This file is indexed.

/usr/bin/ocr4gamera is in python-gamera.toolkits.ocr 1.2.2-5.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
#!/usr/bin/python
#
# Copyright (C) 2009-2010 Rene Baston, Christoph Dalitz
#               2014      Fabian Schmitt
#               2011-2014 Christoph Dalitz
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
# 
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
#

import codecs #keep an eye on encoding stuff...  http://evanjones.ca/python-utf8.html
import sys
import time
import os.path

VERSION = "1.2.0"

def usage(returncode):
  sys.stdout.write("Usage:\n\tocr4gamera -x <traindata> [options] <imagefile>\n" +\
      "Options (can be short or long):\n" +\
      "\t-v <int>, --verbosity=<int>\n" + \
      "\t   set verbosity level to <int>; possible values are\n" + \
      "\t   0 (default): silent operation\n" + \
      "\t   1:  information on progress\n" + \
      "\t   >2: segmentation info is written to PNG files with prefix 'debug_'\n" +\
      "\t-h, --help\n" + \
      "\t   this help message\n" +\
      "\t--version\n" + \
      "\t   print version and exit\n" +\
      "\t-d, --deskew\n" + \
      "\t   do a skew correction (recommended)\n" +\
      "\t-mf <ws>, --median_filter=<ws>\n" +\
      "\t   smooth the input image with a median filter with window size <ws>\n" +\
      "\t   default is <ws>=0, which means no smoothing\n" +\
      "\t-ds <s>, --despeckle=<s>\n" +\
      "\t   remove all speckle with size <= <s>\n" +\
      "\t   default is <s> = 0, which means no despeckling\n" +\
      "\t-f, --filter\n" + \
      "\t   filter out connected components that are very big or very small\n" +\
      "\t-a, --automatic_group\n" + \
      "\t   autogroup glyphs with classifier\n" +\
      "\t-x <xml>, --xmlfile=<xml>\n" + \
      "\t   read training data from <xml>\n" +\
      "\t-k <k>, --k=<k>\n" + \
      "\t   number of neighbors used by kNN classifier (default is <k> = 1)\n" +\
      "\t-o <txt>, --output=<txt>\n" + \
      "\t   write recognized text to file <txt>\n" + \
      "\t   (otherwise it is written to stdout)\n" +\
      "\t-od <dir>, --output_directory=<dir>\n" + \
      "\t   writes for each input image <img> the recognized text to '<dir>/<img>.txt\n" +\
      "\t   note that this option cannot be used in combination with -o (--outfile)\n" + \
      "\t   (otherwise it is written to stdout)\n" +\
      "\t-c <csv>, --extra_chars_csvfile=<csv>\n" + \
      "\t   read additional class name conversions from file <csv>\n" + \
      "\t   <csv> must contain one conversion per line\n" +\
      "\t-R <rules>, --heuristic_rules=<rules>\n" + \
      "\t   apply heuristic rules <rules> for disambiguation of some chars\n" + \
      "\t   <rules> can be 'roman' (default) or 'none' (for no rules)\n" +\
      "\t-D, --dictionary_correction\n" + \
      "\t   dictionary correction (requires aspell or ispell)\n" +\
      "\t-L <lang>, --dictionary_language=<lang>\n" + \
      "\t   language to be used by aspell (when option -D is set)\n" +\
      "\t-e <int>, --edit_distance=<int>\n" + \
      "\t   dictionary correct only when edit distance not more than <int>\n" + \
      "\t-ho, --hocr_out\n" +\
      "\t    writes output as hocr file (only works with the -o option)\n" + \
      "\t-hi <hocrfile>, --hocr_in=<hocrfile>\n" +\
      "\t   uses an hocr input file for textline segmentation\n" )
  sys.exit(returncode)

