This file is indexed.

/usr/lib/python2.7/dist-packages/hypothesis/stateful.py is in python-hypothesis 3.44.1-2ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
# coding=utf-8
#
# This file is part of Hypothesis, which may be found at
# https://github.com/HypothesisWorks/hypothesis-python
#
# Most of this work is copyright (C) 2013-2017 David R. MacIver
# (david@drmaciver.com), but it contains contributions by others. See
# CONTRIBUTING.rst for a full list of people who may hold copyright, and
# consult the git log if you need to determine who owns an individual
# contribution.
#
# This Source Code Form is subject to the terms of the Mozilla Public License,
# v. 2.0. If a copy of the MPL was not distributed with this file, You can
# obtain one at http://mozilla.org/MPL/2.0/.
#
# END HEADER

"""This module provides support for a stateful style of testing, where tests
attempt to find a sequence of operations that cause a breakage rather than just
a single value.

Notably, the set of steps available at any point may depend on the
execution to date.

"""


from __future__ import division, print_function, absolute_import

import inspect
import traceback
from unittest import TestCase

import attr

import hypothesis.internal.conjecture.utils as cu
from hypothesis.core import find
from hypothesis.errors import Flaky, NoSuchExample, InvalidDefinition, \
    HypothesisException
from hypothesis.control import BuildContext
from hypothesis._settings import settings as Settings
from hypothesis._settings import Verbosity
from hypothesis.reporting import report, verbose_report, current_verbosity
from hypothesis.strategies import just, lists, builds, one_of, runner, \
    integers
from hypothesis.vendor.pretty import CUnicodeIO, RepresentationPrinter
from hypothesis.internal.reflection import proxies, nicerepr
from hypothesis.internal.conjecture.data import StopTest
from hypothesis.internal.conjecture.utils import integer_range
from hypothesis.searchstrategy.strategies import SearchStrategy
from hypothesis.searchstrategy.collections import TupleStrategy, \
    FixedKeysDictStrategy


class TestCaseProperty(object):  # pragma: no cover

    def __get__(self, obj, typ=None):
        if obj is not None:
            typ = type(obj)
        return typ._to_test_case()

    def __set__(self, obj, value):
        raise AttributeError(u'Cannot set TestCase')

    def __delete__(self, obj):
        raise AttributeError(u'Cannot delete TestCase')


def find_breaking_runner(state_machine_factory, settings=None):
    def is_breaking_run(runner):
        try:
            runner.run(state_machine_factory())
            return False
        except HypothesisException:
            raise
        except Exception:
            verbose_report(traceback.format_exc)
            return True
    if settings is None:
        try:
            settings = state_machine_factory.TestCase.settings
        except AttributeError:
            settings = Settings.default

    search_strategy = StateMachineSearchStrategy(settings)

    return find(
        search_strategy,
        is_breaking_run,
        settings=settings,
        database_key=state_machine_factory.__name__.encode('utf-8')
    )


def run_state_machine_as_test(state_machine_factory, settings=None):
    """Run a state machine definition as a test, either silently doing nothing
    or printing a minimal breaking program and raising an exception.

    state_machine_factory is anything which returns an instance of
    GenericStateMachine when called with no arguments - it can be a class or a
    function. settings will be used to control the execution of the test.

    """
    try:
        breaker = find_breaking_runner(state_machine_factory, settings)
    except NoSuchExample:
        return
    try:
        with BuildContext(None, is_final=True):
            breaker.run(state_machine_factory(), print_steps=True)
    except StopTest:
        pass
    raise Flaky(
        u'Run failed initially but succeeded on a second try'
    )


class GenericStateMachine(object):

    """A GenericStateMachine is the basic entry point into Hypothesis's
    approach to stateful testing.

    The intent is for it to be subclassed to provide state machine descriptions

    The way this is used is that Hypothesis will repeatedly execute something
    that looks something like::

        x = MyStatemachineSubclass()
        x.check_invariants()
        try:
            for _ in range(n_steps):
                x.execute_step(x.steps().example())
                x.check_invariants()
        finally:
            x.teardown()

    And if this ever produces an error it will shrink it down to a small
    sequence of example choices demonstrating that.

