/usr/lib/python2.7/dist-packages/gnocchi/carbonara.py is in python-gnocchi 4.2.0-0ubuntu5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | # -*- encoding: utf-8 -*-
#
# Copyright © 2016-2017 Red Hat, Inc.
# Copyright © 2014-2015 eNovance
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""Time series data manipulation, better with pancetta."""
import functools
import itertools
import math
import operator
import random
import re
import struct
import time
import lz4.block
import numpy
import six
UNIX_UNIVERSAL_START64 = numpy.datetime64("1970", 'ns')
ONE_SECOND = numpy.timedelta64(1, 's')
class BeforeEpochError(Exception):
"""Error raised when a timestamp before Epoch is used."""
def __init__(self, timestamp):
self.timestamp = timestamp
super(BeforeEpochError, self).__init__(
"%s is before Epoch" % timestamp)
class UnknownAggregationMethod(Exception):
"""Error raised when the aggregation method is unknown."""
def __init__(self, agg):
self.aggregation_method = agg
super(UnknownAggregationMethod, self).__init__(
"Unknown aggregation method `%s'" % agg)
class InvalidData(ValueError):
"""Error raised when data are corrupted."""
def __init__(self):
super(InvalidData, self).__init__("Unable to unpack, invalid data")
def datetime64_to_epoch(dt):
return (dt - UNIX_UNIVERSAL_START64) / ONE_SECOND
def round_timestamp(ts, freq):
return UNIX_UNIVERSAL_START64 + numpy.floor(
(ts - UNIX_UNIVERSAL_START64) / freq) * freq
TIMESERIES_ARRAY_DTYPE = [('timestamps', '<datetime64[ns]'),
('values', '<d')]
def make_timeseries(timestamps, values):
"""Return a Numpy array representing a timeseries.
This array specifies correctly the data types, which is important for
Numpy to operate fastly.
"""
l = len(timestamps)
if l != len(values):
raise ValueError("Timestamps and values must have the same length")
arr = numpy.zeros(l, dtype=TIMESERIES_ARRAY_DTYPE)
arr['timestamps'] = timestamps
arr['values'] = values
return arr
def combine_timeseries(ts1, ts2):
"""Combine a timeseries into this one.
The timeseries does not need to be sorted.
If a timestamp is present in both `ts1` and `ts2`, then value from `ts1`
is used.
:param ts: The timeseries to combine.
:return: A new timeseries.
"""
ts = numpy.concatenate((ts1, ts2))
_, index = numpy.unique(ts['timestamps'], return_index=True)
return ts[index]
class GroupedTimeSeries(object):
def __init__(self, ts, granularity, start=None):
# NOTE(sileht): The whole class assumes ts is ordered and don't have
# duplicate timestamps, it uses numpy.unique that sorted list, but
# we always assume the orderd to be the same as the input.
self.granularity = granularity
self.start = start
if start is None:
self._ts = ts
self._ts_for_derive = ts
else:
self._ts = ts[numpy.searchsorted(ts['timestamps'], start):]
start_derive = start - granularity
self._ts_for_derive = ts[
numpy.searchsorted(ts['timestamps'], start_derive):
]
self.indexes = round_timestamp(self._ts['timestamps'], granularity)
self.tstamps, self.counts = numpy.unique(self.indexes,
return_counts=True)
def mean(self):
series = self.sum()
series['values'] /= self.counts
return series
def sum(self):
return make_timeseries(self.tstamps, numpy.bincount(
numpy.repeat(numpy.arange(self.counts.size), self.counts),
weights=self._ts['values']))
def min(self):
ordered = self._ts['values'].argsort()
uniq_inv = numpy.repeat(numpy.arange(self.counts.size), self.counts)
values = numpy.zeros(self.tstamps.size)
values[uniq_inv[ordered][::-1]] = self._ts['values'][ordered][::-1]
return make_timeseries(self.tstamps, values)
def max(self):
ordered = self._ts['values'].argsort()
uniq_inv = numpy.repeat(numpy.arange(self.counts.size), self.counts)
