This file is indexed.

/usr/lib/python2.7/dist-packages/ginga/LayerImage.py is in python-ginga 2.7.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#
# LayerImage.py -- Abstraction of an generic layered image.
#
# This is open-source software licensed under a BSD license.
# Please see the file LICENSE.txt for details.
#
import numpy as np
import time

from ginga import BaseImage
from ginga.misc import Bunch


class LayerImage(object):
    """Mixin class for BaseImage subclasses.  Adds layers and alpha/rgb
    compositing.
    """

    def __init__(self):
        self._layer = []
        self.cnt = 0
        self.compose_types = ('alpha', 'rgb')
        self.compose = 'alpha'

    def _insert_layer(self, idx, image, alpha=None, name=None):
        if alpha is None:
            alpha = 1.0
        if name is None:
            name = "layer%d" % (self.cnt)
            self.cnt += 1
        bnch = Bunch.Bunch(image=image, alpha=alpha, name=name)
        self._layer.insert(idx, bnch)

    def insert_layer(self, idx, image, alpha=None, name=None,
                     compose=True):
        self._insert_layer(idx, image, alpha=alpha, name=name)

        if compose:
            self.compose_layers()

    def set_layer(self, idx, image, alpha=None, name=None,
                  compose=True):
        self.delete_layer(idx, compose=False)
        self._insert_layer(idx, image, alpha=alpha, name=name)

        if compose:
            self.compose_layers()

    def delete_layer(self, idx, compose=True):
        self._layer.pop(idx)

        if compose:
            self.compose_layers()

    def get_layer(self, idx):
        return self._layer[idx]

    def num_layers(self):
        return len(self._layer)

    def get_max_shape(self, entity='image'):
        maxdim = -1
        maxshape = ()
        for layer in self._layer:
            if entity == 'image':
                shape = layer[entity].get_shape()
            elif entity == 'alpha':
                item = layer.alpha
                # If alpha is an image, get the array
                if isinstance(item, BaseImage.BaseImage):
                    item = layer.alpha.get_data()
                shape = np.shape(item)
            else:
                raise BaseImage.ImageError("entity '%s' not in (image, alpha)" % (
                    entity))

            if len(shape) > maxdim:
                maxdim = len(shape)
                maxshape = shape
        return maxshape

    ## def alpha_combine(self, src, alpha, dst):
    ##     return (src * alpha) + (dst * (1.0 - alpha))

    def mono2color(self, data):
        return np.dstack((data, data, data))

    def alpha_multiply(self, alpha, data, shape=None):
        """(alpha) can be a scalar or an array.
        """
        # alpha can be a scalar or an array
        if shape is None:
            shape = data.shape

        if len(data.shape) == 2:
            res = alpha * data
            # If desired shape is monochrome then return a mono image
            # otherwise broadcast to a grey color image.
            if len(shape) == 2:
                return res

            # note: in timing tests, dstack was not as efficient here...
            data = np.empty(shape)
            data[:, :, 0] = res[:, :]
            data[:, :, 1] = res[:, :]
            data[:, :, 2] = res[:, :]
            return data

        else:
            # note: in timing tests, dstack was not as efficient here...
            res = np.empty(shape)
            res[:, :, 0] = data[:, :, 0] * alpha
            res[:, :, 1] = data[:, :, 1] * alpha
            res[:, :, 2] = data[:, :, 2] * alpha
            return res

    def alpha_compose(self):
        start_time = time.time()
        shape = self.get_max_shape()

        # result holds the result of the composition
        result = np.zeros(shape)

        cnt = 0
        for layer in self._layer:
            alpha = layer.alpha
            if isinstance(alpha, BaseImage.BaseImage):
                alpha = alpha.get_data()
            data = layer.image.get_data()
            result += self.alpha_multiply(alpha, data, shape=shape)
            cnt += 1

        self.set_data(result)
        end_time = time.time()
        self.logger.debug("alpha compose=%.4f sec" % (end_time - start_time))

    def rgb_compose(self):
        #num = self.num_layers()
        num = 3
        layer = self.get_layer(0)
        wd, ht = layer.image.get_size()
        result = np.empty((ht, wd, num), dtype=np.uint8)

        start_time = time.time()
        for i in range(len(self._layer)):
            layer = self.get_layer(i)
            alpha = layer.alpha
            if isinstance(alpha, BaseImage.BaseImage):
                alpha = alpha.get_data()
            data = self.alpha_multiply(alpha, layer.image.get_data())
            result[:, :, i] = data[:, :]
        end_time = time.time()

        self.set_data(result)
        self.logger.debug("rgb_compose  total=%.4f sec" % (
            end_time - start_time))

    def rgb_decompose(self, image):
        data = image.get_data()

        shape = data.shape
        if len(shape) == 2:
            self._insert_layer(0, image)

        else:
            names = ("Red", "Green", "Blue")
            alphas = (0.292, 0.594, 0.114)

            for i in range(shape[2]):
                imgslice = data[:, :, i]
                # Create the same type of image as we are decomposing
                img = image.__class__(data_np=imgslice, logger=self.logger)
                if i < 3:
                    name = names[i]
                    alpha = alphas[i]
                else:
                    name = "layer%d" % i
                    alpha = 0.0
                self._insert_layer(i, img, name=name, alpha=alpha)

        self.compose_layers()

    def set_compose_type(self, ctype):
        assert ctype in self.compose_types, \
            BaseImage.ImageError("Bad compose type '%s': must be one of %s" % (
                ctype, str(self.compose_types)))
        self.compose = ctype

        self.compose_layers()

    def set_alpha(self, lidx, val):
        layer = self._layer[lidx]
        layer.alpha = val

        self.compose_layers()

    def set_alphas(self, vals):
        for lidx in range(len(vals)):
            layer = self._layer[lidx]
            layer.alpha = vals[lidx]

        self.compose_layers()

    def compose_layers(self):
        if self.compose == 'rgb':
            self.rgb_compose()
        else:
            self.alpha_compose()


#END