nodes();
      Node *n;
      while((n=nit->next()) != NULL) {
        colorcount[graph->get_color(n)] += 1;
      }
      delete nit;
      // generate color clusters
      for (size_t i=0; i<ncolors; i++) {
        cluster = new std::vector<RGBPixel>;
        generate_color_cluster(RGBColors[i], colorcount[i], cluster);
        colorclusters.push_back(cluster);
        //for (size_t i=0; i<cluster->size(); i++) {
        //  RGBPixel p = cluster->at(i);
        //  printf("(%i,%i,%i)\n", p.red(), p.green(), p.blue());
        //}
      }
    }

    // Create the return image
    // Ccs not passed to the function are set black in the result
    typedef TypeIdImageFactory<RGB, DENSE> RGBViewFactory;
    
    RGBViewFactory::image_type *coloredImage = 
       RGBViewFactory::create(image.origin(), image.dim());
    
    int label;
    std::map<int,RGBPixel> labelcolor;
    for( size_t y = 0; y < image.nrows(); y++) {
      for( size_t x = 0; x < image.ncols(); x++ ) {
        label = image.get(Point(x,y));
        if( label != 0 ) {
          try {
             GraphDataLong d(label);
             Node* n = graph->get_node(&d);
             unsigned int c = graph->get_color(n); // throws exception when not found
             if (unique) {
               if (labelcolor.find(label) == labelcolor.end()) {
                 if (colorclusters[c]->empty())
                   throw std::runtime_error("no color found for label");
                 labelcolor[label] = colorclusters[c]->back();
                 colorclusters[c]->pop_back();
               }
               coloredImage->set(Point(x,y), labelcolor[label]);
             }
             else {
               coloredImage->set(Point(x,y), *RGBColors[c]);
             }
          }
          catch( std::runtime_error runtimeError ) {
            coloredImage->set(Point(x,y), RGBPixel(0,0,0));
          }
        }
      }
    }


    // clean up
    NodePtrIterator* it = graph->get_nodes();
    Node* n;
    while((n = it->next()) != NULL) {
      delete dynamic_cast<GraphDataLong*>(n->_value);
    }
    delete it;
    delete graph;
    if (unique) {
      for (size_t i=0; i<ncolors; i++)
        delete colorclusters[i];
    }

    return coloredImage;
  }

  //------------------------------------------------------------------
  // convex hull computation with Graham's scan algorithm.
  // See Cormen et al.: Introduction to Algorithms. 2nd ed., p. 949
  //------------------------------------------------------------------

  inline bool greater_distance(const Point& origin, const Point& p1, const Point& p2) {
    double dx2 = (double)p2.x() - origin.x();
    double dx1 = (double)p1.x() - origin.x();
    double dy2 = (double)p2.y() - origin.y();
    double dy1 = (double)p1.y() - origin.y();
    if (dy1*dy1+dx1*dx1 > dy2*dy2+dx2*dx2) {
      return true;
    }
    return false;
  }

  // positive when p0p1 clockwise oriented compared to p0p2
  // zero when all points collinear
  inline double clockwise_orientation(const Point& p0, const Point& p1, const Point& p2) {
    return ((double)p1.x() - p0.x())*((double)p2.y() - p0.y()) -
      ((double)p2.x() - p0.x())*((double)p1.y() - p0.y());
  }

  inline double polar_angle(Point center, Point p2) {
    double dx = double(p2.x()) - center.x();
    double dy = double(p2.y()) - center.y();
    return atan2(dy, dx);
  };

  // see Cormen et al.: Introduction to Algorithms.
  // 2nd ed., MIT Press, p. 949, 2001
  PointVector* convex_hull_from_points(PointVector *points) {
     //get leftmost and top point and save it in (*points)[0]
     size_t min_x = points->at(0).x();
     size_t min_y = points->at(0).y();
     size_t min_i = 0;
     size_t i;
     for(i=0; i < points->size(); i++) {
        if (points->at(i).x() < min_x) {
            min_x = points->at(i).x();
            min_y = points->at(i).y();
            min_i = i;
        } else if (points->at(i).x() == min_x && points->at(i).y() < min_y) {
            min_x = points->at(i).x();
            min_y = points->at(i).y();
            min_i = i;
        }
     }
     std::swap( points->at(0), points->at(min_i));


      //sort by polar in polarmap. If more than one point,
      //remove all but the one farthest from origin
     Point origin = points->at(0);
     std::map<double, Point> stack_polarangle;
     std::map<double, Point>::iterator found;
     double polarangle;
     Point p;

     for(PointVector::iterator it = points->begin()+1; it != points->end();it++) {
        p = *it;
        polarangle = polar_angle(origin, p);
        found = stack_polarangle.find(polarangle);
        //use nearest
        if(found == stack_polarangle.end()){
           stack_polarangle[polarangle] = p;
        }
        else if(greater_distance(origin, p, found->second)) {
           stack_polarangle[polarangle] = p;
    	}
     }