values = numpy.zeros(self.tstamps.size)
values[uniq_inv[ordered]] = self._ts['values'][ordered]
return make_timeseries(self.tstamps, values)
def median(self):
ordered = numpy.lexsort((self._ts['values'], self.indexes))
# TODO(gordc): can use np.divmod when centos supports numpy 1.13
mid_diff = numpy.floor_divide(self.counts, 2)
odd = numpy.mod(self.counts, 2)
mid_floor = (numpy.cumsum(self.counts) - 1) - mid_diff
mid_ceil = mid_floor + (odd + 1) % 2
return make_timeseries(
self.tstamps, (self._ts['values'][ordered][mid_floor] +
self._ts['values'][ordered][mid_ceil]) / 2.0)
def std(self):
mean_ts = self.mean()
diff_sq = numpy.square(self._ts['values'] -
numpy.repeat(mean_ts['values'], self.counts))
bin_sum = numpy.bincount(
numpy.repeat(numpy.arange(self.counts.size), self.counts),
weights=diff_sq)
return make_timeseries(self.tstamps[self.counts > 1],
numpy.sqrt(bin_sum[self.counts > 1] /
(self.counts[self.counts > 1] - 1)))
def count(self):
return make_timeseries(self.tstamps, self.counts)
def last(self):
cumcounts = numpy.cumsum(self.counts) - 1
values = self._ts['values'][cumcounts]
return make_timeseries(self.tstamps, values)
def first(self):
cumcounts = numpy.cumsum(self.counts) - self.counts
values = self._ts['values'][cumcounts]
return make_timeseries(self.tstamps, values)
def quantile(self, q):
ordered = numpy.lexsort((self._ts['values'], self.indexes))
min_pos = numpy.cumsum(self.counts) - self.counts
real_pos = min_pos + (self.counts - 1) * (q / 100)
floor_pos = numpy.floor(real_pos).astype(numpy.int, copy=False)
ceil_pos = numpy.ceil(real_pos).astype(numpy.int, copy=False)
values = (
self._ts['values'][ordered][floor_pos] * (ceil_pos - real_pos) +
self._ts['values'][ordered][ceil_pos] * (real_pos - floor_pos))
# NOTE(gordc): above code doesn't compute proper value if pct lands on
# exact index, it sets it to 0. we need to set it properly here
exact_pos = numpy.equal(floor_pos, ceil_pos)
values[exact_pos] = self._ts['values'][ordered][floor_pos][exact_pos]
return make_timeseries(self.tstamps, values)
def derived(self):
timestamps = self._ts_for_derive['timestamps'][1:]
values = numpy.diff(self._ts_for_derive['values'])
# FIXME(sileht): create some alternative __init__ to avoid creating
# useless Numpy object, recounting, timestamps convertion, ...
return GroupedTimeSeries(make_timeseries(timestamps, values),
self.granularity, self.start)
class TimeSerie(object):
"""A representation of series of a timestamp with a value.
Duplicate timestamps are not allowed and will be filtered to use the
last in the group when the TimeSerie is created or extended.
"""
def __init__(self, ts=None):
if ts is None:
ts = make_timeseries([], [])
self.ts = ts
@classmethod
def from_data(cls, timestamps=None, values=None):
return cls(make_timeseries(timestamps, values))
def __eq__(self, other):
return (isinstance(other, TimeSerie) and
numpy.all(self.ts == other.ts))
def __getitem__(self, key):
if isinstance(key, numpy.datetime64):
idx = numpy.searchsorted(self.timestamps, key)
if self.timestamps[idx] == key:
return self[idx]
raise KeyError(key)
if isinstance(key, slice):
if isinstance(key.start, numpy.datetime64):
start = numpy.searchsorted(self.timestamps, key.start)
else:
start = key.start
if isinstance(key.stop, numpy.datetime64):
stop = numpy.searchsorted(self.timestamps, key.stop)
else:
stop = key.stop
key = slice(start, stop, key.step)
return self.ts[key]
def _merge(self, ts):
"""Merge a Numpy timeseries into this one."""
self.ts = combine_timeseries(ts, self.ts)
def merge(self, ts):
"""Merge a TimeSerie into this one."""
return self._merge(ts.ts)
def set_values(self, values):
"""Set values into this timeseries.
