This file is indexed.

/usr/lib/python2.7/dist-packages/geopandas/base.py is in python-geopandas 0.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
from warnings import warn

import numpy as np
import pandas as pd
from pandas import Series, DataFrame, MultiIndex
from pandas.core.indexing import _NDFrameIndexer
from shapely.geometry import box, MultiPoint, MultiLineString, MultiPolygon
from shapely.ops import cascaded_union, unary_union
import shapely.affinity as affinity

import geopandas as gpd

try:
    from rtree.core import RTreeError
    HAS_SINDEX = True
except ImportError:
    class RTreeError(Exception):
        pass
    HAS_SINDEX = False


def _geo_op(this, other, op):
    """Operation that returns a GeoSeries"""
    if isinstance(other, GeoPandasBase):
        this = this.geometry
        crs = this.crs
        if crs != other.crs:
            warn('GeoSeries crs mismatch: {0} and {1}'.format(this.crs,
                                                              other.crs))
        this, other = this.align(other.geometry)
        return gpd.GeoSeries([getattr(this_elem, op)(other_elem)
                             for this_elem, other_elem in zip(this, other)],
                             index=this.index, crs=crs)
    else:
        return gpd.GeoSeries([getattr(s, op)(other)
                             for s in this.geometry],
                             index=this.index, crs=this.crs)


# TODO: think about merging with _geo_op
def _series_op(this, other, op, **kwargs):
    """Geometric operation that returns a pandas Series"""
    null_val = False if op != 'distance' else np.nan

    if isinstance(other, GeoPandasBase):
        this = this.geometry
        this, other = this.align(other.geometry)
        return Series([getattr(this_elem, op)(other_elem, **kwargs)
                    if not this_elem.is_empty | other_elem.is_empty else null_val
                    for this_elem, other_elem in zip(this, other)],
                    index=this.index)
    else:
        return Series([getattr(s, op)(other, **kwargs) if s else null_val
                      for s in this.geometry], index=this.index)


def _geo_unary_op(this, op):
    """Unary operation that returns a GeoSeries"""
    return gpd.GeoSeries([getattr(geom, op) for geom in this.geometry],
                     index=this.index, crs=this.crs)


def _series_unary_op(this, op, null_value=False):
    """Unary operation that returns a Series"""
    return Series([getattr(geom, op, null_value) for geom in this.geometry],
                     index=this.index)


class GeoPandasBase(object):
    _sindex = None
    _sindex_generated = False

    def _generate_sindex(self):
        if not HAS_SINDEX:
            warn("Cannot generate spatial index: Missing package `rtree`.")
        else:
            from geopandas.sindex import SpatialIndex
            stream = ((i, item.bounds, idx) for i, (idx, item) in
                   enumerate(self.geometry.iteritems()) if
                   pd.notnull(item) and not item.is_empty)
            try:
                self._sindex = SpatialIndex(stream)
            # What we really want here is an empty generator error, or
            # for the bulk loader to log that the generator was empty
            # and move on. See https://github.com/Toblerity/rtree/issues/20.
            except RTreeError:
                pass
        self._sindex_generated = True

    def _invalidate_sindex(self):
        """
        Indicates that the spatial index should be re-built next
        time it's requested.

        """
        self._sindex = None
        self._sindex_generated = False

    @property
    def area(self):
        """Return the area of each geometry in the GeoSeries"""
        return _series_unary_op(self, 'area', null_value=np.nan)

    @property
    def geom_type(self):
        """Return the geometry type of each geometry in the GeoSeries"""
        return _series_unary_op(self, 'geom_type', null_value=None)

    @property
    def type(self):
        """Return the geometry type of each geometry in the GeoSeries"""
        return self.geom_type

    @property
    def length(self):
        """Return the length of each geometry in the GeoSeries"""
        return _series_unary_op(self, 'length', null_value=np.nan)

    @property
    def is_valid(self):
        """Return True for each valid geometry, else False"""
        return _series_unary_op(self, 'is_valid', null_value=False)

    @property
    def is_empty(self):
        """Return True for each empty geometry, False for non-empty"""
        return _series_unary_op(self, 'is_empty', null_value=False)

