This file is indexed.

/usr/lib/python2.7/dist-packages/geopandas/geodataframe.py is in python-geopandas 0.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import json

import numpy as np
from pandas import DataFrame, Series
from shapely.geometry import mapping, shape
from shapely.geometry.base import BaseGeometry
from six import string_types, PY3

from geopandas.base import GeoPandasBase, _CoordinateIndexer
from geopandas.geoseries import GeoSeries
from geopandas.plotting import plot_dataframe
import geopandas.io


DEFAULT_GEO_COLUMN_NAME = 'geometry'


class GeoDataFrame(GeoPandasBase, DataFrame):
    """
    A GeoDataFrame object is a pandas.DataFrame that has a column
    with geometry. In addition to the standard DataFrame constructor arguments,
    GeoDataFrame also accepts the following keyword arguments:

    Keyword Arguments
    -----------------
    crs : str (optional)
        Coordinate system
    geometry : str or array (optional)
        If str, column to use as geometry. If array, will be set as 'geometry'
        column on GeoDataFrame.
    """

    # XXX: This will no longer be necessary in pandas 0.17
    _internal_names = ['_data', '_cacher', '_item_cache', '_cache',
                       'is_copy', '_subtyp', '_index',
                       '_default_kind', '_default_fill_value', '_metadata',
                       '__array_struct__', '__array_interface__']

    _metadata = ['crs', '_geometry_column_name']

    _geometry_column_name = DEFAULT_GEO_COLUMN_NAME

    def __init__(self, *args, **kwargs):
        crs = kwargs.pop('crs', None)
        geometry = kwargs.pop('geometry', None)
        super(GeoDataFrame, self).__init__(*args, **kwargs)
        self.crs = crs
        if geometry is not None:
            self.set_geometry(geometry, inplace=True)
        self._invalidate_sindex()

    # Serialize metadata (will no longer be necessary in pandas 0.17+)
    # See https://github.com/pydata/pandas/pull/10557
    def __getstate__(self):
        meta = dict((k, getattr(self, k, None)) for k in self._metadata)
        return dict(_data=self._data, _typ=self._typ,
                    _metadata=self._metadata, **meta)

    def __setattr__(self, attr, val):
        # have to special case geometry b/c pandas tries to use as column...
        if attr == 'geometry':
            object.__setattr__(self, attr, val)
        else:
            super(GeoDataFrame, self).__setattr__(attr, val)

    def _get_geometry(self):
        if self._geometry_column_name not in self:
            raise AttributeError("No geometry data set yet (expected in"
                                 " column '%s'." % self._geometry_column_name)
        return self[self._geometry_column_name]

    def _set_geometry(self, col):
        # TODO: Use pandas' core.common.is_list_like() here.
        if not isinstance(col, (list, np.ndarray, Series)):
            raise ValueError("Must use a list-like to set the geometry"
                             " property")
        self.set_geometry(col, inplace=True)

    geometry = property(fget=_get_geometry, fset=_set_geometry,
                        doc="Geometry data for GeoDataFrame")

    def set_geometry(self, col, drop=False, inplace=False, crs=None):
        """
        Set the GeoDataFrame geometry using either an existing column or
        the specified input. By default yields a new object.

        The original geometry column is replaced with the input.

        Parameters
        ----------
        keys : column label or array
        drop : boolean, default True
            Delete column to be used as the new geometry
        inplace : boolean, default False
            Modify the GeoDataFrame in place (do not create a new object)
        crs : str/result of fion.get_crs (optional)
            Coordinate system to use. If passed, overrides both DataFrame and
            col's crs. Otherwise, tries to get crs from passed col values or
            DataFrame.

