This file is indexed.

/usr/share/doc/python-hypothesis/html/numpy.html is in python-hypothesis-doc 3.44.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Hypothesis for the Scientific Stack &mdash; Hypothesis 3.44.1 documentation</title>
  

  
  
  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
  

  

  
        <link rel="index" title="Index"
              href="genindex.html"/>
        <link rel="search" title="Search" href="search.html"/>
    <link rel="top" title="Hypothesis 3.44.1 documentation" href="index.html"/>
        <link rel="next" title="Health checks" href="healthchecks.html"/>
        <link rel="prev" title="Hypothesis for Django users" href="django.html"/> 

  
  <script src="_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

   
  <div class="wy-grid-for-nav">

    
    <nav data-toggle="wy-nav-shift" class="wy-nav-side">
      <div class="wy-side-scroll">
        <div class="wy-side-nav-search">
          

          
            <a href="index.html" class="icon icon-home"> Hypothesis
          

          
          </a>

          
            
            
              <div class="version">
                3.44.1
              </div>
            
          

          
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>

          
        </div>

        <div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
          
            
            
              
            
            
              <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="quickstart.html">Quick start guide</a></li>
<li class="toctree-l1"><a class="reference internal" href="details.html">Details and advanced features</a></li>
<li class="toctree-l1"><a class="reference internal" href="settings.html">Settings</a></li>
<li class="toctree-l1"><a class="reference internal" href="data.html">What you can generate and how</a></li>
<li class="toctree-l1"><a class="reference internal" href="extras.html">Additional packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="django.html">Hypothesis for Django users</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">Hypothesis for the Scientific Stack</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#numpy">numpy</a></li>
<li class="toctree-l2"><a class="reference internal" href="#pandas">pandas</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#supported-versions">Supported Versions</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="healthchecks.html">Health checks</a></li>
<li class="toctree-l1"><a class="reference internal" href="database.html">The Hypothesis Example Database</a></li>
<li class="toctree-l1"><a class="reference internal" href="stateful.html">Stateful testing</a></li>
<li class="toctree-l1"><a class="reference internal" href="supported.html">Compatibility</a></li>
<li class="toctree-l1"><a class="reference internal" href="examples.html">Some more examples</a></li>
<li class="toctree-l1"><a class="reference internal" href="community.html">Community</a></li>
<li class="toctree-l1"><a class="reference internal" href="manifesto.html">The Purpose of Hypothesis</a></li>
<li class="toctree-l1"><a class="reference internal" href="endorsements.html">Testimonials</a></li>
<li class="toctree-l1"><a class="reference internal" href="usage.html">Open Source Projects using Hypothesis</a></li>
<li class="toctree-l1"><a class="reference internal" href="strategies.html">Projects extending Hypothesis</a></li>
<li class="toctree-l1"><a class="reference internal" href="changes.html">Changelog</a></li>
<li class="toctree-l1"><a class="reference internal" href="development.html">Ongoing Hypothesis Development</a></li>
<li class="toctree-l1"><a class="reference internal" href="support.html">Help and Support</a></li>
<li class="toctree-l1"><a class="reference internal" href="packaging.html">Packaging Guidelines</a></li>
<li class="toctree-l1"><a class="reference internal" href="reproducing.html">Reproducing Failures</a></li>
</ul>

            
          
        </div>
      </div>
    </nav>

    <section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">

      
      <nav class="wy-nav-top" role="navigation" aria-label="top navigation">
        
          <i data-toggle="wy-nav-top" class="fa fa-bars"></i>
          <a href="index.html">Hypothesis</a>
        