    @property
    def is_simple(self):
        """Return True for each simple geometry, else False"""
        return _series_unary_op(self, 'is_simple', null_value=False)

    @property
    def is_ring(self):
        """Return True for each geometry that is a closed ring, else False"""
        # operates on the exterior, so can't use _series_unary_op()
        return Series([geom.exterior.is_ring for geom in self.geometry],
                      index=self.index)

    #
    # Unary operations that return a GeoSeries
    #

    @property
    def boundary(self):
        """Return the bounding geometry for each geometry"""
        return _geo_unary_op(self, 'boundary')

    @property
    def centroid(self):
        """Return the centroid of each geometry in the GeoSeries"""
        return _geo_unary_op(self, 'centroid')

    @property
    def convex_hull(self):
        """Return the convex hull of each geometry"""
        return _geo_unary_op(self, 'convex_hull')

    @property
    def envelope(self):
        """Return a bounding rectangle for each geometry"""
        return _geo_unary_op(self, 'envelope')

    @property
    def exterior(self):
        """Return the outer boundary of each polygon"""
        # TODO: return empty geometry for non-polygons
        return _geo_unary_op(self, 'exterior')

    @property
    def interiors(self):
        """Return the interior rings of each polygon"""
        # TODO: return empty list or None for non-polygons
        return _series_unary_op(self, 'interiors', null_value=False)

    def representative_point(self):
        """Return a GeoSeries of points guaranteed to be in each geometry"""
        return gpd.GeoSeries([geom.representative_point()
                             for geom in self.geometry],
                         index=self.index)

    #
    # Reduction operations that return a Shapely geometry
    #

    @property
    def cascaded_union(self):
        """Deprecated: Return the unary_union of all geometries"""
        return cascaded_union(self.geometry.values)

    @property
    def unary_union(self):
        """Return the union of all geometries"""
        return unary_union(self.geometry.values)

    #
    # Binary operations that return a pandas Series
    #

    def contains(self, other):
        """Return True for all geometries that contain *other*, else False"""
        return _series_op(self, other, 'contains')

    def geom_equals(self, other):
        """Return True for all geometries that equal *other*, else False"""
        return _series_op(self, other, 'equals')

    def geom_almost_equals(self, other, decimal=6):
        """Return True for all geometries that is approximately equal to *other*, else False"""
        # TODO: pass precision argument
        return _series_op(self, other, 'almost_equals', decimal=decimal)

    def geom_equals_exact(self, other, tolerance):
        """Return True for all geometries that equal *other* to a given tolerance, else False"""
        # TODO: pass tolerance argument.
        return _series_op(self, other, 'equals_exact', tolerance=tolerance)

    def crosses(self, other):
        """Return True for all geometries that cross *other*, else False"""
        return _series_op(self, other, 'crosses')

    def disjoint(self, other):
        """Return True for all geometries that are disjoint with *other*, else False"""
        return _series_op(self, other, 'disjoint')

    def intersects(self, other):
        """Return True for all geometries that intersect *other*, else False"""
        return _series_op(self, other, 'intersects')

    def overlaps(self, other):
        """Return True for all geometries that overlap *other*, else False"""
        return _series_op(self, other, 'overlaps')

    def touches(self, other):
        """Return True for all geometries that touch *other*, else False"""
        return _series_op(self, other, 'touches')

    def within(self, other):
        """Return True for all geometries that are within *other*, else False"""
        return _series_op(self, other, 'within')

    def distance(self, other):
        """Return distance of each geometry to *other*"""
        return _series_op(self, other, 'distance')

    #
    # Binary operations that return a GeoSeries
    #

    def difference(self, other):
        """Return the set-theoretic difference of each geometry with *other*"""
        return _geo_op(self, other, 'difference')

    def symmetric_difference(self, other):
        """Return the symmetric difference of each geometry with *other*"""
        return _geo_op(self, other, 'symmetric_difference')

    def union(self, other):
        """Return the set-theoretic union of each geometry with *other*"""
        return _geo_op(self, other, 'union')

    def intersection(self, other):
        """Return the set-theoretic intersection of each geometry with *other*"""
        return _geo_op(self, other, 'intersection')