    """

    def steps(self):
        """Return a SearchStrategy instance the defines the available next
        steps."""
        raise NotImplementedError(u'%r.steps()' % (self,))

    def execute_step(self, step):
        """Execute a step that has been previously drawn from self.steps()"""
        raise NotImplementedError(u'%r.execute_step()' % (self,))

    def print_step(self, step):
        """Print a step to the current reporter.

        This is called right before a step is executed.

        """
        self.step_count = getattr(self, u'step_count', 0) + 1
        report(u'Step #%d: %s' % (self.step_count, nicerepr(step)))

    def teardown(self):
        """Called after a run has finished executing to clean up any necessary
        state.

        Does nothing by default

        """
        pass

    def check_invariants(self):
        """Called after initializing and after executing each step."""
        pass

    _test_case_cache = {}

    TestCase = TestCaseProperty()

    @classmethod
    def _to_test_case(state_machine_class):
        try:
            return state_machine_class._test_case_cache[state_machine_class]
        except KeyError:
            pass

        class StateMachineTestCase(TestCase):
            settings = Settings(
                min_satisfying_examples=1
            )

        # We define this outside of the class and assign it because you can't
        # assign attributes to instance method values in Python 2
        def runTest(self):
            run_state_machine_as_test(state_machine_class)

        runTest.is_hypothesis_test = True
        StateMachineTestCase.runTest = runTest
        base_name = state_machine_class.__name__
        StateMachineTestCase.__name__ = str(
            base_name + u'.TestCase'
        )
        StateMachineTestCase.__qualname__ = str(
            getattr(state_machine_class, u'__qualname__', base_name) +
            u'.TestCase'
        )
        state_machine_class._test_case_cache[state_machine_class] = (
            StateMachineTestCase
        )
        return StateMachineTestCase


GenericStateMachine.find_breaking_runner = classmethod(find_breaking_runner)


class StateMachineRunner(object):

    """A StateMachineRunner is a description of how to run a state machine.

    It contains values that it will use to shape the examples.

    """

    def __init__(self, data, n_steps):
        self.data = data
        self.data.is_find = False
        self.n_steps = n_steps

    def run(self, state_machine, print_steps=None):
        if print_steps is None:
            print_steps = current_verbosity() >= Verbosity.debug
        self.data.hypothesis_runner = state_machine

        stopping_value = 1 - 1.0 / (1 + self.n_steps * 0.5)
        try:
            state_machine.check_invariants()

            steps = 0
            while True:
                if steps >= self.n_steps:
                    stopping_value = 0
                self.data.start_example()
                if not cu.biased_coin(self.data, stopping_value):
                    self.data.stop_example()
                    break
                assert steps < self.n_steps
                value = self.data.draw(state_machine.steps())
                steps += 1
                if print_steps:
                    state_machine.print_step(value)
                state_machine.execute_step(value)
                self.data.stop_example()
                state_machine.check_invariants()
        finally:
            state_machine.teardown()


class StateMachineSearchStrategy(SearchStrategy):

    def __init__(self, settings=None):
        self.program_size = (settings or Settings.default).stateful_step_count

    def do_draw(self, data):
        return StateMachineRunner(data, self.program_size)


@attr.s()
class Rule(object):
    targets = attr.ib()
    function = attr.ib()
    arguments = attr.ib()
    precondition = attr.ib()


self_strategy = runner()


class Bundle(SearchStrategy):

    def __init__(self, name):
        self.name = name

    def do_draw(self, data):
        machine = data.draw(self_strategy)
        bundle = machine.bundle(self.name)
        if not bundle:
            data.mark_invalid()
        reference = bundle.pop()
        bundle.insert(integer_range(data, 0, len(bundle)), reference)
        return machine.names_to_values[reference.name]


RULE_MARKER = u'hypothesis_stateful_rule'
PRECONDITION_MARKER = u'hypothesis_stateful_precondition'
INVARIANT_MARKER = u'hypothesis_stateful_invariant'


def rule(targets=(), target=None, **kwargs):
    """Decorator for RuleBasedStateMachine. Any name present in target or
    targets will define where the end result of this function should go. If
    both are empty then the end result will be discarded.

    targets may either be a Bundle or the name of a Bundle.

    kwargs then define the arguments that will be passed to the function
    invocation. If their value is a Bundle then values that have previously
    been produced for that bundle will be provided, if they are anything else
    it will be turned into a strategy and values from that will be provided.