:param values: A list of tuple (timestamp, value).
"""
return self._merge(values)
def __len__(self):
return len(self.ts)
@property
def timestamps(self):
return self.ts['timestamps']
@property
def values(self):
return self.ts['values']
@property
def first(self):
try:
return self.timestamps[0]
except IndexError:
return
@property
def last(self):
try:
return self.timestamps[-1]
except IndexError:
return
def group_serie(self, granularity, start=None):
# NOTE(jd) Our whole serialization system is based on Epoch, and we
# store unsigned integer, so we can't store anything before Epoch.
# Sorry!
if len(self.ts) != 0 and self.first < UNIX_UNIVERSAL_START64:
raise BeforeEpochError(self.first)
return GroupedTimeSeries(self.ts, granularity, start)
@staticmethod
def _compress(payload):
# FIXME(jd) lz4 > 0.9.2 returns bytearray instead of bytes. But Cradox
# does not accept bytearray but only bytes, so make sure that we have a
# byte type returned.
return memoryview(lz4.block.compress(payload)).tobytes()
class BoundTimeSerie(TimeSerie):
def __init__(self, ts=None, block_size=None, back_window=0):
"""A time serie that is limited in size.
Used to represent the full-resolution buffer of incoming raw
datapoints associated with a metric.
The maximum size of this time serie is expressed in a number of block
size, called the back window.
When the timeserie is truncated, a whole block is removed.
You cannot set a value using a timestamp that is prior to the last
timestamp minus this number of blocks. By default, a back window of 0
does not allow you to go back in time prior to the current block being
used.
"""
super(BoundTimeSerie, self).__init__(ts)
self.block_size = block_size
self.back_window = back_window
@classmethod
def from_data(cls, timestamps=None, values=None,
block_size=None, back_window=0):
return cls(make_timeseries(timestamps, values),
block_size=block_size, back_window=back_window)
def __eq__(self, other):
return (isinstance(other, BoundTimeSerie)
and super(BoundTimeSerie, self).__eq__(other)
and self.block_size == other.block_size
and self.back_window == other.back_window)
def set_values(self, values, before_truncate_callback=None):
# NOTE: values must be sorted when passed in.
if self.block_size is not None and len(self.ts) != 0:
index = numpy.searchsorted(values['timestamps'],
self.first_block_timestamp())
values = values[index:]
super(BoundTimeSerie, self).set_values(values)
if before_truncate_callback:
before_truncate_callback(self)
self._truncate()
_SERIALIZATION_TIMESTAMP_VALUE_LEN = struct.calcsize("<Qd")
_SERIALIZATION_TIMESTAMP_LEN = struct.calcsize("<Q")
@classmethod
def unserialize(cls, data, block_size, back_window):
uncompressed = lz4.block.decompress(data)
nb_points = (
len(uncompressed) // cls._SERIALIZATION_TIMESTAMP_VALUE_LEN
)
try:
timestamps = numpy.frombuffer(uncompressed, dtype='<Q',
count=nb_points)
values = numpy.frombuffer(
uncompressed, dtype='<d',
offset=nb_points * cls._SERIALIZATION_TIMESTAMP_LEN)
except ValueError:
raise InvalidData
return cls.from_data(
numpy.cumsum(timestamps),
values,
block_size=block_size,
back_window=back_window)
def serialize(self):
# NOTE(jd) Use a double delta encoding for timestamps
timestamps = numpy.empty(self.timestamps.size, dtype='<Q')
timestamps[0] = self.first
timestamps[1:] = numpy.diff(self.timestamps)
return self._compress(timestamps.tobytes() + self.values.tobytes())
@classmethod
def benchmark(cls):
"""Run a speed benchmark!"""