def correct(sentence, lang):
  import os
  from gamera.plugins.structural import edit_distance
  from popen2 import Popen3
  correct="\*"
  incorrect="&"
  #trim_signs = '.,!?;:"'
  trim_signs = ('.',',','!','?',';',':','"')
  spell_prog = 'aspell'
  lang_opt = '-l'
  new_sentence = ""
  words = sentence.split(" ")
  if(len(words) == 0):
    return sentence
  
  p = Popen3('%s' % spell_prog, True)
  if opt.verbosity:
    print 'Using %s for word-correction.\n' % spell_prog
  if p.childerr.readlines() != []:
    if opt.verbosity:
      print '% is not installed\n' % spell_prog
    spell_prog = 'ispell'
    if opt.verbosity:
      print 'Using % for word-correction.\n' % spell_prog
    lang_opt = '-d'
    p = Popen3('%s Q' % spell_prog, True)
    if  p.childerr.readlines() != ['ispell:  specified file does not exist\n']:
      print 'Wether aspell nor ispell is installed on your system. Please make sure to install either of this programs.'
      exit
  
  # open with local setting language
  if (opt.lang == ''):
    if opt.verbosity:
      if spell_prog == 'aspell':
	print 'No language was given. Will open aspell with locale-settings language.\n'
      if spell_prog == 'ispell':
	print 'No language was given. Will open ispell with default language.\n'
    p = Popen3('%s -a' % spell_prog, True) # True is for also storing error object in return-value
  # user chosen language  
  else:
    p = Popen3('%s -a %s %s' % (spell_prog, lang_opt, lang), True)
  

  out = p.fromchild.readline() # first line gives information about programm
  if (out == '' ): #something went wrong
    print p.childerr.readlines()
    exit
      
  word_count = len(words)
  for word in words:
    #word = word.strip(trim_signs)
    sign = ""
    if word.endswith(trim_signs):
      sign = word[-1:]
      word = word[:-1]
    word_count = word_count - 1
    if(correct_this(word)):
      p.tochild.write('%s\n' % word.encode('utf-8'))
      p.tochild.flush()
      out = p.fromchild.readline()
      while (out=='\n'):
	out = p.fromchild.readline()
      
      if(out[0] == '*'): #spell_prog says: word correct
	new_sentence = new_sentence + word +sign
	if(word_count):
	  new_sentence = new_sentence + " "
	continue
      elif(out[0] == '&'): #spell_prog says: word incorrect
	out = out.split(" ")
	if edit_distance(word, out[4][:-1]) <= opt.distance:
	  word = out[4][:-1].decode('utf-8')
	elif opt.verbosity:
	  print('%d. word: \'%s\' was not corrected to \'%s\'. ' 
	  'Edit_distance: %i is larger than distance: %i.\n' 
	  % (len(words)-word_count, word, out[4][:-1],
	     edit_distance(word, out[4][:-1]), opt.distance))
	
    new_sentence = new_sentence + word + sign
    if(word_count):
      new_sentence = new_sentence + " "
  return new_sentence
	
    
def correct_this(word):
  for character in word:
    if(character == "-"):
      return False
    if(character == "[" or character == "]"):
      return False    
    if(character.isdigit()):
      return False
  if(word == word.upper()):
      return False
  return True

def line_to_hocr(line, nr):
	id_s = "     <span class='ocr_line' id='line_" + str(nr) + "' "
	bbox_s = 'title="bbox ' + str(line.bbox.ul.x) + " " + str(line.bbox.ul.y) + " " + str(line.bbox.lr.x) + " " + str(line.bbox.lr.y) + '">'
	text = ""
	for word in line.words:
		word_s = "<span class='ocrx_word' id='word_'" + str(line.words.index(word)) + "' " + 'title="bbox ' + str(word[0].ul.x) + " " + str(word[0].ul.y) + " " + str(word[0].lr.x) + " " + str(word[0].lr.y) + '">'
		word_s += line.text.split(" ")[line.words.index(word)]
		text += word_s + " </span>"
	end = "<br></span>\n"
	return id_s + bbox_s + text + end
	

class Options():    
  def __init__(self):
    self.help = False
    self.deskew = False
    self.ccsfilter = False
    self.auto_group = False
    self.dict_correct = False
    self.hocr_out = False

    self.hocr_in = ""
    self.verbosity = 0
    self.outputfile = ""
    self.outputdirectory = ""
    self.trainfile = ""
    self.lang = ""
    self.distance = 2
    self.extra_chars_csvfile = ""
    self.heuristic_rules = "roman"
    self.median_size = 0
    self.speckle_size = 0
    self.k = 1