     // start with graham scan
     PointVector* retVector = new PointVector;
     std::map<double, Point>::iterator pointIt;
     pointIt = stack_polarangle.begin();

     retVector->push_back(origin); 	        // push point[0]

     retVector->push_back(pointIt->second); // push point[1]
     pointIt++;

     retVector->push_back(pointIt->second); // push point[2]
     pointIt++;


     //pointIt starts at point[3]
     for( ; pointIt != stack_polarangle.end(); pointIt++) {
        p = pointIt->second;
        while(retVector->size() > 2 && clockwise_orientation(*(retVector->end()-2),*(retVector->end()-1), p) <= 0.0) {
			retVector->pop_back();
        }
        retVector->push_back(p);
     }

     return retVector;
  }


  template<class T>
  PointVector* convex_hull_as_points(const T& src) {
    PointVector *contour_points = new PointVector();
    PointVector::iterator found;

    FloatVector *left = contour_left(src);
    FloatVector *right = contour_right(src);
    FloatVector::iterator it;
    size_t y;
    std::set<Point> pointset;

    for(it = left->begin(), y=0; it != left->end() ; it++, y++) {
      if( *it != std::numeric_limits<double>::infinity() ) {
        contour_points->push_back(Point((coord_t)*it,y));
        pointset.insert(Point((coord_t)*it,y));
      }
    }
    for(it = right->begin(), y=0; it != right->end() ; it++, y++) {
      if( *it != std::numeric_limits<double>::infinity() ) {
        if(pointset.count(Point((coord_t)src.ncols()-*it,y))==0)
          contour_points->push_back(Point((coord_t)src.ncols()-*it,y));
      }
    }
    PointVector *output = convex_hull_from_points(contour_points);

    delete left;
    delete right;
    delete contour_points;

    return output;
  }

  template<class T>
    Image* convex_hull_as_image(const T& src, bool filled) {
    //typedef typename T::value_type value_type;
    
    //typedef typename ImageFactory<OneBitImageView>::view_type view_type;
    OneBitImageData* res_data = new OneBitImageData(src.size(),src.origin());
    OneBitImageView* res = new OneBitImageView(*res_data,src.origin(),src.size());

    PointVector* hullpoints = convex_hull_as_points(src);
    for (size_t i=1; i< hullpoints->size(); i++)
      draw_line(*res,hullpoints->at(i-1),hullpoints->at(i),black(*res));
    draw_line(*res,hullpoints->back(),hullpoints->front(),black(*res));

    delete hullpoints;

    if (filled) {
      size_t x,y,from,to;
      for (y=0; y<res->nrows(); y++) {
        from = to = res->ncols();
        from = 0;
        while (from < res->ncols() && is_white(res->get(Point(from,y))))
          from++;
        if (from >= res->ncols()-1) continue;
        to = res->ncols()-1;
        while (to > 0 && is_white(res->get(Point(to,y))))
          to--;
        for (x=from+1; x<to; x++)
          res->set(Point(x,y),black(*res));
      }
    }

    return res;
  }

  // based upon a sample program kindly provided by Daveed Vandevoorde
  template<class T>
  Rect* max_empty_rect(const T& src) {
    size_t x,y,open_width,x0;
    unsigned int w0,area,best_area;
    std::vector<unsigned int> c(src.ncols()+1,0);
    std::stack<unsigned int> s;
    Point best_ul(0,0);
    Point best_lr(0,0);
    best_area = 0;

	for (y=0; y<src.nrows(); ++y) {
      open_width = 0;
      // update cache
      for (x=0; x<src.ncols(); ++x) {
		if (is_black(src.get(Point(x,y)))) {
          c[x] = 0;
        } else {
          ++c[x];
        }
      }
      for (x=0; x<=src.ncols(); ++x) {
        if (c[x]>open_width) { // open new rectangle?
          s.push(x);
          s.push(open_width);
          open_width = c[x];
        } // "else" optional here 
        else if (c[x]<open_width) { // close rectangle(s)? 
          do {
            w0 = s.top(); s.pop();
            x0 = s.top(); s.pop();
            area = open_width*(x-x0);
            if (area>best_area) {
              best_area = area;
              best_ul = Point(x0, y-open_width+1);
              best_lr = Point(x-1, y);
            }
            open_width = w0;
          } while (c[x]<open_width);
          open_width = c[x];
          if (open_width!=0) {
            s.push(x0);
            s.push(w0);
          }
        }
      }
	}
    if (is_black(src.get(best_lr))) {
      throw std::runtime_error("max_empty_rect: image has no white pixels.");
    }
    Rect* result = new Rect(best_ul,best_lr);
    return result;
  }