      </nav>


      
      <div class="wy-nav-content">
        <div class="rst-content">
          















<div role="navigation" aria-label="breadcrumbs navigation">

  <ul class="wy-breadcrumbs">
    
      <li><a href="index.html">Docs</a> &raquo;</li>
        
      <li>Hypothesis for the Scientific Stack</li>
    
    
      <li class="wy-breadcrumbs-aside">
        
            
            <a href="_sources/numpy.rst.txt" rel="nofollow"> View page source</a>
          
        
      </li>
    
  </ul>

  
  <hr/>
</div>
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="hypothesis-for-the-scientific-stack">
<h1>Hypothesis for the Scientific Stack<a class="headerlink" href="#hypothesis-for-the-scientific-stack" title="Permalink to this headline"></a></h1>
<div class="section" id="numpy">
<span id="hypothesis-numpy"></span><h2>numpy<a class="headerlink" href="#numpy" title="Permalink to this headline"></a></h2>
<p>Hypothesis offers a number of strategies for <a class="reference external" href="http://www.numpy.org/">NumPy</a> testing,
available in the <code class="xref py py-mod docutils literal"><span class="pre">hypothesis[numpy]</span></code> <a class="reference internal" href="extras.html"><span class="doc">extra</span></a>.
It lives in the <code class="docutils literal"><span class="pre">hypothesis.extra.numpy</span></code> package.</p>
<p>The centerpiece is the <a class="reference internal" href="#hypothesis.extra.numpy.arrays" title="hypothesis.extra.numpy.arrays"><code class="xref py py-func docutils literal"><span class="pre">arrays()</span></code></a> strategy, which generates arrays with
any dtype, shape, and contents you can specify or give a strategy for.
To make this as useful as possible, strategies are provided to generate array
shapes and generate all kinds of fixed-size or compound dtypes.</p>
<span class="target" id="module-hypothesis.extra.numpy"></span><dl class="function">
<dt id="hypothesis.extra.numpy.arrays">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">arrays</code><span class="sig-paren">(</span><em>dtype</em>, <em>shape</em>, <em>elements=None</em>, <em>fill=None</em>, <em>unique=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#arrays"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.arrays" title="Permalink to this definition"></a></dt>
<dd><p>Returns a strategy for generating <code class="xref py py-class docutils literal"><span class="pre">numpy's</span>
<span class="pre">ndarrays</span></code>.</p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">dtype</span></code> may be any valid input to <code class="xref py py-class docutils literal"><span class="pre">numpy.dtype</span></code>
(this includes <code class="docutils literal"><span class="pre">dtype</span></code> objects), or a strategy that generates such
values.</li>
<li><code class="docutils literal"><span class="pre">shape</span></code> may be an integer &gt;= 0, a tuple of length &gt;= 0 of such
integers, or a strategy that generates such values.</li>
<li><code class="docutils literal"><span class="pre">elements</span></code> is a strategy for generating values to put in the array.
If it is None a suitable value will be inferred based on the dtype,
which may give any legal value (including eg <code class="docutils literal"><span class="pre">NaN</span></code> for floats).
If you have more specific requirements, you should supply your own
elements strategy.</li>
<li><code class="docutils literal"><span class="pre">fill</span></code> is a strategy that may be used to generate a single background
value for the array. If None, a suitable default will be inferred
based on the other arguments. If set to
<a class="reference internal" href="data.html#hypothesis.strategies.nothing" title="hypothesis.strategies.nothing"><code class="xref py py-func docutils literal"><span class="pre">st.nothing()</span></code></a> then filling
behaviour will be disabled entirely and every element will be generated
independently.</li>
<li><code class="docutils literal"><span class="pre">unique</span></code> specifies if the elements of the array should all be
distinct from one another. Note that in this case multiple NaN values
may still be allowed. If fill is also set, the only valid values for
it to return are NaN values (anything for which <code class="xref py py-func docutils literal"><span class="pre">numpy.isnan()</span></code>
returns True. So e.g. for complex numbers (nan+1j) is also a valid fill).
Note that if unique is set to True the generated values must be hashable.</li>
</ul>
<p>Arrays of specified <code class="docutils literal"><span class="pre">dtype</span></code> and <code class="docutils literal"><span class="pre">shape</span></code> are generated for example
like this:</p>
<div class="highlight-pycon"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">arrays</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">int8</span><span class="p">,</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span><span class="o">.</span><span class="n">example</span><span class="p">()</span>
<span class="go">array([[-8,  6,  3],</span>
<span class="go">       [-6,  4,  6]], dtype=int8)</span>
</pre></div>
</div>
<ul class="simple">
<li>See <a class="reference internal" href="data.html"><span class="doc">What you can generate and how</span></a>.</li>
</ul>
<div class="highlight-pycon"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">hypothesis.strategies</span> <span class="kn">import</span> <span class="n">floats</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">arrays</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">float</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="n">elements</span><span class="o">=</span><span class="n">floats</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span><span class="o">.</span><span class="n">example</span><span class="p">()</span>
<span class="go">array([ 0.88974794,  0.77387938,  0.1977879 ])</span>
</pre></div>
</div>
<p>Array values are generated in two parts:</p>
<ol class="arabic simple">
<li>Some subset of the coordinates of the array are populated with a value
drawn from the elements strategy (or its inferred form).</li>
<li>If any coordinates were not assigned in the previous step, a single
value is drawn from the fill strategy and is assigned to all remaining
places.</li>
</ol>
<p>You can set fill to <a class="reference internal" href="data.html#hypothesis.strategies.nothing" title="hypothesis.strategies.nothing"><code class="xref py py-func docutils literal"><span class="pre">nothing()</span></code></a> if you want to
disable this behaviour and draw a value for every element.</p>
<p>If fill is set to None then it will attempt to infer the correct behaviour
automatically: If unique is True, no filling will occur by default.
Otherwise, if it looks safe to reuse the values of elements across
multiple coordinates (this will be the case for any inferred strategy, and
for most of the builtins, but is not the case for mutable values or
strategies built with flatmap, map, composite, etc) then it will use the
elements strategy as the fill, else it will default to having no fill.</p>
<p>Having a fill helps Hypothesis craft high quality examples, but its
main importance is when the array generated is large: Hypothesis is
primarily designed around testing small examples. If you have arrays with
hundreds or more elements, having a fill value is essential if you want
