This file is indexed.

/usr/lib/python2.7/dist-packages/gnocchi/carbonara.py is in python-gnocchi 4.2.0-0ubuntu5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
# -*- encoding: utf-8 -*-
#
# Copyright © 2016-2017 Red Hat, Inc.
# Copyright © 2014-2015 eNovance
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""Time series data manipulation, better with pancetta."""

import functools
import itertools
import math
import operator
import random
import re
import struct
import time

import lz4.block
import numpy
import six


UNIX_UNIVERSAL_START64 = numpy.datetime64("1970", 'ns')
ONE_SECOND = numpy.timedelta64(1, 's')


class BeforeEpochError(Exception):
    """Error raised when a timestamp before Epoch is used."""

    def __init__(self, timestamp):
        self.timestamp = timestamp
        super(BeforeEpochError, self).__init__(
            "%s is before Epoch" % timestamp)


class UnknownAggregationMethod(Exception):
    """Error raised when the aggregation method is unknown."""
    def __init__(self, agg):
        self.aggregation_method = agg
        super(UnknownAggregationMethod, self).__init__(
            "Unknown aggregation method `%s'" % agg)


class InvalidData(ValueError):
    """Error raised when data are corrupted."""
    def __init__(self):
        super(InvalidData, self).__init__("Unable to unpack, invalid data")


def datetime64_to_epoch(dt):
    return (dt - UNIX_UNIVERSAL_START64) / ONE_SECOND


def round_timestamp(ts, freq):
    return UNIX_UNIVERSAL_START64 + numpy.floor(
        (ts - UNIX_UNIVERSAL_START64) / freq) * freq


TIMESERIES_ARRAY_DTYPE = [('timestamps', '<datetime64[ns]'),
                          ('values', '<d')]


def make_timeseries(timestamps, values):
    """Return a Numpy array representing a timeseries.

    This array specifies correctly the data types, which is important for
    Numpy to operate fastly.
    """
    l = len(timestamps)
    if l != len(values):
        raise ValueError("Timestamps and values must have the same length")
    arr = numpy.zeros(l, dtype=TIMESERIES_ARRAY_DTYPE)
    arr['timestamps'] = timestamps
    arr['values'] = values
    return arr


def combine_timeseries(ts1, ts2):
    """Combine a timeseries into this one.

    The timeseries does not need to be sorted.

    If a timestamp is present in both `ts1` and `ts2`, then value from `ts1`
    is used.

    :param ts: The timeseries to combine.
    :return: A new timeseries.
    """
    ts = numpy.concatenate((ts1, ts2))
    _, index = numpy.unique(ts['timestamps'], return_index=True)
    return ts[index]


class GroupedTimeSeries(object):
    def __init__(self, ts, granularity, start=None):
        # NOTE(sileht): The whole class assumes ts is ordered and don't have
        # duplicate timestamps, it uses numpy.unique that sorted list, but
        # we always assume the orderd to be the same as the input.
        self.granularity = granularity
        self.start = start
        if start is None:
            self._ts = ts
            self._ts_for_derive = ts
        else:
            self._ts = ts[numpy.searchsorted(ts['timestamps'], start):]
            start_derive = start - granularity
            self._ts_for_derive = ts[
                numpy.searchsorted(ts['timestamps'], start_derive):
            ]

        self.indexes = round_timestamp(self._ts['timestamps'], granularity)
        self.tstamps, self.counts = numpy.unique(self.indexes,
                                                 return_counts=True)

    def mean(self):
        series = self.sum()
        series['values'] /= self.counts
        return series

    def sum(self):
        return make_timeseries(self.tstamps, numpy.bincount(
            numpy.repeat(numpy.arange(self.counts.size), self.counts),
            weights=self._ts['values']))

    def min(self):
        ordered = self._ts['values'].argsort()
        uniq_inv = numpy.repeat(numpy.arange(self.counts.size), self.counts)
        values = numpy.zeros(self.tstamps.size)
        values[uniq_inv[ordered][::-1]] = self._ts['values'][ordered][::-1]
        return make_timeseries(self.tstamps, values)

    def max(self):
        ordered = self._ts['values'].argsort()
        uniq_inv = numpy.repeat(numpy.arange(self.counts.size), self.counts)
        values = numpy.zeros(self.tstamps.size)
        values[uniq_inv[ordered]] = self._ts['values'][ordered]
        return make_timeseries(self.tstamps, values)