        Examples
        --------
        >>> df1 = df.set_geometry([Point(0,0), Point(1,1), Point(2,2)])
        >>> df2 = df.set_geometry('geom1')

        Returns
        -------
        geodataframe : GeoDataFrame
        """
        # Most of the code here is taken from DataFrame.set_index()
        if inplace:
            frame = self
        else:
            frame = self.copy()

        if not crs:
            crs = getattr(col, 'crs', self.crs)

        to_remove = None
        geo_column_name = self._geometry_column_name
        if isinstance(col, (Series, list, np.ndarray)):
            level = col
        elif hasattr(col, 'ndim') and col.ndim != 1:
            raise ValueError("Must pass array with one dimension only.")
        else:
            try:
                level = frame[col].values
            except KeyError:
                raise ValueError("Unknown column %s" % col)
            except:
                raise
            if drop:
                to_remove = col
                geo_column_name = self._geometry_column_name
            else:
                geo_column_name = col

        if to_remove:
            del frame[to_remove]

        if isinstance(level, GeoSeries) and level.crs != crs:
            # Avoids caching issues/crs sharing issues
            level = level.copy()
            level.crs = crs

        # Check that we are using a listlike of geometries
        if not all(isinstance(item, BaseGeometry) or not item for item in level):
            raise TypeError("Input geometry column must contain valid geometry objects.")
        frame[geo_column_name] = level
        frame._geometry_column_name = geo_column_name
        frame.crs = crs
        frame._invalidate_sindex()
        if not inplace:
            return frame

    @classmethod
    def from_file(cls, filename, **kwargs):
        """
        Alternate constructor to create a GeoDataFrame from a file.

        Example:
            df = geopandas.GeoDataFrame.from_file('nybb.shp')

        Wraps geopandas.read_file(). For additional help, see read_file()

        """
        return geopandas.io.file.read_file(filename, **kwargs)

    @classmethod
    def from_features(cls, features, crs=None):
        """
        Alternate constructor to create GeoDataFrame from an iterable of
        features or a feature collection.

        Parameters
        ----------
        features
            - Iterable of features, where each element must be a feature
              dictionary or implement the __geo_interface__.
            - Feature collection, where the 'features' key contains an
              iterable of features.
            - Object holding a feature collection that implements the
              ``__geo_interface__``.
        crs : str or dict (optional)
            Coordinate reference system to set on the resulting frame.

        Returns
        -------
        GeoDataFrame

        Notes
        -----
        For more information about the ``__geo_interface__``, see
        https://gist.github.com/sgillies/2217756

        """
        # Handle feature collections
        if hasattr(features, "__geo_interface__"):
            fs = features.__geo_interface__
        else:
            fs = features

        if isinstance(fs, dict) and fs.get('type') == 'FeatureCollection':
            features_lst = fs['features']
        else:
            features_lst = features

        rows = []
        for f in features_lst:
            if hasattr(f, "__geo_interface__"):
                f = f.__geo_interface__
            else:
                f = f

            d = {'geometry': shape(f['geometry']) if f['geometry'] else None}
            d.update(f['properties'])
            rows.append(d)
        df = GeoDataFrame.from_dict(rows)
        df.crs = crs
        return df

    @classmethod
    def from_postgis(cls, sql, con, geom_col='geom', crs=None, index_col=None,
                     coerce_float=True, params=None):
        """
        Alternate constructor to create a GeoDataFrame from a sql query
        containing a geometry column.

        Example:
            df = geopandas.GeoDataFrame.from_postgis(con,
                "SELECT geom, highway FROM roads;")

        Wraps geopandas.read_postgis(). For additional help, see read_postgis()

        """
        return geopandas.io.sql.read_postgis(sql, con, geom_col, crs, index_col,
                     coerce_float, params)

    def to_json(self, na='null', show_bbox=False, **kwargs):
        """
        Returns a GeoJSON string representation of the GeoDataFrame.

        Parameters
        ----------
        na : {'null', 'drop', 'keep'}, default 'null'
            Indicates how to output missing (NaN) values in the GeoDataFrame
            * null: output the missing entries as JSON null
            * drop: remove the property from the feature. This applies to
                    each feature individually so that features may have
                    different properties
            * keep: output the missing entries as NaN

        show_bbox : include bbox (bounds) in the geojson

        The remaining *kwargs* are passed to json.dumps().

        """
        return json.dumps(self._to_geo(na=na, show_bbox=show_bbox), **kwargs)

    @property
    def __geo_interface__(self):
        """
        Returns a python feature collection (i.e. the geointerface)
        representation of the GeoDataFrame.