points = SplitKey.POINTS_PER_SPLIT
serialize_times = 50
now = numpy.datetime64("2015-04-03 23:11")
timestamps = numpy.sort(numpy.array(
[now + numpy.timedelta64(random.randint(1000000, 10000000), 'us')
for i in six.moves.range(points)]))
print(cls.__name__)
print("=" * len(cls.__name__))
for title, values in [
("Simple continuous range", six.moves.range(points)),
("All 0", [float(0)] * points),
("All 1", [float(1)] * points),
("0 and 1", [0, 1] * (points // 2)),
("1 and 0 random",
[random.randint(0, 1)
for x in six.moves.range(points)]),
("Small number random pos/neg",
[random.randint(-100000, 10000)
for x in six.moves.range(points)]),
("Small number random pos",
[random.randint(0, 20000) for x in six.moves.range(points)]),
("Small number random neg",
[random.randint(-20000, 0) for x in six.moves.range(points)]),
("Sin(x)", list(map(math.sin, six.moves.range(points)))),
("random ", [random.random()
for x in six.moves.range(points)]),
]:
print(title)
ts = cls.from_data(timestamps, values)
t0 = time.time()
for i in six.moves.range(serialize_times):
s = ts.serialize()
t1 = time.time()
print(" Serialization speed: %.2f MB/s"
% (((points * 2 * 8)
/ ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
print(" Bytes per point: %.2f" % (len(s) / float(points)))
t0 = time.time()
for i in six.moves.range(serialize_times):
cls.unserialize(s, ONE_SECOND, 1)
t1 = time.time()
print(" Unserialization speed: %.2f MB/s"
% (((points * 2 * 8)
/ ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
def first_block_timestamp(self):
"""Return the timestamp of the first block."""
rounded = round_timestamp(self.timestamps[-1], self.block_size)
return rounded - (self.block_size * self.back_window)
def _truncate(self):
"""Truncate the timeserie."""
if self.block_size is not None and len(self.ts) != 0:
# Change that to remove the amount of block needed to have
# the size <= max_size. A block is a number of "seconds" (a
# timespan)
self.ts = self[self.first_block_timestamp():]
@functools.total_ordering
class SplitKey(object):
"""A class representing a split key.
A split key is basically a timestamp that can be used to split
`AggregatedTimeSerie` objects in multiple parts. Each part will contain
`SplitKey.POINTS_PER_SPLIT` points. The split key for a given granularity
are regularly spaced.
"""
POINTS_PER_SPLIT = 3600
def __init__(self, value, sampling):
if isinstance(value, SplitKey):
self.key = value.key
else:
self.key = value
self.sampling = sampling
@classmethod
def from_timestamp_and_sampling(cls, timestamp, sampling):
return cls(
round_timestamp(
timestamp,
freq=sampling * cls.POINTS_PER_SPLIT),
sampling)
def __next__(self):
"""Get the split key of the next split.
:return: A `SplitKey` object.
"""
return self.__class__(
self.key + self.sampling * self.POINTS_PER_SPLIT,
self.sampling)
next = __next__
def __iter__(self):
return self
def __hash__(self):
return hash(str(self.key.astype('datetime64[ns]')) +
str(self.sampling.astype('timedelta64[ns]')))
def _compare(self, op, other):
if isinstance(other, SplitKey):
if self.sampling != other.sampling:
raise TypeError(
"Cannot compare %s with different sampling" %
self.__class__.__name__)
return op(self.key, other.key)
if isinstance(other, numpy.datetime64):
return op(self.key, other)
raise TypeError("Cannot compare %r with %r" % (self, other))
def __lt__(self, other):
return self._compare(operator.lt, other)
def __eq__(self, other):
return self._compare(operator.eq, other)
def __ne__(self, other):
# neither total_ordering nor py2 sets ne as the opposite of eq
return self._compare(operator.ne, other)
def __str__(self):
return str(float(self))
def __float__(self):
return datetime64_to_epoch(self.key)
def __repr__(self):
return "<%s: %s / %s>" % (self.__class__.__name__,
self.key,
self.sampling)
class AggregatedTimeSerie(TimeSerie):
_AGG_METHOD_PCT_RE = re.compile(r"([1-9][0-9]?)pct")
PADDED_SERIAL_LEN = struct.calcsize("<?d")
COMPRESSED_SERIAL_LEN = struct.calcsize("<Hd")
COMPRESSED_TIMESPAMP_LEN = struct.calcsize("<H")
def __init__(self, sampling, aggregation_method, ts=None):
"""A time serie that is downsampled.