  PyObject* hough_lines(const PointVector* points, 
                        double min_theta, double step_theta, double max_theta, 
                        double min_rho, double step_rho, double max_rho,
                        unsigned int n_lines=0, float threshold=1) {
    if(!(min_theta < max_theta && step_theta != 0 && (max_theta - min_theta) / step_theta >= 1)) {
      throw std::invalid_argument("Invalid arguments! The following assertion failed: min_theta < max_theta && step_theta != 0 && (max_theta - min_theta) / step_theta >= 1");
    }
    if(!(min_rho < max_rho && step_rho != 0 && (max_rho - min_rho) / step_rho >= 1)) {
      throw std::invalid_argument("Invalid arguments! The following assertion failed: min_rho < max_rho && step_rho != 0 && (max_rho - min_rho) / step_rho >= 1");
    }

    unsigned int window = 2; // step width for local maxima
    bool smooth = true;      // whether cells shall vote for neighbors too
    
    if(min_theta < 0) {
      min_theta = 0;
    }
    if(max_theta > M_PI) {
      max_theta = M_PI;
    }
    if(threshold <=0) {
      threshold = 1;
    }
    // compute accumulator / votings in parameter space
    int theta_size = (max_theta - min_theta) / step_theta;
    int rho_size = (max_rho - min_rho) / step_rho;
    
    std::vector<std::vector<double> > houghSpace(theta_size, std::vector<double>(rho_size));

    std::vector<double> sin_theta(houghSpace.size()), cos_theta(houghSpace.size());
    for(unsigned int theta = 0; theta < houghSpace.size(); theta++) {
      sin_theta[theta] = sin((min_theta + (theta * step_theta))*M_PI/180.0);
      cos_theta[theta] = cos((min_theta + (theta * step_theta))*M_PI/180.0);
    }

    PointVector::const_iterator p;
    for (p = points->begin(); p != points->end(); p++) {
      for(unsigned int theta = 0; theta < houghSpace.size(); theta++) { // from index of min_theta to index of max_theta
        // compute hessesche normalform:
        // cos(alpha) * x + sin(alpha) * y = d
        double rho = cos_theta[theta] * p->x() + sin_theta[theta] * p->y();

        double di = (rho - min_rho) / step_rho; // get index
        di = (di > 0.0) ? floor(di + 0.5) : ceil(di - 0.5); // round
        if(di >= 0 && di < houghSpace[0].size()) { // if d >= d_min AND d<=d_max
          houghSpace[theta][di]++;
          if(smooth) { // compensate quantization error in d by onedirectional smoothing
            double rho_error = rho - ((di * step_rho) + min_rho); // distance between point and line after quantization, which in a perfect world would be 0
            if(rho_error > 0) {
              di++;
              if(di < houghSpace[0].size()) {
                houghSpace[theta][di] += abs(rho_error) / (step_rho / 2);
              }
            } else if(rho_error < 0) {
              di--;
              if(di >= 0) {
                houghSpace[theta][di] += abs(rho_error) / (step_rho / 2);
              }
            }
          }
        }
      }
    }

    // vector of Votes
    typedef std::vector<std::pair<double, std::pair<double, double> > > VectorType;
    VectorType lines;
    
    // find local maxima greater than threshold
    unsigned int mintheta, minrho, maxtheta, maxrho;
    if (window > houghSpace.size() || window > houghSpace[0].size())
      window = std::min(houghSpace.size(), houghSpace[0].size());
    for(unsigned int theta = 0; theta < houghSpace.size(); theta++) {
      if (theta <= window) mintheta = 0; else mintheta = theta - window;
      if (theta >= houghSpace.size()-window) maxtheta = houghSpace.size()-1; else maxtheta = theta + window;
      for(unsigned int rho = 0; rho < houghSpace[0].size(); rho++) {
        if (rho <= window) minrho = 0; else minrho = rho - window;
        if (rho >= houghSpace[0].size()-window) maxrho = houghSpace[0].size()-1; else maxrho = rho + window;
        double val = houghSpace[theta][rho];
        for(unsigned int dt = mintheta; val > 0.0 && dt <= maxtheta; dt++) {
          for(unsigned int dr = minrho; val > 0.0 && dr <= maxrho; dr++) {
            if (val < houghSpace[dt][dr]) val = 0.0;
          }
        }
        if (val > threshold)
          lines.push_back(std::pair<double, std::pair<double, double> > (val, std::pair<double, double>(theta * step_theta, (rho * step_rho) + (min_rho))));
      }
    }
    

    if(lines.size() == 0) {
      return NULL;
    }
    if(n_lines > 0 && lines.size() > n_lines) {
      // partition, so that nth line is on correct position
      std::nth_element(lines.begin(), lines.begin() + lines.size() - n_lines, lines.end()); // backward nth_element
      // cut off lines with less votes than nth line
      VectorType(lines.begin() + lines.size() - n_lines, lines.end()).swap(lines); // backwards resize()
    }
    // sort remaining lines in descending order
    std::sort(lines.rbegin(), lines.rend());

    PyObject *retval, *entry;
    retval = PyList_New(lines.size());    
    for(unsigned int i=0; i<lines.size(); i++) {
      entry = Py_BuildValue(CHAR_PTR_CAST "fff", lines[i].first, lines[i].second.first * 180 / M_PI, lines[i].second.second);
      PyList_SetItem(retval, i, entry);
    }
    return retval;
  }


} // namespace Gamera
#endif