        This differs from `_to_geo()` only in that it is a property with
        default args instead of a method

        """
        return self._to_geo(na='null', show_bbox=True)

    def iterfeatures(self, na='null', show_bbox=False):
        """
        Returns an iterator that yields feature dictionaries that comply with
        __geo_interface__

        Parameters
        ----------
        na : {'null', 'drop', 'keep'}, default 'null'
            Indicates how to output missing (NaN) values in the GeoDataFrame
            * null: ouput the missing entries as JSON null
            * drop: remove the property from the feature. This applies to
                    each feature individually so that features may have
                    different properties
            * keep: output the missing entries as NaN

        show_bbox : include bbox (bounds) in the geojson. default False

        """
        def fill_none(row):
            """
            Takes in a Series, converts to a dictionary with null values
            set to None

            """
            na_keys = row.index[row.isnull()]
            d = row.to_dict()
            for k in na_keys:
                d[k] = None
            return d

        # na_methods must take in a Series and return dict
        na_methods = {'null': fill_none,
                      'drop': lambda row: row.dropna().to_dict(),
                      'keep': lambda row: row.to_dict()}

        if na not in na_methods:
            raise ValueError('Unknown na method {0}'.format(na))
        f = na_methods[na]

        for name, row in self.iterrows():
            properties = f(row)
            del properties[self._geometry_column_name]

            feature = {
                'id': str(name),
                'type': 'Feature',
                'properties': properties,
                'geometry': mapping(row[self._geometry_column_name])
                            if row[self._geometry_column_name] else None
            }

            if show_bbox:
                feature['bbox'] = row.geometry.bounds

            yield feature

    def _to_geo(self, **kwargs):
        """
        Returns a python feature collection (i.e. the geointerface)
        representation of the GeoDataFrame.

        """
        geo = {'type': 'FeatureCollection',
               'features': list(self.iterfeatures(**kwargs))}

        if kwargs.get('show_bbox', False):
            geo['bbox'] = tuple(self.total_bounds)

        return geo

    def to_file(self, filename, driver="ESRI Shapefile", schema=None,
                **kwargs):
        """
        Write this GeoDataFrame to an OGR data source

        A dictionary of supported OGR providers is available via:
        >>> import fiona
        >>> fiona.supported_drivers

        Parameters
        ----------
        filename : string
            File path or file handle to write to.
        driver : string, default 'ESRI Shapefile'
            The OGR format driver used to write the vector file.
        schema : dict, default None
            If specified, the schema dictionary is passed to Fiona to
            better control how the file is written.

        The *kwargs* are passed to fiona.open and can be used to write
        to multi-layer data, store data within archives (zip files), etc.
        """
        from geopandas.io.file import to_file
        to_file(self, filename, driver, schema, **kwargs)

    def to_crs(self, crs=None, epsg=None, inplace=False):
        """Transform geometries to a new coordinate reference system

        This method will transform all points in all objects.  It has
        no notion or projecting entire geometries.  All segments
        joining points are assumed to be lines in the current
        projection, not geodesics.  Objects crossing the dateline (or
        other projection boundary) will have undesirable behavior.

        `to_crs` passes the `crs` argument to the `Proj` function from the
        `pyproj` library (with the option `preserve_units=True`). It can
        therefore accept proj4 projections in any format
        supported by `Proj`, including dictionaries, or proj4 strings.