    def median(self):
        ordered = numpy.lexsort((self._ts['values'], self.indexes))
        # TODO(gordc): can use np.divmod when centos supports numpy 1.13
        mid_diff = numpy.floor_divide(self.counts, 2)
        odd = numpy.mod(self.counts, 2)
        mid_floor = (numpy.cumsum(self.counts) - 1) - mid_diff
        mid_ceil = mid_floor + (odd + 1) % 2
        return make_timeseries(
            self.tstamps, (self._ts['values'][ordered][mid_floor] +
                           self._ts['values'][ordered][mid_ceil]) / 2.0)

    def std(self):
        mean_ts = self.mean()
        diff_sq = numpy.square(self._ts['values'] -
                               numpy.repeat(mean_ts['values'], self.counts))
        bin_sum = numpy.bincount(
            numpy.repeat(numpy.arange(self.counts.size), self.counts),
            weights=diff_sq)
        return make_timeseries(self.tstamps[self.counts > 1],
                               numpy.sqrt(bin_sum[self.counts > 1] /
                                          (self.counts[self.counts > 1] - 1)))

    def count(self):
        return make_timeseries(self.tstamps, self.counts)

    def last(self):
        cumcounts = numpy.cumsum(self.counts) - 1
        values = self._ts['values'][cumcounts]
        return make_timeseries(self.tstamps, values)

    def first(self):
        cumcounts = numpy.cumsum(self.counts) - self.counts
        values = self._ts['values'][cumcounts]
        return make_timeseries(self.tstamps, values)

    def quantile(self, q):
        ordered = numpy.lexsort((self._ts['values'], self.indexes))
        min_pos = numpy.cumsum(self.counts) - self.counts
        real_pos = min_pos + (self.counts - 1) * (q / 100)
        floor_pos = numpy.floor(real_pos).astype(numpy.int, copy=False)
        ceil_pos = numpy.ceil(real_pos).astype(numpy.int, copy=False)
        values = (
            self._ts['values'][ordered][floor_pos] * (ceil_pos - real_pos) +
            self._ts['values'][ordered][ceil_pos] * (real_pos - floor_pos))
        # NOTE(gordc): above code doesn't compute proper value if pct lands on
        # exact index, it sets it to 0. we need to set it properly here
        exact_pos = numpy.equal(floor_pos, ceil_pos)
        values[exact_pos] = self._ts['values'][ordered][floor_pos][exact_pos]
        return make_timeseries(self.tstamps, values)

    def derived(self):
        timestamps = self._ts_for_derive['timestamps'][1:]
        values = numpy.diff(self._ts_for_derive['values'])
        # FIXME(sileht): create some alternative __init__ to avoid creating
        # useless Numpy object, recounting, timestamps convertion, ...
        return GroupedTimeSeries(make_timeseries(timestamps, values),
                                 self.granularity, self.start)


class TimeSerie(object):
    """A representation of series of a timestamp with a value.

    Duplicate timestamps are not allowed and will be filtered to use the
    last in the group when the TimeSerie is created or extended.
    """

    def __init__(self, ts=None):
        if ts is None:
            ts = make_timeseries([], [])
        self.ts = ts

    @classmethod
    def from_data(cls, timestamps=None, values=None):
        return cls(make_timeseries(timestamps, values))

    def __eq__(self, other):
        return (isinstance(other, TimeSerie) and
                numpy.all(self.ts == other.ts))

    def __getitem__(self, key):
        if isinstance(key, numpy.datetime64):
            idx = numpy.searchsorted(self.timestamps, key)
            if self.timestamps[idx] == key:
                return self[idx]
            raise KeyError(key)
        if isinstance(key, slice):
            if isinstance(key.start, numpy.datetime64):
                start = numpy.searchsorted(self.timestamps, key.start)
            else:
                start = key.start
            if isinstance(key.stop, numpy.datetime64):
                stop = numpy.searchsorted(self.timestamps, key.stop)
            else:
                stop = key.stop
            key = slice(start, stop, key.step)
        return self.ts[key]

    def _merge(self, ts):
        """Merge a Numpy timeseries into this one."""
        self.ts = combine_timeseries(ts, self.ts)

    def merge(self, ts):
        """Merge a TimeSerie into this one."""
        return self._merge(ts.ts)

    def set_values(self, values):
        """Set values into this timeseries.