your tests to run in reasonable time.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.array_shapes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">array_shapes</code><span class="sig-paren">(</span><em>min_dims=1</em>, <em>max_dims=3</em>, <em>min_side=1</em>, <em>max_side=10</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#array_shapes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.array_shapes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for array shapes (tuples of int &gt;= 1).</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.scalar_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">scalar_dtypes</code><span class="sig-paren">(</span><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#scalar_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.scalar_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy that can return any non-flexible scalar dtype.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.unsigned_integer_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">unsigned_integer_dtypes</code><span class="sig-paren">(</span><em>endianness='?'</em>, <em>sizes=(8</em>, <em>16</em>, <em>32</em>, <em>64)</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#unsigned_integer_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.unsigned_integer_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for unsigned integer dtypes.</p>
<p>endianness may be <code class="docutils literal"><span class="pre">&lt;</span></code> for little-endian, <code class="docutils literal"><span class="pre">&gt;</span></code> for big-endian,
<code class="docutils literal"><span class="pre">=</span></code> for native byte order, or <code class="docutils literal"><span class="pre">?</span></code> to allow either byte order.
This argument only applies to dtypes of more than one byte.</p>
<p>sizes must be a collection of integer sizes in bits.  The default
(8, 16, 32, 64) covers the full range of sizes.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.integer_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">integer_dtypes</code><span class="sig-paren">(</span><em>endianness='?'</em>, <em>sizes=(8</em>, <em>16</em>, <em>32</em>, <em>64)</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#integer_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.integer_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for signed integer dtypes.</p>
<p>endianness and sizes are treated as for
<a class="reference internal" href="#hypothesis.extra.numpy.unsigned_integer_dtypes" title="hypothesis.extra.numpy.unsigned_integer_dtypes"><code class="xref py py-func docutils literal"><span class="pre">unsigned_integer_dtypes()</span></code></a>.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.floating_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">floating_dtypes</code><span class="sig-paren">(</span><em>endianness='?'</em>, <em>sizes=(16</em>, <em>32</em>, <em>64)</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#floating_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.floating_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for floating-point dtypes.</p>
<p>sizes is the size in bits of floating-point number.  Some machines support
96- or 128-bit floats, but these are not generated by default.</p>
<p>Larger floats (96 and 128 bit real parts) are not supported on all
platforms and therefore disabled by default.  To generate these dtypes,
include these values in the sizes argument.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.complex_number_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">complex_number_dtypes</code><span class="sig-paren">(</span><em>endianness='?'</em>, <em>sizes=(64</em>, <em>128)</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#complex_number_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.complex_number_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for complex-number dtypes.</p>
<p>sizes is the total size in bits of a complex number, which consists
of two floats.  Complex halfs (a 16-bit real part) are not supported
by numpy and will not be generated by this strategy.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.datetime64_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">datetime64_dtypes</code><span class="sig-paren">(</span><em>max_period='Y'</em>, <em>min_period='ns'</em>, <em>endianness='?'</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#datetime64_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.datetime64_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for datetime64 dtypes, with various precisions from
year to attosecond.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.timedelta64_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">timedelta64_dtypes</code><span class="sig-paren">(</span><em>max_period='Y'</em>, <em>min_period='ns'</em>, <em>endianness='?'</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#timedelta64_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.timedelta64_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for timedelta64 dtypes, with various precisions from
year to attosecond.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.byte_string_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">byte_string_dtypes</code><span class="sig-paren">(</span><em>endianness='?'</em>, <em>min_len=0</em>, <em>max_len=16</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#byte_string_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.byte_string_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for generating bytestring dtypes, of various lengths
and byteorder.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.unicode_string_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">unicode_string_dtypes</code><span class="sig-paren">(</span><em>endianness='?'</em>, <em>min_len=0</em>, <em>max_len=16</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#unicode_string_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.unicode_string_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for generating unicode string dtypes, of various
lengths and byteorder.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.array_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">array_dtypes</code><span class="sig-paren">(</span><em>subtype_strategy=scalar_dtypes()</em>, <em>min_size=1</em>, <em>max_size=5</em>, <em>allow_subarrays=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#array_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.array_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return a strategy for generating array (compound) dtypes, with members
drawn from the given subtype strategy.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.numpy.nested_dtypes">
<code class="descclassname">hypothesis.extra.numpy.</code><code class="descname">nested_dtypes</code><span class="sig-paren">(</span><em>subtype_strategy=scalar_dtypes()</em>, <em>max_leaves=10</em>, <em>max_itemsize=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/numpy.html#nested_dtypes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.numpy.nested_dtypes" title="Permalink to this definition"></a></dt>
<dd><p>Return the most-general dtype strategy.</p>
<p>Elements drawn from this strategy may be simple (from the
subtype_strategy), or several such values drawn from
<a class="reference internal" href="#hypothesis.extra.numpy.array_dtypes" title="hypothesis.extra.numpy.array_dtypes"><code class="xref py py-func docutils literal"><span class="pre">array_dtypes()</span></code></a> with <code class="docutils literal"><span class="pre">allow_subarrays=True</span></code>. Subdtypes in an
array dtype may be nested to any depth, subject to the max_leaves
argument.</p>
</dd></dl>