    #
    # Other operations
    #

    @property
    def bounds(self):
        """Return a DataFrame of minx, miny, maxx, maxy values of geometry objects"""
        bounds = np.array([geom.bounds for geom in self.geometry])
        return DataFrame(bounds,
                         columns=['minx', 'miny', 'maxx', 'maxy'],
                         index=self.index)

    @property
    def total_bounds(self):
        """Return a single bounding box (minx, miny, maxx, maxy) for all geometries

        This is a shortcut for calculating the min/max x and y bounds individually.
        """

        b = self.bounds
        return np.array((b['minx'].min(),
                         b['miny'].min(),
                         b['maxx'].max(),
                         b['maxy'].max()))

    @property
    def sindex(self):
        if not self._sindex_generated:
            self._generate_sindex()
        return self._sindex

    def buffer(self, distance, resolution=16):
        return gpd.GeoSeries([geom.buffer(distance, resolution)
                             for geom in self.geometry],
                         index=self.index, crs=self.crs)

    def simplify(self, *args, **kwargs):
        return gpd.GeoSeries([geom.simplify(*args, **kwargs)
                             for geom in self.geometry],
                      index=self.index, crs=self.crs)

    def relate(self, other):
        raise NotImplementedError

    def project(self, other, normalized=False):
        """
        Return the distance along each geometry nearest to *other*

        Parameters
        ----------
        other : BaseGeometry or GeoSeries
            The *other* geometry to computed projected point from.
        normalized : boolean
            If normalized is True, return the distance normalized to
            the length of the object.

        The project method is the inverse of interpolate.
        """

        return _series_op(self, other, 'project', normalized=normalized)

    def interpolate(self, distance, normalized=False):
        """
        Return a point at the specified distance along each geometry

        Parameters
        ----------
        distance : float or Series of floats
            Distance(s) along the geometries at which a point should be returned
        normalized : boolean
            If normalized is True, distance will be interpreted as a fraction
            of the geometric object's length.
        """

        return gpd.GeoSeries([s.interpolate(distance, normalized)
                             for s in self.geometry],
            index=self.index, crs=self.crs)

    def translate(self, xoff=0.0, yoff=0.0, zoff=0.0):
        """
        Shift the coordinates of the GeoSeries.

        Parameters
        ----------
        xoff, yoff, zoff : float, float, float
            Amount of offset along each dimension.
            xoff, yoff, and zoff for translation along the x, y, and z
            dimensions respectively.

        See shapely manual for more information:
        http://toblerity.org/shapely/manual.html#affine-transformations
        """

        return gpd.GeoSeries([affinity.translate(s, xoff, yoff, zoff)
                             for s in self.geometry],
            index=self.index, crs=self.crs)

    def rotate(self, angle, origin='center', use_radians=False):
        """
        Rotate the coordinates of the GeoSeries.

        Parameters
        ----------
        angle : float
            The angle of rotation can be specified in either degrees (default)
            or radians by setting use_radians=True. Positive angles are
            counter-clockwise and negative are clockwise rotations.
        origin : string, Point, or tuple (x, y)
            The point of origin can be a keyword 'center' for the bounding box
            center (default), 'centroid' for the geometry's centroid, a Point
            object or a coordinate tuple (x, y).
        use_radians : boolean
            Whether to interpret the angle of rotation as degrees or radians

        See shapely manual for more information:
        http://toblerity.org/shapely/manual.html#affine-transformations
        """

        return gpd.GeoSeries([affinity.rotate(s, angle, origin=origin,
            use_radians=use_radians) for s in self.geometry],
            index=self.index, crs=self.crs)

    def scale(self, xfact=1.0, yfact=1.0, zfact=1.0, origin='center'):
        """
        Scale the geometries of the GeoSeries along each (x, y, z) dimension.

        Parameters
        ----------
        xfact, yfact, zfact : float, float, float
            Scaling factors for the x, y, and z dimensions respectively.
        origin : string, Point, or tuple
            The point of origin can be a keyword 'center' for the 2D bounding
            box center (default), 'centroid' for the geometry's 2D centroid, a
            Point object or a coordinate tuple (x, y, z).