        :param values: A list of tuple (timestamp, value).
        """
        return self._merge(values)

    def __len__(self):
        return len(self.ts)

    @property
    def timestamps(self):
        return self.ts['timestamps']

    @property
    def values(self):
        return self.ts['values']

    @property
    def first(self):
        try:
            return self.timestamps[0]
        except IndexError:
            return

    @property
    def last(self):
        try:
            return self.timestamps[-1]
        except IndexError:
            return

    def group_serie(self, granularity, start=None):
        # NOTE(jd) Our whole serialization system is based on Epoch, and we
        # store unsigned integer, so we can't store anything before Epoch.
        # Sorry!
        if len(self.ts) != 0 and self.first < UNIX_UNIVERSAL_START64:
            raise BeforeEpochError(self.first)

        return GroupedTimeSeries(self.ts, granularity, start)

    @staticmethod
    def _compress(payload):
        # FIXME(jd) lz4 > 0.9.2 returns bytearray instead of bytes. But Cradox
        # does not accept bytearray but only bytes, so make sure that we have a
        # byte type returned.
        return memoryview(lz4.block.compress(payload)).tobytes()


class BoundTimeSerie(TimeSerie):
    def __init__(self, ts=None, block_size=None, back_window=0):
        """A time serie that is limited in size.

        Used to represent the full-resolution buffer of incoming raw
        datapoints associated with a metric.

        The maximum size of this time serie is expressed in a number of block
        size, called the back window.
        When the timeserie is truncated, a whole block is removed.

        You cannot set a value using a timestamp that is prior to the last
        timestamp minus this number of blocks. By default, a back window of 0
        does not allow you to go back in time prior to the current block being
        used.

        """
        super(BoundTimeSerie, self).__init__(ts)
        self.block_size = block_size
        self.back_window = back_window

    @classmethod
    def from_data(cls, timestamps=None, values=None,
                  block_size=None, back_window=0):
        return cls(make_timeseries(timestamps, values),
                   block_size=block_size, back_window=back_window)

    def __eq__(self, other):
        return (isinstance(other, BoundTimeSerie)
                and super(BoundTimeSerie, self).__eq__(other)
                and self.block_size == other.block_size
                and self.back_window == other.back_window)

    def set_values(self, values, before_truncate_callback=None):
        # NOTE: values must be sorted when passed in.
        if self.block_size is not None and len(self.ts) != 0:
            index = numpy.searchsorted(values['timestamps'],
                                       self.first_block_timestamp())
            values = values[index:]
        super(BoundTimeSerie, self).set_values(values)
        if before_truncate_callback:
            before_truncate_callback(self)
        self._truncate()

    _SERIALIZATION_TIMESTAMP_VALUE_LEN = struct.calcsize("<Qd")
    _SERIALIZATION_TIMESTAMP_LEN = struct.calcsize("<Q")

    @classmethod
    def unserialize(cls, data, block_size, back_window):
        uncompressed = lz4.block.decompress(data)
        nb_points = (
            len(uncompressed) // cls._SERIALIZATION_TIMESTAMP_VALUE_LEN
        )

        try:
            timestamps = numpy.frombuffer(uncompressed, dtype='<Q',
                                          count=nb_points)
            values = numpy.frombuffer(
                uncompressed, dtype='<d',
                offset=nb_points * cls._SERIALIZATION_TIMESTAMP_LEN)
        except ValueError:
            raise InvalidData

        return cls.from_data(
            numpy.cumsum(timestamps),
            values,
            block_size=block_size,
            back_window=back_window)

    def serialize(self):
        # NOTE(jd) Use a double delta encoding for timestamps
        timestamps = numpy.empty(self.timestamps.size, dtype='<Q')
        timestamps[0] = self.first
        timestamps[1:] = numpy.diff(self.timestamps)
        return self._compress(timestamps.tobytes() + self.values.tobytes())