Used to represent the downsampled timeserie for a single
granularity/aggregation-function pair stored for a metric.
"""
super(AggregatedTimeSerie, self).__init__(ts)
self.sampling = sampling
self.aggregation_method = aggregation_method
def resample(self, sampling):
return AggregatedTimeSerie.from_grouped_serie(
self.group_serie(sampling), sampling, self.aggregation_method)
@classmethod
def from_data(cls, sampling, aggregation_method, timestamps,
values):
return cls(sampling=sampling,
aggregation_method=aggregation_method,
ts=make_timeseries(timestamps, values))
@staticmethod
def _get_agg_method(aggregation_method):
q = None
m = AggregatedTimeSerie._AGG_METHOD_PCT_RE.match(aggregation_method)
if m:
q = float(m.group(1))
aggregation_method_func_name = 'quantile'
else:
if not hasattr(GroupedTimeSeries, aggregation_method):
raise UnknownAggregationMethod(aggregation_method)
aggregation_method_func_name = aggregation_method
return aggregation_method_func_name, q
def truncate(self, oldest_point):
"""Truncate the time series up to oldest_point excluded.
:param oldest_point: Oldest point to keep from, this excluded.
:type oldest_point: numpy.datetime64 or numpy.timedelta64
"""
last = self.last
if last is None:
# There's nothing to truncate
return
if isinstance(oldest_point, numpy.timedelta64):
oldest_point = last - oldest_point
index = numpy.searchsorted(self.ts['timestamps'], oldest_point,
side='right')
self.ts = self.ts[index:]
def split(self):
# NOTE(sileht): We previously use groupby with
# SplitKey.from_timestamp_and_sampling, but
# this is slow because pandas can do that on any kind DataFrame
# but we have ordered timestamps, so don't need
# to iter the whole series.
freq = self.sampling * SplitKey.POINTS_PER_SPLIT
keys, counts = numpy.unique(
round_timestamp(self.timestamps, freq),
return_counts=True)
start = 0
for key, count in six.moves.zip(keys, counts):
end = start + count
yield (SplitKey(key, self.sampling),
AggregatedTimeSerie(self.sampling, self.aggregation_method,
self[start:end]))
start = end
@classmethod
def from_timeseries(cls, timeseries, sampling, aggregation_method):
# NOTE(gordc): Indices must be unique across all timeseries. Also,
# timeseries should be a list that is ordered within list and series.
if not timeseries:
timeseries = [make_timeseries([], [])]
return cls(sampling=sampling,
aggregation_method=aggregation_method,
ts=numpy.concatenate(timeseries))
@classmethod
def from_grouped_serie(cls, grouped_serie, sampling, aggregation_method):
agg_name, q = cls._get_agg_method(aggregation_method)
return cls(sampling, aggregation_method,
ts=cls._resample_grouped(grouped_serie, agg_name,
q))
def __eq__(self, other):
return (isinstance(other, AggregatedTimeSerie)
and super(AggregatedTimeSerie, self).__eq__(other)
and self.sampling == other.sampling
and self.aggregation_method == other.aggregation_method)
def __repr__(self):
return "<%s 0x%x sampling=%s agg_method=%s>" % (
self.__class__.__name__,
id(self),
self.sampling,
self.aggregation_method,
)
@staticmethod
def is_compressed(serialized_data):
"""Check whatever the data was serialized with compression."""
return six.indexbytes(serialized_data, 0) == ord("c")
@classmethod
def unserialize(cls, data, key, agg_method):
"""Unserialize an aggregated timeserie.
:param data: Raw data buffer.
:param key: A :class:`SplitKey` key.
:param agg_method: The aggregation method of this timeseries.