</div>
<div class="section" id="pandas">
<span id="hypothesis-pandas"></span><h2>pandas<a class="headerlink" href="#pandas" title="Permalink to this headline"></a></h2>
<p>Hypothesis provides strategies for several of the core pandas data types:
<code class="xref py py-class docutils literal"><span class="pre">pandas.Index</span></code>, <code class="xref py py-class docutils literal"><span class="pre">pandas.Series</span></code> and <code class="xref py py-class docutils literal"><span class="pre">pandas.DataFrame</span></code>.</p>
<p>The general approach taken by the pandas module is that there are multiple
strategies for generating indexes, and all of the other strategies take the
number of entries they contain from their index strategy (with sensible defaults).
So e.g. a Series is specified by specifying its <code class="xref py py-class docutils literal"><span class="pre">numpy.dtype</span></code> (and/or
a strategy for generating elements for it).</p>
<span class="target" id="module-hypothesis.extra.pandas"></span><dl class="function">
<dt id="hypothesis.extra.pandas.indexes">
<code class="descclassname">hypothesis.extra.pandas.</code><code class="descname">indexes</code><span class="sig-paren">(</span><em>elements=None</em>, <em>dtype=None</em>, <em>min_size=0</em>, <em>max_size=None</em>, <em>unique=True</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/pandas/impl.html#indexes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.pandas.indexes" title="Permalink to this definition"></a></dt>
<dd><p>Provides a strategy for producing a <code class="xref py py-class docutils literal"><span class="pre">pandas.Index</span></code>.</p>
<p>Arguments:</p>
<ul class="simple">
<li>elements is a strategy which will be used to generate the individual
values of the index. If None, it will be inferred from the dtype. Note:
even if the elements strategy produces tuples, the generated value
will not be a MultiIndex, but instead be a normal index whose elements
are tuples.</li>
<li>dtype is the dtype of the resulting index. If None, it will be inferred
from the elements strategy. At least one of dtype or elements must be
provided.</li>
<li>min_size is the minimum number of elements in the index.</li>
<li>max_size is the maximum number of elements in the index. If None then it
will default to a suitable small size. If you want larger indexes you
should pass a max_size explicitly.</li>
<li>unique specifies whether all of the elements in the resulting index
should be distinct.</li>
</ul>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.pandas.range_indexes">
<code class="descclassname">hypothesis.extra.pandas.</code><code class="descname">range_indexes</code><span class="sig-paren">(</span><em>min_size=0</em>, <em>max_size=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/pandas/impl.html#range_indexes"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.pandas.range_indexes" title="Permalink to this definition"></a></dt>
<dd><p>Provides a strategy which generates an <code class="xref py py-class docutils literal"><span class="pre">Index</span></code> whose
values are 0, 1, …, n for some n.</p>
<p>Arguments:</p>
<ul class="simple">
<li>min_size is the smallest number of elements the index can have.</li>
<li>max_size is the largest number of elements the index can have. If None
it will default to some suitable value based on min_size.</li>
</ul>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.pandas.series">
<code class="descclassname">hypothesis.extra.pandas.</code><code class="descname">series</code><span class="sig-paren">(</span><em>elements=None</em>, <em>dtype=None</em>, <em>index=None</em>, <em>fill=None</em>, <em>unique=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/pandas/impl.html#series"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.pandas.series" title="Permalink to this definition"></a></dt>
<dd><p>Provides a strategy for producing a <code class="xref py py-class docutils literal"><span class="pre">pandas.Series</span></code>.</p>
<p>Arguments:</p>
<ul>
<li><p class="first">elements: a strategy that will be used to generate the individual
values in the series. If None, we will attempt to infer a suitable
default from the dtype.</p>
</li>
<li><p class="first">dtype: the dtype of the resulting series and may be any value
that can be passed to <code class="xref py py-class docutils literal"><span class="pre">numpy.dtype</span></code>. If None, will use
pandas’s standard behaviour to infer it from the type of the elements
values. Note that if the type of values that comes out of your
elements strategy varies, then so will the resulting dtype of the
series.</p>
</li>
<li><p class="first">index: If not None, a strategy for generating indexes for the
resulting Series. This can generate either <code class="xref py py-class docutils literal"><span class="pre">pandas.Index</span></code>
objects or any sequence of values (which will be passed to the
Index constructor).</p>
<p>You will probably find it most convenient to use the
<a class="reference internal" href="#hypothesis.extra.pandas.indexes" title="hypothesis.extra.pandas.indexes"><code class="xref py py-func docutils literal"><span class="pre">indexes()</span></code></a> or
<a class="reference internal" href="#hypothesis.extra.pandas.range_indexes" title="hypothesis.extra.pandas.range_indexes"><code class="xref py py-func docutils literal"><span class="pre">range_indexes()</span></code></a> function to produce
values for this argument.</p>
</li>
</ul>
<p>Usage:</p>
<div class="highlight-pycon"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="n">series</span><span class="p">(</span><span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span><span class="o">.</span><span class="n">example</span><span class="p">()</span>
<span class="go">0   -2001747478</span>
<span class="go">1    1153062837</span>
</pre></div>
</div>
</dd></dl>