        """
        if inplace:
            df = self
        else:
            df = self.copy()
        geom = df.geometry.to_crs(crs=crs, epsg=epsg)
        df.geometry = geom
        df.crs = geom.crs
        if not inplace:
            return df

    def __getitem__(self, key):
        """
        If the result is a column containing only 'geometry', return a
        GeoSeries. If it's a DataFrame with a 'geometry' column, return a
        GeoDataFrame.
        """
        result = super(GeoDataFrame, self).__getitem__(key)
        geo_col = self._geometry_column_name
        if isinstance(key, string_types) and key == geo_col:
            result.__class__ = GeoSeries
            result.crs = self.crs
            result._invalidate_sindex()
        elif isinstance(result, DataFrame) and geo_col in result:
            result.__class__ = GeoDataFrame
            result.crs = self.crs
            result._geometry_column_name = geo_col
            result._invalidate_sindex()
        elif isinstance(result, DataFrame) and geo_col not in result:
            result.__class__ = DataFrame
        return result

    #
    # Implement pandas methods
    #

    def merge(self, *args, **kwargs):
        result = DataFrame.merge(self, *args, **kwargs)
        geo_col = self._geometry_column_name
        if isinstance(result, DataFrame) and geo_col in result:
            result.__class__ = GeoDataFrame
            result.crs = self.crs
            result._geometry_column_name = geo_col
            result._invalidate_sindex()
        elif isinstance(result, DataFrame) and geo_col not in result:
            result.__class__ = DataFrame
        return result

    @property
    def _constructor(self):
        return GeoDataFrame

    def __finalize__(self, other, method=None, **kwargs):
        """propagate metadata from other to self """
        # merge operation: using metadata of the left object
        if method == 'merge':
            for name in self._metadata:
                object.__setattr__(self, name, getattr(other.left, name, None))
        # concat operation: using metadata of the first object
        elif method == 'concat':
            for name in self._metadata:
                object.__setattr__(self, name, getattr(other.objs[0], name, None))
        else:
            for name in self._metadata:
                object.__setattr__(self, name, getattr(other, name, None))
        return self

    def copy(self, deep=True):
        """
        Make a copy of this GeoDataFrame object

        Parameters
        ----------
        deep : boolean, default True
            Make a deep copy, i.e. also copy data

        Returns
        -------
        copy : GeoDataFrame
        """
        # FIXME: this will likely be unnecessary in pandas >= 0.13
        data = self._data
        if deep:
            data = data.copy()
        return GeoDataFrame(data).__finalize__(self)

    def plot(self, *args, **kwargs):

        return plot_dataframe(self, *args, **kwargs)

    plot.__doc__ = plot_dataframe.__doc__


    def dissolve(self, by=None, aggfunc='first', as_index=True):
        """
        Dissolve geometries within `groupby` into single observation.
        This is accomplished by applying the `unary_union` method
        to all geometries within a groupself.

        Observations associated with each `groupby` group will be aggregated
        using the `aggfunc`.

        Parameters
        ----------
        by : string, default None
            Column whose values define groups to be dissolved
        aggfunc : function or string, default "first"
            Aggregation function for manipulation of data associated
            with each group. Passed to pandas `groupby.agg` method.
        as_index : boolean, default True
            If true, groupby columns become index of result.

        Returns
        -------
        GeoDataFrame
        """

        # Process non-spatial component
        data = self.drop(labels=self.geometry.name, axis=1)
        aggregated_data = data.groupby(by=by).agg(aggfunc)


        # Process spatial component
        def merge_geometries(block):
            merged_geom = block.unary_union
            return merged_geom

        g = self.groupby(by=by, group_keys=False)[self.geometry.name].agg(merge_geometries)

        # Aggregate
        aggregated_geometry = GeoDataFrame(g, geometry=self.geometry.name, crs=self.crs)
        # Recombine
        aggregated = aggregated_geometry.join(aggregated_data)

        # Reset if requested
        if not as_index:
            aggregated = aggregated.reset_index()

        return aggregated

def _dataframe_set_geometry(self, col, drop=False, inplace=False, crs=None):
    if inplace:
        raise ValueError("Can't do inplace setting when converting from"
                         " DataFrame to GeoDataFrame")
    gf = GeoDataFrame(self)
    # this will copy so that BlockManager gets copied
    return gf.set_geometry(col, drop=drop, inplace=False, crs=crs)

if PY3:
    DataFrame.set_geometry = _dataframe_set_geometry
else:
    import types
    DataFrame.set_geometry = types.MethodType(_dataframe_set_geometry, None,
                                              DataFrame)


GeoDataFrame._create_indexer('cx', _CoordinateIndexer)