"""
x, y = [], []
if data:
if cls.is_compressed(data):
# Compressed format
uncompressed = lz4.block.decompress(
memoryview(data)[1:].tobytes())
nb_points = len(uncompressed) // cls.COMPRESSED_SERIAL_LEN
try:
y = numpy.frombuffer(uncompressed, dtype='<H',
count=nb_points)
x = numpy.frombuffer(
uncompressed, dtype='<d',
offset=nb_points*cls.COMPRESSED_TIMESPAMP_LEN)
except ValueError:
raise InvalidData()
y = numpy.cumsum(y * key.sampling) + key.key
else:
# Padded format
try:
everything = numpy.frombuffer(data, dtype=[('b', '<?'),
('v', '<d')])
except ValueError:
raise InvalidData()
index = numpy.nonzero(everything['b'])[0]
y = index * key.sampling + key.key
x = everything['v'][index]
return cls.from_data(key.sampling, agg_method, y, x)
def get_split_key(self, timestamp=None):
"""Return the split key for a particular timestamp.
:param timestamp: If None, the first timestamp of the timeserie
is used.
:return: A SplitKey object.
"""
if timestamp is None:
timestamp = self.first
return SplitKey.from_timestamp_and_sampling(
timestamp, self.sampling)
def serialize(self, start, compressed=True):
"""Serialize an aggregated timeserie.
The serialization starts with a byte that indicate the serialization
format: 'c' for compressed format, '\x00' or '\x01' for uncompressed
format. Both format can be unserialized using the `unserialize` method.
The offset returned indicates at which offset the data should be
written from. In the case of compressed data, this is always 0.
:param start: SplitKey to start serialization at.
:param compressed: Serialize in a compressed format.
:return: a tuple of (offset, data)
"""
offset_div = self.sampling
# calculate how many seconds from start the series runs until and
# initialize list to store alternating delimiter, float entries
if compressed:
# NOTE(jd) Use a double delta encoding for timestamps
timestamps = numpy.empty(self.timestamps.size, dtype='<H')
timestamps[0] = (self.first - start.key) / offset_div
timestamps[1:] = numpy.diff(self.timestamps) / offset_div
payload = (timestamps.tobytes() + self.values.tobytes())
return None, b"c" + self._compress(payload)
# NOTE(gordc): this binary serializes series based on the split
# time. the format is 1B True/False flag which denotes whether
# subsequent 8B is a real float or zero padding. every 9B
# represents one second from start time. this is intended to be run
# on data already split. ie. False,0,True,0 serialization means
# start datapoint is padding, and 1s after start time, the
# aggregate value is 0. calculate how many seconds from start the
# series runs until and initialize list to store alternating
# delimiter, float entries
first = self.first # NOTE(jd) needed because faster
e_offset = int((self.last - first) / offset_div) + 1
locs = numpy.zeros(self.timestamps.size, dtype=numpy.int)
locs[1:] = numpy.cumsum(numpy.diff(self.timestamps)) / offset_div
# Fill everything with zero and set
serial = numpy.zeros((e_offset,), dtype=[('b', '<?'), ('v', '<d')])
serial['b'][locs] = numpy.ones_like(self.values, dtype='<?')
serial['v'][locs] = self.values
offset = int((first - start.key) / offset_div) * self.PADDED_SERIAL_LEN
return offset, serial.tobytes()
@staticmethod
def _resample_grouped(grouped_serie, agg_name, q=None):
agg_func = getattr(grouped_serie, agg_name)
return agg_func(q) if agg_name == 'quantile' else agg_func()
def fetch(self, from_timestamp=None, to_timestamp=None):
"""Fetch aggregated time value.
Returns a sorted list of tuples (timestamp, granularity, value).