<dl class="class">
<dt id="hypothesis.extra.pandas.column">
<em class="property">class </em><code class="descclassname">hypothesis.extra.pandas.</code><code class="descname">column</code><span class="sig-paren">(</span><em>name=None</em>, <em>elements=None</em>, <em>dtype=None</em>, <em>fill=None</em>, <em>unique=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/pandas/impl.html#column"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.pandas.column" title="Permalink to this definition"></a></dt>
<dd><p>Data object for describing a column in a DataFrame.</p>
<p>Arguments:</p>
<ul class="simple">
<li>name: the column name, or None to default to the column position. Must
be hashable, but can otherwise be any value supported as a pandas column
name.</li>
<li>elements: the strategy for generating values in this column, or None
to infer it from the dtype.</li>
<li>dtype: the dtype of the column, or None to infer it from the element
strategy. At least one of dtype or elements must be provided.</li>
<li>fill: A default value for elements of the column. See
<a class="reference internal" href="#hypothesis.extra.numpy.arrays" title="hypothesis.extra.numpy.arrays"><code class="xref py py-func docutils literal"><span class="pre">arrays()</span></code></a> for a full explanation.</li>
<li>unique: If all values in this column should be distinct.</li>
</ul>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.pandas.columns">
<code class="descclassname">hypothesis.extra.pandas.</code><code class="descname">columns</code><span class="sig-paren">(</span><em>names_or_number</em>, <em>dtype=None</em>, <em>elements=None</em>, <em>fill=None</em>, <em>unique=False</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/pandas/impl.html#columns"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.pandas.columns" title="Permalink to this definition"></a></dt>
<dd><p>A convenience function for producing a list of <a class="reference internal" href="#hypothesis.extra.pandas.column" title="hypothesis.extra.pandas.column"><code class="xref py py-class docutils literal"><span class="pre">column</span></code></a> objects
of the same general shape.</p>
<p>The names_or_number argument is either a sequence of values, the
elements of which will be used as the name for individual column
objects, or a number, in which case that many unnamed columns will
be created. All other arguments are passed through verbatim to
create the columns.</p>
</dd></dl>