    @classmethod
    def benchmark(cls):
        """Run a speed benchmark!"""
        points = SplitKey.POINTS_PER_SPLIT
        serialize_times = 50

        now = numpy.datetime64("2015-04-03 23:11")
        timestamps = numpy.sort(numpy.array(
            [now + numpy.timedelta64(random.randint(1000000, 10000000), 'us')
             for i in six.moves.range(points)]))

        print(cls.__name__)
        print("=" * len(cls.__name__))

        for title, values in [
                ("Simple continuous range", six.moves.range(points)),
                ("All 0", [float(0)] * points),
                ("All 1", [float(1)] * points),
                ("0 and 1", [0, 1] * (points // 2)),
                ("1 and 0 random",
                 [random.randint(0, 1)
                  for x in six.moves.range(points)]),
                ("Small number random pos/neg",
                 [random.randint(-100000, 10000)
                  for x in six.moves.range(points)]),
                ("Small number random pos",
                 [random.randint(0, 20000) for x in six.moves.range(points)]),
                ("Small number random neg",
                 [random.randint(-20000, 0) for x in six.moves.range(points)]),
                ("Sin(x)", list(map(math.sin, six.moves.range(points)))),
                ("random ", [random.random()
                             for x in six.moves.range(points)]),
        ]:
            print(title)
            ts = cls.from_data(timestamps, values)
            t0 = time.time()
            for i in six.moves.range(serialize_times):
                s = ts.serialize()
            t1 = time.time()
            print("  Serialization speed: %.2f MB/s"
                  % (((points * 2 * 8)
                      / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
            print("   Bytes per point: %.2f" % (len(s) / float(points)))

            t0 = time.time()
            for i in six.moves.range(serialize_times):
                cls.unserialize(s, ONE_SECOND, 1)
            t1 = time.time()
            print("  Unserialization speed: %.2f MB/s"
                  % (((points * 2 * 8)
                      / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))

    def first_block_timestamp(self):
        """Return the timestamp of the first block."""
        rounded = round_timestamp(self.timestamps[-1], self.block_size)
        return rounded - (self.block_size * self.back_window)

    def _truncate(self):
        """Truncate the timeserie."""
        if self.block_size is not None and len(self.ts) != 0:
            # Change that to remove the amount of block needed to have
            # the size <= max_size. A block is a number of "seconds" (a
            # timespan)
            self.ts = self[self.first_block_timestamp():]


@functools.total_ordering
class SplitKey(object):
    """A class representing a split key.

    A split key is basically a timestamp that can be used to split
    `AggregatedTimeSerie` objects in multiple parts. Each part will contain
    `SplitKey.POINTS_PER_SPLIT` points. The split key for a given granularity
    are regularly spaced.
    """

    POINTS_PER_SPLIT = 3600

    def __init__(self, value, sampling):
        if isinstance(value, SplitKey):
            self.key = value.key
        else:
            self.key = value

        self.sampling = sampling

    @classmethod
    def from_timestamp_and_sampling(cls, timestamp, sampling):
        return cls(
            round_timestamp(
                timestamp,
                freq=sampling * cls.POINTS_PER_SPLIT),
            sampling)

    def __next__(self):
        """Get the split key of the next split.

        :return: A `SplitKey` object.
        """
        return self.__class__(
            self.key + self.sampling * self.POINTS_PER_SPLIT,
            self.sampling)

    next = __next__

    def __iter__(self):
        return self

    def __hash__(self):
        return hash(str(self.key.astype('datetime64[ns]')) +
                    str(self.sampling.astype('timedelta64[ns]')))

    def _compare(self, op, other):
        if isinstance(other, SplitKey):
            if self.sampling != other.sampling:
                raise TypeError(
                    "Cannot compare %s with different sampling" %
                    self.__class__.__name__)
            return op(self.key, other.key)
        if isinstance(other, numpy.datetime64):
            return op(self.key, other)
        raise TypeError("Cannot compare %r with %r" % (self, other))

    def __lt__(self, other):
        return self._compare(operator.lt, other)

    def __eq__(self, other):
        return self._compare(operator.eq, other)

    def __ne__(self, other):
        # neither total_ordering nor py2 sets ne as the opposite of eq
        return self._compare(operator.ne, other)

    def __str__(self):
        return str(float(self))

    def __float__(self):
        return datetime64_to_epoch(self.key)

    def __repr__(self):
        return "<%s: %s / %s>" % (self.__class__.__name__,
                                  self.key,
                                  self.sampling)


class AggregatedTimeSerie(TimeSerie):

    _AGG_METHOD_PCT_RE = re.compile(r"([1-9][0-9]?)pct")

    PADDED_SERIAL_LEN = struct.calcsize("<?d")
    COMPRESSED_SERIAL_LEN = struct.calcsize("<Hd")
    COMPRESSED_TIMESPAMP_LEN = struct.calcsize("<H")

    def __init__(self, sampling, aggregation_method, ts=None):
        """A time serie that is downsampled.