    """
    if target is not None:
        targets += (target,)

    converted_targets = []
    for t in targets:
        while isinstance(t, Bundle):
            t = t.name
        converted_targets.append(t)

    def accept(f):
        existing_rule = getattr(f, RULE_MARKER, None)
        if existing_rule is not None:
            raise InvalidDefinition(
                'A function cannot be used for two distinct rules. ',
                Settings.default,
            )
        precondition = getattr(f, PRECONDITION_MARKER, None)
        rule = Rule(targets=tuple(converted_targets), arguments=kwargs,
                    function=f, precondition=precondition)

        @proxies(f)
        def rule_wrapper(*args, **kwargs):
            return f(*args, **kwargs)

        setattr(rule_wrapper, RULE_MARKER, rule)
        return rule_wrapper
    return accept


@attr.s()
class VarReference(object):
    name = attr.ib()


def precondition(precond):
    """Decorator to apply a precondition for rules in a RuleBasedStateMachine.
    Specifies a precondition for a rule to be considered as a valid step in the
    state machine. The given function will be called with the instance of
    RuleBasedStateMachine and should return True or False. Usually it will need
    to look at attributes on that instance.

    For example::

        class MyTestMachine(RuleBasedStateMachine):
            state = 1

            @precondition(lambda self: self.state != 0)
            @rule(numerator=integers())
            def divide_with(self, numerator):
                self.state = numerator / self.state

    This is better than using assume in your rule since more valid rules
    should be able to be run.

    """
    def decorator(f):
        @proxies(f)
        def precondition_wrapper(*args, **kwargs):
            return f(*args, **kwargs)

        rule = getattr(f, RULE_MARKER, None)
        if rule is None:
            setattr(precondition_wrapper, PRECONDITION_MARKER, precond)
        else:
            new_rule = Rule(targets=rule.targets, arguments=rule.arguments,
                            function=rule.function, precondition=precond)
            setattr(precondition_wrapper, RULE_MARKER, new_rule)

        invariant = getattr(f, INVARIANT_MARKER, None)
        if invariant is not None:
            new_invariant = Invariant(function=invariant.function,
                                      precondition=precond)
            setattr(precondition_wrapper, INVARIANT_MARKER, new_invariant)

        return precondition_wrapper
    return decorator


@attr.s()
class Invariant(object):
    function = attr.ib()
    precondition = attr.ib()


def invariant():
    """Decorator to apply an invariant for rules in a RuleBasedStateMachine.
    The decorated function will be run after every rule and can raise an
    exception to indicate failed invariants.

    For example::

        class MyTestMachine(RuleBasedStateMachine):
            state = 1

            @invariant()
            def is_nonzero(self):
                assert self.state != 0

    """
    def accept(f):
        existing_invariant = getattr(f, INVARIANT_MARKER, None)
        if existing_invariant is not None:
            raise InvalidDefinition(
                'A function cannot be used for two distinct invariants.',
                Settings.default,
            )
        precondition = getattr(f, PRECONDITION_MARKER, None)
        rule = Invariant(function=f, precondition=precondition)

        @proxies(f)
        def invariant_wrapper(*args, **kwargs):
            return f(*args, **kwargs)

        setattr(invariant_wrapper, INVARIANT_MARKER, rule)
        return invariant_wrapper
    return accept


@attr.s()
class ShuffleBundle(object):
    bundle = attr.ib()
    swaps = attr.ib()


class RuleBasedStateMachine(GenericStateMachine):

    """A RuleBasedStateMachine gives you a more structured way to define state
    machines.