<dl class="function">
<dt id="hypothesis.extra.pandas.data_frames">
<code class="descclassname">hypothesis.extra.pandas.</code><code class="descname">data_frames</code><span class="sig-paren">(</span><em>columns=None</em>, <em>rows=None</em>, <em>index=None</em><span class="sig-paren">)</span><a class="reference internal" href="_modules/hypothesis/extra/pandas/impl.html#data_frames"><span class="viewcode-link">[source]</span></a><a class="headerlink" href="#hypothesis.extra.pandas.data_frames" title="Permalink to this definition"></a></dt>
<dd><p>Provides a strategy for producing a <code class="xref py py-class docutils literal"><span class="pre">pandas.DataFrame</span></code>.</p>
<p>Arguments:</p>
<ul>
<li><p class="first">columns: An iterable of <a class="reference internal" href="#hypothesis.extra.pandas.column" title="hypothesis.extra.pandas.column"><code class="xref py py-class docutils literal"><span class="pre">column</span></code></a> objects describing the shape
of the generated DataFrame.</p>
</li>
<li><p class="first">rows: A strategy for generating a row object. Should generate
either dicts mapping column names to values or a sequence mapping
column position to the value in that position (note that unlike the
<code class="xref py py-class docutils literal"><span class="pre">pandas.DataFrame</span></code> constructor, single values are not allowed
here. Passing e.g. an integer is an error, even if there is only one
column).</p>
<p>At least one of rows and columns must be provided. If both are
provided then the generated rows will be validated against the
columns and an error will be raised if they don’t match.</p>
<p>Caveats on using rows:</p>
<ul class="simple">
<li>In general you should prefer using columns to rows, and only use
rows if the columns interface is insufficiently flexible to
describe what you need - you will get better performance and
example quality that way.</li>
<li>If you provide rows and not columns, then the shape and dtype of
the resulting DataFrame may vary. e.g. if you have a mix of int
and float in the values for one column in your row entries, the
column will sometimes have an integral dtype and sometimes a float.</li>
</ul>
</li>
<li><p class="first">index: If not None, a strategy for generating indexes for the
resulting DataFrame. This can generate either <code class="xref py py-class docutils literal"><span class="pre">pandas.Index</span></code>
objects or any sequence of values (which will be passed to the
Index constructor).</p>
<p>You will probably find it most convenient to use the
<a class="reference internal" href="#hypothesis.extra.pandas.indexes" title="hypothesis.extra.pandas.indexes"><code class="xref py py-func docutils literal"><span class="pre">indexes()</span></code></a> or
<a class="reference internal" href="#hypothesis.extra.pandas.range_indexes" title="hypothesis.extra.pandas.range_indexes"><code class="xref py py-func docutils literal"><span class="pre">range_indexes()</span></code></a> function to produce
values for this argument.</p>
</li>
</ul>
<p>Usage:</p>
<p>The expected usage pattern is that you use <a class="reference internal" href="#hypothesis.extra.pandas.column" title="hypothesis.extra.pandas.column"><code class="xref py py-class docutils literal"><span class="pre">column</span></code></a> and
<a class="reference internal" href="#hypothesis.extra.pandas.columns" title="hypothesis.extra.pandas.columns"><code class="xref py py-func docutils literal"><span class="pre">columns()</span></code></a> to specify a fixed shape of the DataFrame you want as
follows. For example the following gives a two column data frame:</p>
<div class="highlight-pycon"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">hypothesis.extra.pandas</span> <span class="kn">import</span> <span class="n">column</span><span class="p">,</span> <span class="n">data_frames</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data_frames</span><span class="p">([</span>
<span class="gp">... </span><span class="n">column</span><span class="p">(</span><span class="s1">&#39;A&#39;</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">),</span> <span class="n">column</span><span class="p">(</span><span class="s1">&#39;B&#39;</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">)])</span><span class="o">.</span><span class="n">example</span><span class="p">()</span>
<span class="go">            A              B</span>
<span class="go">0  2021915903  1.793898e+232</span>
<span class="go">1  1146643993            inf</span>
<span class="go">2 -2096165693   1.000000e+07</span>