        Used to represent the downsampled timeserie for a single
        granularity/aggregation-function pair stored for a metric.

        """
        super(AggregatedTimeSerie, self).__init__(ts)
        self.sampling = sampling
        self.aggregation_method = aggregation_method

    def resample(self, sampling):
        return AggregatedTimeSerie.from_grouped_serie(
            self.group_serie(sampling), sampling, self.aggregation_method)

    @classmethod
    def from_data(cls, sampling, aggregation_method, timestamps,
                  values):
        return cls(sampling=sampling,
                   aggregation_method=aggregation_method,
                   ts=make_timeseries(timestamps, values))

    @staticmethod
    def _get_agg_method(aggregation_method):
        q = None
        m = AggregatedTimeSerie._AGG_METHOD_PCT_RE.match(aggregation_method)
        if m:
            q = float(m.group(1))
            aggregation_method_func_name = 'quantile'
        else:
            if not hasattr(GroupedTimeSeries, aggregation_method):
                raise UnknownAggregationMethod(aggregation_method)
            aggregation_method_func_name = aggregation_method
        return aggregation_method_func_name, q

    def truncate(self, oldest_point):
        """Truncate the time series up to oldest_point excluded.

        :param oldest_point: Oldest point to keep from, this excluded.
        :type oldest_point: numpy.datetime64 or numpy.timedelta64
        """
        last = self.last
        if last is None:
            # There's nothing to truncate
            return
        if isinstance(oldest_point, numpy.timedelta64):
            oldest_point = last - oldest_point
        index = numpy.searchsorted(self.ts['timestamps'], oldest_point,
                                   side='right')
        self.ts = self.ts[index:]

    def split(self):
        # NOTE(sileht): We previously use groupby with
        # SplitKey.from_timestamp_and_sampling, but
        # this is slow because pandas can do that on any kind DataFrame
        # but we have ordered timestamps, so don't need
        # to iter the whole series.
        freq = self.sampling * SplitKey.POINTS_PER_SPLIT
        keys, counts = numpy.unique(
            round_timestamp(self.timestamps, freq),
            return_counts=True)
        start = 0
        for key, count in six.moves.zip(keys, counts):
            end = start + count
            yield (SplitKey(key, self.sampling),
                   AggregatedTimeSerie(self.sampling, self.aggregation_method,
                                       self[start:end]))
            start = end

    @classmethod
    def from_timeseries(cls, timeseries, sampling, aggregation_method):
        # NOTE(gordc): Indices must be unique across all timeseries. Also,
        # timeseries should be a list that is ordered within list and series.
        if not timeseries:
            timeseries = [make_timeseries([], [])]
        return cls(sampling=sampling,
                   aggregation_method=aggregation_method,
                   ts=numpy.concatenate(timeseries))

    @classmethod
    def from_grouped_serie(cls, grouped_serie, sampling, aggregation_method):
        agg_name, q = cls._get_agg_method(aggregation_method)
        return cls(sampling, aggregation_method,
                   ts=cls._resample_grouped(grouped_serie, agg_name,
                                            q))

    def __eq__(self, other):
        return (isinstance(other, AggregatedTimeSerie)
                and super(AggregatedTimeSerie, self).__eq__(other)
                and self.sampling == other.sampling
                and self.aggregation_method == other.aggregation_method)

    def __repr__(self):
        return "<%s 0x%x sampling=%s agg_method=%s>" % (
            self.__class__.__name__,
            id(self),
            self.sampling,
            self.aggregation_method,
        )

    @staticmethod
    def is_compressed(serialized_data):
        """Check whatever the data was serialized with compression."""
        return six.indexbytes(serialized_data, 0) == ord("c")

    @classmethod
    def unserialize(cls, data, key, agg_method):
        """Unserialize an aggregated timeserie.