#
# here starts the main program
#
opt = Options()
args = sys.argv[1:]
imagefiles = []
extra_chars_dict = {}


if(len(args) == 0):
  usage(1)

i =0
while i< len(args):
  # options without second parameter
  if args[i] in ("-h", "--help"):
    usage(0)
  if args[i] == "--version":
    print VERSION
    sys.exit(0)
  elif args[i] in ("-d", "--deskew"):
    opt.deskew = True
  elif args[i] in ("-f", "--filter"):
    opt.ccsfilter = True
  elif args[i] in ("-a", "--automatic_group"):
    opt.auto_group = True
  elif args[i] in ("-D", "--dictionary_correction"):
    opt.dict_correct = True
  elif args[i] in ("-ho"):
    opt.hocr_out = True
  # options with second parameter
  # verbosity level
  elif args[i] == "-hi":
    i+=1
    opt.hocr_in = args[i]
  elif args[i].startswith("--hocr_in="):
    opt.hocr_in = args[i][len("--hocr_in="):]
  elif args[i] in ("-v"):
    i+=1
    opt.verbosity = int(args[i])
  elif args[i].startswith("--verbosity="):
    opt.verbosity = int(args[i][len("--verbosity="):])
  # output file name
  elif args[i] in ("-o"):
    i+=1
    opt.outputfile = args[i]
  elif args[i].startswith("--output="):
    opt.outputfile = args[i][len("--output="):]
  # output directory
  elif args[i] in ("-od"):
    i+=1
    opt.outputdirectory = args[i]
  elif args[i].startswith("--output_directory="):
    opt.outputdirectory = args[i][len("--output_directory="):]
  # training data file
  elif args[i] in ("-x"):
    i+=1
    opt.trainfile = args[i]
  elif args[i].startswith("--xmlfile="):
    opt.trainfile = args[i][len("--xmlfile="):]
  # k for kNN
  elif args[i] in ("-k"):
    i+=1
    opt.k = int(args[i])
  elif args[i].startswith("--k="):
    opt.k = int(args[i][len("--k="):])
  # median filter size
  elif args[i] in ("-mf"):
    i+=1
    opt.median_size = int(args[i])
  elif args[i].startswith("--median_size="):
    opt.median_size = int(args[i][len("--median_size="):])
  # speckle size for despeckling
  elif args[i] in ("-ds"):
    i+=1
    opt.speckle_size = int(args[i])
  elif args[i].startswith("--despeckle="):
    opt.speckle_size = int(args[i][len("--despeckle="):])
  # dictionary language
  elif args[i] in ("-L"):
    i+=1
    opt.lang = args[i]
  elif args[i].startswith("--dictionary_language="):
    opt.lang = args[i][len("--dictionary_language="):]
  # edit distance for dictionary lookup
  elif args[i] in ("-e"):
    i+=1
    opt.distance = int(args[i])
  elif args[i].startswith("--edit_distance="):
    opt.distance = int(args[i][len("--edit_distance="):])
  # additional translations classname -> character
  elif args[i] in ("-c"):
    i+=1
    opt.extra_chars_csvfile = args[i] 
  elif args[i].startswith("--extra_chars_csvfile="):
    opt.extra_chars_csvfile = args[i][len("--extra_chars_csvfile="):]
  # heuristic disambiguation rules
  elif args[i] in ("-R"):
    i+=1
    opt.heuristic_rules = args[i].lower()
  elif args[i].startswith("--heuristic_rules="):
    opt.heuristic_rules = args[i][len("--heuristic_rules="):].lower()
  # unknown option
  elif args[i][0] == '-':
    print "Error: option %s does not exist" % args[i]
    usage(1)
  else:
    # we assume it is an imagefile
    imagefiles.append(args[i])
  i+=1