</pre></div>
</div>
<p>If you want the values in different columns to interact in some way you
can use the rows argument. For example the following gives a two column
DataFrame where the value in the first column is always at most the value
in the second:</p>
<div class="highlight-pycon"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">hypothesis.extra.pandas</span> <span class="kn">import</span> <span class="n">column</span><span class="p">,</span> <span class="n">data_frames</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">hypothesis.strategies</span> <span class="kn">as</span> <span class="nn">st</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data_frames</span><span class="p">(</span>
<span class="gp">... </span>    <span class="n">rows</span><span class="o">=</span><span class="n">st</span><span class="o">.</span><span class="n">tuples</span><span class="p">(</span><span class="n">st</span><span class="o">.</span><span class="n">floats</span><span class="p">(</span><span class="n">allow_nan</span><span class="o">=</span><span class="bp">False</span><span class="p">),</span>
<span class="gp">... </span>                   <span class="n">st</span><span class="o">.</span><span class="n">floats</span><span class="p">(</span><span class="n">allow_nan</span><span class="o">=</span><span class="bp">False</span><span class="p">))</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="nb">sorted</span><span class="p">)</span>
<span class="gp">... </span><span class="p">)</span><span class="o">.</span><span class="n">example</span><span class="p">()</span>
<span class="go">               0             1</span>
<span class="go">0  -3.402823e+38  9.007199e+15</span>
<span class="go">1 -1.562796e-298  5.000000e-01</span>
</pre></div>
</div>
<p>You can also combine the two:</p>
<div class="highlight-pycon"><div class="highlight"><pre><span></span><span class="gp">&gt;&gt;&gt; </span><span class="kn">from</span> <span class="nn">hypothesis.extra.pandas</span> <span class="kn">import</span> <span class="n">columns</span><span class="p">,</span> <span class="n">data_frames</span>
<span class="gp">&gt;&gt;&gt; </span><span class="kn">import</span> <span class="nn">hypothesis.strategies</span> <span class="kn">as</span> <span class="nn">st</span>
<span class="gp">&gt;&gt;&gt; </span><span class="n">data_frames</span><span class="p">(</span>
<span class="gp">... </span>    <span class="n">columns</span><span class="o">=</span><span class="n">columns</span><span class="p">([</span><span class="s2">&quot;lo&quot;</span><span class="p">,</span> <span class="s2">&quot;hi&quot;</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">float</span><span class="p">),</span>
<span class="gp">... </span>    <span class="n">rows</span><span class="o">=</span><span class="n">st</span><span class="o">.</span><span class="n">tuples</span><span class="p">(</span><span class="n">st</span><span class="o">.</span><span class="n">floats</span><span class="p">(</span><span class="n">allow_nan</span><span class="o">=</span><span class="bp">False</span><span class="p">),</span>
<span class="gp">... </span>                   <span class="n">st</span><span class="o">.</span><span class="n">floats</span><span class="p">(</span><span class="n">allow_nan</span><span class="o">=</span><span class="bp">False</span><span class="p">))</span><span class="o">.</span><span class="n">map</span><span class="p">(</span><span class="nb">sorted</span><span class="p">)</span>
<span class="gp">... </span><span class="p">)</span><span class="o">.</span><span class="n">example</span><span class="p">()</span>
<span class="go">         lo            hi</span>
<span class="go">0   9.314723e-49  4.353037e+45</span>
<span class="go">1  -9.999900e-01  1.000000e+07</span>
<span class="go">2 -2.152861e+134 -1.069317e-73</span>
</pre></div>
</div>
<p>(Note that the column dtype must still be specified and will not be
inferred from the rows. This restriction may be lifted in future).</p>
<p>Combining rows and columns has the following behaviour:</p>
<ul class="simple">
<li>The column names and dtypes will be used.</li>
<li>If the column is required to be unique, this will be enforced.</li>
<li>Any values missing from the generated rows will be provided using the
column’s fill.</li>
<li>Any values in the row not present in the column specification (if
dicts are passed, if there are keys with no corresponding column name,
if sequences are passed if there are too many items) will result in
InvalidArgument being raised.</li>
</ul>
</dd></dl>