        :param data: Raw data buffer.
        :param key: A :class:`SplitKey` key.
        :param agg_method: The aggregation method of this timeseries.
        """
        x, y = [], []

        if data:
            if cls.is_compressed(data):
                # Compressed format
                uncompressed = lz4.block.decompress(
                    memoryview(data)[1:].tobytes())
                nb_points = len(uncompressed) // cls.COMPRESSED_SERIAL_LEN

                try:
                    y = numpy.frombuffer(uncompressed, dtype='<H',
                                         count=nb_points)
                    x = numpy.frombuffer(
                        uncompressed, dtype='<d',
                        offset=nb_points*cls.COMPRESSED_TIMESPAMP_LEN)
                except ValueError:
                    raise InvalidData()
                y = numpy.cumsum(y * key.sampling) + key.key
            else:
                # Padded format
                try:
                    everything = numpy.frombuffer(data, dtype=[('b', '<?'),
                                                               ('v', '<d')])
                except ValueError:
                    raise InvalidData()
                index = numpy.nonzero(everything['b'])[0]
                y = index * key.sampling + key.key
                x = everything['v'][index]

        return cls.from_data(key.sampling, agg_method, y, x)

    def get_split_key(self, timestamp=None):
        """Return the split key for a particular timestamp.

        :param timestamp: If None, the first timestamp of the timeserie
                          is used.
        :return: A SplitKey object.
        """
        if timestamp is None:
            timestamp = self.first
        return SplitKey.from_timestamp_and_sampling(
            timestamp, self.sampling)

    def serialize(self, start, compressed=True):
        """Serialize an aggregated timeserie.

        The serialization starts with a byte that indicate the serialization
        format: 'c' for compressed format, '\x00' or '\x01' for uncompressed
        format. Both format can be unserialized using the `unserialize` method.

        The offset returned indicates at which offset the data should be
        written from. In the case of compressed data, this is always 0.

        :param start: SplitKey to start serialization at.
        :param compressed: Serialize in a compressed format.
        :return: a tuple of (offset, data)

        """
        offset_div = self.sampling
        # calculate how many seconds from start the series runs until and
        # initialize list to store alternating delimiter, float entries
        if compressed:
            # NOTE(jd) Use a double delta encoding for timestamps
            timestamps = numpy.empty(self.timestamps.size, dtype='<H')
            timestamps[0] = (self.first - start.key) / offset_div
            timestamps[1:] = numpy.diff(self.timestamps) / offset_div
            payload = (timestamps.tobytes() + self.values.tobytes())
            return None, b"c" + self._compress(payload)
        # NOTE(gordc): this binary serializes series based on the split
        # time. the format is 1B True/False flag which denotes whether
        # subsequent 8B is a real float or zero padding. every 9B
        # represents one second from start time. this is intended to be run
        # on data already split. ie. False,0,True,0 serialization means
        # start datapoint is padding, and 1s after start time, the
        # aggregate value is 0. calculate how many seconds from start the
        # series runs until and initialize list to store alternating
        # delimiter, float entries
        first = self.first  # NOTE(jd) needed because faster
        e_offset = int((self.last - first) / offset_div) + 1

        locs = numpy.zeros(self.timestamps.size, dtype=numpy.int)
        locs[1:] = numpy.cumsum(numpy.diff(self.timestamps)) / offset_div

        # Fill everything with zero and set
        serial = numpy.zeros((e_offset,), dtype=[('b', '<?'), ('v', '<d')])
        serial['b'][locs] = numpy.ones_like(self.values, dtype='<?')
        serial['v'][locs] = self.values

        offset = int((first - start.key) / offset_div) * self.PADDED_SERIAL_LEN
        return offset, serial.tobytes()

    @staticmethod
    def _resample_grouped(grouped_serie, agg_name, q=None):
        agg_func = getattr(grouped_serie, agg_name)
        return agg_func(q) if agg_name == 'quantile' else agg_func()

    def fetch(self, from_timestamp=None, to_timestamp=None):
        """Fetch aggregated time value.