# some plausibility checks
if opt.trainfile == "":
  sys.stderr.write("Error: no training data given\n")
  sys.exit(1)
  
if len(imagefiles) == 0:
  sys.stderr.write("Error: no image file given\n")
  sys.exit(1)

if len(imagefiles) > 1 and opt.outputdirectory == "":
  sys.stderr.write("Error: for multiple image files option -od (--output_directory) must be given\n")
  sys.exit(1)

if opt.outputdirectory != "" and not os.path.isdir(opt.outputdirectory):
  sys.stderr.write("Error: output directory '" + opt.outputdirectory +"' is not a proper directory\n")
  sys.exit(1)

for imagefile in imagefiles:
  if not os.path.exists(imagefile):
    sys.stderr.write("Error: image file '" + imagefile + "' not found\n")
    sys.exit(1)

if not(opt.hocr_in == "") and not(opt.outputdirectory == ""):
  sys.stderr.write("hocr-input doesn't works with -od option\n")
  sys.exit(1)
  
if opt.hocr_out and opt.outputdirectory == "" and opt.outputfile == "":
  sys.stderr.write("hocr-output does only works with an output option\n")
  sys.exit(1)

# we import Gamera after parsing the command line arguments so that
# in case of a command line error the script can be aborted beforehand
from gamera.core import *
init_gamera()    
from gamera import knn   
from gamera.plugins import pagesegmentation
from gamera.plugins.pagesegmentation import textline_reading_order
from gamera.classify import ShapedGroupingFunction
from gamera.plugins.image_utilities import union_images
from gamera.toolkits.ocr.ocr_toolkit import *
from gamera.toolkits.ocr.classes import Textline,ClassifyCCs,Page,hocrPage



# load trainingsdata only once for all images
cknn = knn.kNNInteractive([], ["aspect_ratio", "fourier_broken", "moments", "volume64regions", "nholes_extended"], 0)

if opt.k > 0:
    cknn.num_k = opt.k
cknn.from_xml_filename(opt.trainfile)

# loop over all input images
for imagefile in imagefiles:

    if opt.verbosity > 0:
        print "processing file '" + imagefile + "' ..."

    img = load_image(imagefile)
    if img.data.pixel_type != ONEBIT:
      img = img.to_onebit()

    if opt.outputdirectory != "":
        opt.outputfile = os.path.join(opt.outputdirectory, os.path.basename(imagefile) + ".txt")
    
    if opt.extra_chars_csvfile != "":
      f = codecs.open(opt.extra_chars_csvfile, "r", encoding='utf-8')

      for line in f:
        classname, char = line.split(',', 2)[:2]
        classname = classname.strip()
        char = char.strip("\n\r")
        extra_chars_dict[classname] = char

      f.close()

    if opt.median_size > 0:
        img = img.rank((opt.median_size*opt.median_size+1)/2, opt.median_size)

    if opt.speckle_size > 0:
        img.despeckle(opt.speckle_size)

    if opt.ccsfilter:
        ccs = img.cc_analysis()
        print "filter started on",len(ccs) ,"elements..."
        median_black_area = median([cc.black_area()[0] for cc in ccs])
        newccs = []
        for cc in ccs:
          if cc.black_area()[0] > (median_black_area * 10):
            cc.fill_white()
          else:
            new_ccs.append(cc)
        for cc in ccs:
          if cc.black_area()[0] < (median_black_area / 10):
            cc.fill_white()
          else:
            new_ccs.append(cc)
        print "filter done:", len(ccs)-len(newccs), "of", len(ccs), "CCs deleted."
        ccs = new_ccs