<div class="section" id="supported-versions">
<h3>Supported Versions<a class="headerlink" href="#supported-versions" title="Permalink to this headline"></a></h3>
<p>There is quite a lot of variation between pandas versions. We only
commit to supporting the latest version of pandas, but older minor versions are
supported on a “best effort” basis.  Hypothesis is currently tested against
and confirmed working with Pandas 0.19, 0.20, and 0.21.</p>
<p>Releases that are not the latest patch release of their minor version are not
tested or officially supported, but will probably also work unless you hit a
pandas bug.</p>
</div>
</div>
</div>


           </div>
           <div class="articleComments">
            
           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="healthchecks.html" class="btn btn-neutral float-right" title="Health checks" accesskey="n" rel="next">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
        <a href="django.html" class="btn btn-neutral" title="Hypothesis for Django users" accesskey="p" rel="prev"><span class="fa fa-arrow-circle-left"></span> Previous</a>
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2013-2018, David R. MacIver.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'./',
            VERSION:'3.44.1',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: '.txt'
        };
    </script>
      <script type="text/javascript" src="_static/jquery.js"></script>
      <script type="text/javascript" src="_static/underscore.js"></script>
      <script type="text/javascript" src="_static/doctools.js"></script>

  

  
  
    <script type="text/javascript" src="_static/js/theme.js"></script>
  

  
  
  <script type="text/javascript">
      jQuery(function () {
          SphinxRtdTheme.StickyNav.enable();
      });
  </script>
   

</body>
</html>