        Returns a sorted list of tuples (timestamp, granularity, value).
        """
        # Round timestamp to our granularity so we're sure that if e.g. 17:02
        # is requested and we have points for 17:00 and 17:05 in a 5min
        # granularity, we do return the 17:00 point and not nothing
        if from_timestamp is None:
            from_ = None
        else:
            from_ = round_timestamp(from_timestamp, self.sampling)
        points = self[from_:to_timestamp]
        return six.moves.zip(points['timestamps'],
                             itertools.repeat(self.sampling),
                             points['values'])

    @classmethod
    def benchmark(cls):
        """Run a speed benchmark!"""
        points = SplitKey.POINTS_PER_SPLIT
        sampling = numpy.timedelta64(5, 's')
        resample = numpy.timedelta64(35, 's')

        now = numpy.datetime64("2015-04-03 23:11")
        timestamps = numpy.sort(numpy.array(
            [now + i * sampling
             for i in six.moves.range(points)]))

        print(cls.__name__)
        print("=" * len(cls.__name__))

        for title, values in [
                ("Simple continuous range", six.moves.range(points)),
                ("All 0", [float(0)] * points),
                ("All 1", [float(1)] * points),
                ("0 and 1", [0, 1] * (points // 2)),
                ("1 and 0 random",
                 [random.randint(0, 1)
                  for x in six.moves.range(points)]),
                ("Small number random pos/neg",
                 [random.randint(-100000, 10000)
                  for x in six.moves.range(points)]),
                ("Small number random pos",
                 [random.randint(0, 20000) for x in six.moves.range(points)]),
                ("Small number random neg",
                 [random.randint(-20000, 0) for x in six.moves.range(points)]),
                ("Sin(x)", list(map(math.sin, six.moves.range(points)))),
                ("random ", [random.random()
                             for x in six.moves.range(points)]),
        ]:
            print(title)
            serialize_times = 50
            ts = cls.from_data(sampling, 'mean', timestamps, values)
            t0 = time.time()
            key = ts.get_split_key()
            for i in six.moves.range(serialize_times):
                e, s = ts.serialize(key, compressed=False)
            t1 = time.time()
            print("  Uncompressed serialization speed: %.2f MB/s"
                  % (((points * 2 * 8)
                      / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
            print("   Bytes per point: %.2f" % (len(s) / float(points)))

            t0 = time.time()
            for i in six.moves.range(serialize_times):
                cls.unserialize(s, key, 'mean')
            t1 = time.time()
            print("  Unserialization speed: %.2f MB/s"
                  % (((points * 2 * 8)
                      / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))

            t0 = time.time()
            for i in six.moves.range(serialize_times):
                o, s = ts.serialize(key, compressed=True)
            t1 = time.time()
            print("  Compressed serialization speed: %.2f MB/s"
                  % (((points * 2 * 8)
                      / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
            print("   Bytes per point: %.2f" % (len(s) / float(points)))

            t0 = time.time()
            for i in six.moves.range(serialize_times):
                cls.unserialize(s, key, 'mean')
            t1 = time.time()
            print("  Uncompression speed: %.2f MB/s"
                  % (((points * 2 * 8)
                      / ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))

            def per_sec(t1, t0):
                return 1 / ((t1 - t0) / serialize_times)

            t0 = time.time()
            for i in six.moves.range(serialize_times):
                list(ts.split())
            t1 = time.time()
            print("  split() speed: %.2f Hz" % per_sec(t1, t0))

            # NOTE(sileht): propose a new series with half overload timestamps
            pts = ts.ts.copy()
            tsbis = cls(ts=pts, sampling=sampling, aggregation_method='mean')
            tsbis.ts['timestamps'] = (
                tsbis.timestamps - numpy.timedelta64(
                    sampling * points / 2, 's')
            )

            t0 = time.time()
            for i in six.moves.range(serialize_times):
                ts.merge(tsbis)
            t1 = time.time()
            print("  merge() speed %.2f Hz" % per_sec(t1, t0))

            for agg in ['mean', 'sum', 'max', 'min', 'std', 'median', 'first',
                        'last', 'count', '5pct', '90pct']:
                serialize_times = 3 if agg.endswith('pct') else 10
                ts = cls(ts=pts, sampling=sampling,
                         aggregation_method=agg)
                t0 = time.time()
                for i in six.moves.range(serialize_times):
                    ts.resample(resample)
                t1 = time.time()
                print("  resample(%s) speed: %.2f Hz"
                      % (agg, per_sec(t1, t0)))


if __name__ == '__main__':
    import sys
    args = sys.argv[1:]
    if not args or "--boundtimeserie" in args:
        BoundTimeSerie.benchmark()
    if not args or "--aggregatedtimeserie" in args:
        AggregatedTimeSerie.benchmark()