    if opt.deskew:
      if opt.verbosity > 0:
        print "\ntry to skew correct..."
      rotation = img.rotation_angle_projections(-10,10)[0]
      img = img.rotate(rotation,0)
      if opt.verbosity > 0:
        print "rotated with",rotation,"angle"

    if opt.auto_group:
      if(opt.ccsfilter):
        the_ccs = ccs
      else:
        the_ccs = img.cc_analysis()
      median_cc = int(median([cc.nrows for cc in the_ccs]))
      autogroup = ClassifyCCs(cknn)
      autogroup.parts_to_group = 3
      autogroup.grouping_distance = max([2,median_cc / 8])
      if opt.hocr_in == "":
	    p = Page(img, classify_ccs=autogroup)
      else:
        p = hocrPage(img, opt.hocr_in, classify_ccs=autogroup)
      img.reset_onebit_image()
      if opt.verbosity > 0:
        print "autogrouping glyphs activated."
        print "maximal autogroup distance:", autogroup.grouping_distance
    else:
      if opt.hocr_in == "":
        p = Page(img)
      else:
        p = hocrPage(img, opt.hocr_in)

    if opt.verbosity > 0:
      print "start page segmentation..."
      t = time.time()

    p.segment()

    if opt.verbosity > 0:
      t = time.time() - t
      print "\t segmentation done [",t,"sec]"

    if opt.verbosity > 1:
      rgbfilename = "debug_lines.png"
      rgb = p.show_lines()
      rgb.save_PNG(rgbfilename)
      print "file '%s' written" % rgbfilename
      rgbfilename = "debug_chars.png"
      rgb = p.show_glyphs()
      rgb.save_PNG(rgbfilename)
      print "file '%s' written" % rgbfilename
      rgbfilename = "debug_words.png"
      rgb = p.show_words()
      rgb.save_PNG(rgbfilename)
      print "file '%s' written" % rgbfilename

    if opt.outputfile == "":
      sys.stdout = codecs.getwriter('utf-8')(sys.stdout)

    if opt.hocr_out:
      opt.outputfile += ".html"
      f = codecs.open(opt.outputfile, "a", "utf-8")
      start_text = '''<html>
 <head>
  <meta charset="utf-8"/>
  <title></title>
  <meta />
 </head>
 <body>
  <div class='ocr_page' id='page_1' title='image "''' + imagefile + '"; bbox ' + str(img.ul.x) + " " + str(img.ul.y) + " " + str(img.lr.x) + " " + str(img.lr.y) + """; ppageno 0'>
"""
      f.write(start_text)
      f.flush()
      f.close()

    for line in p.textlines:
      if opt.ccsfilter:
        if(len(line.glyphs) < 2): #a line with one or no glyph is useless
          continue

      cknn.classify_list_automatic(line.glyphs)

      if(opt.ccsfilter):	#lines with a median confidence lower than 0.005 should be useless too
        if(median([glyph.get_confidence() for glyph in line.glyphs]) < 0.005):
          continue

      line.sort_glyphs()
      line.text =  textline_to_string(line, heuristic_rules=opt.heuristic_rules, extra_chars_dict=extra_chars_dict)
      if opt.dict_correct:
        line.text = correct(line.text, opt.lang)
      line_text = line.text

      if opt.outputfile != "":
        f = codecs.open(opt.outputfile, "a", "utf-8")
        if not opt.hocr_out:
            line_text = line_text + "\n"
        else:
            line_text = line_to_hocr(line, p.textlines.index(line))
        f.write(line_text)
        f.flush()
        f.close()
      else:
        print line_text


    if opt.hocr_out:
        f = codecs.open(opt.outputfile, "a", "utf-8")
        end_text = """  </div>
 </body>
</html>
"""
        f.write(end_text)
        f.flush()
        f.close()
		
    if opt.verbosity > 0 and opt.outputfile != "":
      print "text has been written to file", opt.outputfile