"""
# Round timestamp to our granularity so we're sure that if e.g. 17:02
# is requested and we have points for 17:00 and 17:05 in a 5min
# granularity, we do return the 17:00 point and not nothing
if from_timestamp is None:
from_ = None
else:
from_ = round_timestamp(from_timestamp, self.sampling)
points = self[from_:to_timestamp]
return six.moves.zip(points['timestamps'],
itertools.repeat(self.sampling),
points['values'])
@classmethod
def benchmark(cls):
"""Run a speed benchmark!"""
points = SplitKey.POINTS_PER_SPLIT
sampling = numpy.timedelta64(5, 's')
resample = numpy.timedelta64(35, 's')
now = numpy.datetime64("2015-04-03 23:11")
timestamps = numpy.sort(numpy.array(
[now + i * sampling
for i in six.moves.range(points)]))
print(cls.__name__)
print("=" * len(cls.__name__))
for title, values in [
("Simple continuous range", six.moves.range(points)),
("All 0", [float(0)] * points),
("All 1", [float(1)] * points),
("0 and 1", [0, 1] * (points // 2)),
("1 and 0 random",
[random.randint(0, 1)
for x in six.moves.range(points)]),
("Small number random pos/neg",
[random.randint(-100000, 10000)
for x in six.moves.range(points)]),
("Small number random pos",
[random.randint(0, 20000) for x in six.moves.range(points)]),
("Small number random neg",
[random.randint(-20000, 0) for x in six.moves.range(points)]),
("Sin(x)", list(map(math.sin, six.moves.range(points)))),
("random ", [random.random()
for x in six.moves.range(points)]),
]:
print(title)
serialize_times = 50
ts = cls.from_data(sampling, 'mean', timestamps, values)
t0 = time.time()
key = ts.get_split_key()
for i in six.moves.range(serialize_times):
e, s = ts.serialize(key, compressed=False)
t1 = time.time()
print(" Uncompressed serialization speed: %.2f MB/s"
% (((points * 2 * 8)
/ ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
print(" Bytes per point: %.2f" % (len(s) / float(points)))
t0 = time.time()
for i in six.moves.range(serialize_times):
cls.unserialize(s, key, 'mean')
t1 = time.time()
print(" Unserialization speed: %.2f MB/s"
% (((points * 2 * 8)
/ ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
t0 = time.time()
for i in six.moves.range(serialize_times):
o, s = ts.serialize(key, compressed=True)
t1 = time.time()
print(" Compressed serialization speed: %.2f MB/s"
% (((points * 2 * 8)
/ ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
print(" Bytes per point: %.2f" % (len(s) / float(points)))
t0 = time.time()
for i in six.moves.range(serialize_times):
cls.unserialize(s, key, 'mean')
t1 = time.time()
print(" Uncompression speed: %.2f MB/s"
% (((points * 2 * 8)
/ ((t1 - t0) / serialize_times)) / (1024.0 * 1024.0)))
def per_sec(t1, t0):
return 1 / ((t1 - t0) / serialize_times)
t0 = time.time()
for i in six.moves.range(serialize_times):
list(ts.split())
t1 = time.time()
print(" split() speed: %.2f Hz" % per_sec(t1, t0))
# NOTE(sileht): propose a new series with half overload timestamps
pts = ts.ts.copy()
tsbis = cls(ts=pts, sampling=sampling, aggregation_method='mean')
tsbis.ts['timestamps'] = (
tsbis.timestamps - numpy.timedelta64(
sampling * points / 2, 's')
)
t0 = time.time()
for i in six.moves.range(serialize_times):
ts.merge(tsbis)
t1 = time.time()
print(" merge() speed %.2f Hz" % per_sec(t1, t0))
for agg in ['mean', 'sum', 'max', 'min', 'std', 'median', 'first',
'last', 'count', '5pct', '90pct']:
serialize_times = 3 if agg.endswith('pct') else 10
ts = cls(ts=pts, sampling=sampling,
aggregation_method=agg)
t0 = time.time()
for i in six.moves.range(serialize_times):
ts.resample(resample)
t1 = time.time()
print(" resample(%s) speed: %.2f Hz"
% (agg, per_sec(t1, t0)))
if __name__ == '__main__':
import sys
args = sys.argv[1:]
if not args or "--boundtimeserie" in args:
BoundTimeSerie.benchmark()
if not args or "--aggregatedtimeserie" in args:
AggregatedTimeSerie.benchmark()
|