        Note: Negative scale factors will mirror or reflect coordinates.

        See shapely manual for more information:
        http://toblerity.org/shapely/manual.html#affine-transformations
        """

        return gpd.GeoSeries([affinity.scale(s, xfact, yfact, zfact,
            origin=origin) for s in self.geometry], index=self.index,
            crs=self.crs)

    def skew(self, xs=0.0, ys=0.0, origin='center', use_radians=False):
        """
        Shear/Skew the geometries of the GeoSeries by angles along x and y dimensions.

        Parameters
        ----------
        xs, ys : float, float
            The shear angle(s) for the x and y axes respectively. These can be
            specified in either degrees (default) or radians by setting
            use_radians=True.
        origin : string, Point, or tuple (x, y)
            The point of origin can be a keyword 'center' for the bounding box
            center (default), 'centroid' for the geometry's centroid, a Point
            object or a coordinate tuple (x, y).
        use_radians : boolean
            Whether to interpret the shear angle(s) as degrees or radians

        See shapely manual for more information:
        http://toblerity.org/shapely/manual.html#affine-transformations
        """

        return gpd.GeoSeries([affinity.skew(s, xs, ys, origin=origin,
            use_radians=use_radians) for s in self.geometry],
            index=self.index, crs=self.crs)

    def explode(self):
        """
        Explode multi-part geometries into multiple single geometries.

        Single rows can become multiple rows.
        This is analogous to PostGIS's ST_Dump(). The 'path' index is the
        second level of the returned MultiIndex

        Returns
        ------
        A GeoSeries with a MultiIndex. The levels of the MultiIndex are the
        original index and an integer.

        Example
        -------
        >>> gdf  # gdf is GeoSeries of MultiPoints
        0                 (POINT (0 0), POINT (1 1))
        1    (POINT (2 2), POINT (3 3), POINT (4 4))

        >>> gdf.explode()
        0  0    POINT (0 0)
           1    POINT (1 1)
        1  0    POINT (2 2)
           1    POINT (3 3)
           2    POINT (4 4)
        dtype: object

        """
        index = []
        geometries = []
        for idx, s in self.geometry.iteritems():
            if s.type.startswith('Multi') or s.type == 'GeometryCollection':
                geoms = s.geoms
                idxs = [(idx, i) for i in range(len(geoms))]
            else:
                geoms = [s]
                idxs = [(idx, 0)]
            index.extend(idxs)
            geometries.extend(geoms)
        return gpd.GeoSeries(geometries,
            index=MultiIndex.from_tuples(index)).__finalize__(self)


class _CoordinateIndexer(_NDFrameIndexer):
    """
    Coordinate based indexer to select by intersection with bounding box.

    Format of input should be ``.cx[xmin:xmax, ymin:ymax]``. Any of ``xmin``,
    ``xmax``, ``ymin``, and ``ymax`` can be provided, but input must
    include a comma separating x and y slices. That is, ``.cx[:, :]`` will
    return the full series/frame, but ``.cx[:]`` is not implemented.
    """

    def _getitem_tuple(self, tup):
        obj = self.obj
        xs, ys = tup
        # handle numeric values as x and/or y coordinate index
        if type(xs) is not slice:
            xs = slice(xs, xs)
        if type(ys) is not slice:
            ys = slice(ys, ys)
        # don't know how to handle step; should this raise?
        if xs.step is not None or ys.step is not None:
            warn("Ignoring step - full interval is used.")
        xmin, ymin, xmax, ymax = obj.total_bounds
        bbox = box(xs.start if xs.start is not None else xmin,
                   ys.start if ys.start is not None else ymin,
                   xs.stop if xs.stop is not None else xmax,
                   ys.stop if ys.stop is not None else ymax)
        idx = obj.intersects(bbox)
        return obj[idx]


def _array_input(arr):
    if isinstance(arr, (MultiPoint, MultiLineString, MultiPolygon)):
        # Prevent against improper length detection when input is a
        # Multi*
        geom = arr
        arr = np.empty(1, dtype=object)
        arr[0] = geom

    return arr