    The idea is that a state machine carries a bunch of types of data
    divided into Bundles, and has a set of rules which may read data
    from bundles (or just from normal strategies) and push data onto
    bundles. At any given point a random applicable rule will be
    executed.

    """
    _rules_per_class = {}
    _invariants_per_class = {}
    _base_rules_per_class = {}

    def __init__(self):
        if not self.rules():
            raise InvalidDefinition(u'Type %s defines no rules' % (
                type(self).__name__,
            ))
        self.bundles = {}
        self.name_counter = 1
        self.names_to_values = {}
        self.__stream = CUnicodeIO()
        self.__printer = RepresentationPrinter(self.__stream)

    def __pretty(self, value):
        self.__stream.seek(0)
        self.__stream.truncate(0)
        self.__printer.output_width = 0
        self.__printer.buffer_width = 0
        self.__printer.buffer.clear()
        self.__printer.pretty(value)
        self.__printer.flush()
        return self.__stream.getvalue()

    def __repr__(self):
        return u'%s(%s)' % (
            type(self).__name__,
            nicerepr(self.bundles),
        )

    def upcoming_name(self):
        return u'v%d' % (self.name_counter,)

    def new_name(self):
        result = self.upcoming_name()
        self.name_counter += 1
        return result

    def bundle(self, name):
        return self.bundles.setdefault(name, [])

    @classmethod
    def rules(cls):
        try:
            return cls._rules_per_class[cls]
        except KeyError:
            pass

        for k, v in inspect.getmembers(cls):
            r = getattr(v, RULE_MARKER, None)
            if r is not None:
                cls.define_rule(
                    r.targets, r.function, r.arguments, r.precondition,
                )
        cls._rules_per_class[cls] = cls._base_rules_per_class.pop(cls, [])
        return cls._rules_per_class[cls]

    @classmethod
    def invariants(cls):
        try:
            return cls._invariants_per_class[cls]
        except KeyError:
            pass

        target = []
        for k, v in inspect.getmembers(cls):
            i = getattr(v, INVARIANT_MARKER, None)
            if i is not None:
                target.append(i)
        cls._invariants_per_class[cls] = target
        return cls._invariants_per_class[cls]

    @classmethod
    def define_rule(cls, targets, function, arguments, precondition=None):
        converted_arguments = {}
        for k, v in arguments.items():
            converted_arguments[k] = v
        if cls in cls._rules_per_class:
            target = cls._rules_per_class[cls]
        else:
            target = cls._base_rules_per_class.setdefault(cls, [])

        return target.append(
            Rule(
                targets, function, converted_arguments, precondition,
            )
        )

    def steps(self):
        strategies = []
        for rule in self.rules():
            converted_arguments = {}
            valid = True
            if rule.precondition and not rule.precondition(self):
                continue
            for k, v in sorted(rule.arguments.items()):
                if isinstance(v, Bundle):
                    bundle = self.bundle(v.name)
                    if not bundle:
                        valid = False
                        break
                converted_arguments[k] = v
            if valid:
                strategies.append(TupleStrategy((
                    just(rule),
                    FixedKeysDictStrategy(converted_arguments)
                ), tuple))
        if not strategies:
            raise InvalidDefinition(
                u'No progress can be made from state %r' % (self,)
            )

        for name, bundle in self.bundles.items():
            if len(bundle) > 1:
                strategies.append(
                    builds(
                        ShuffleBundle, just(name),
                        lists(integers(0, len(bundle) - 1))))

        return one_of(strategies)

    def print_step(self, step):
        if isinstance(step, ShuffleBundle):
            return
        rule, data = step
        data_repr = {}
        for k, v in data.items():
            data_repr[k] = self.__pretty(v)
        self.step_count = getattr(self, u'step_count', 0) + 1
        report(u'Step #%d: %s%s(%s)' % (
            self.step_count,
            u'%s = ' % (self.upcoming_name(),) if rule.targets else u'',
            rule.function.__name__,
            u', '.join(u'%s=%s' % kv for kv in data_repr.items())
        ))

    def execute_step(self, step):
        if isinstance(step, ShuffleBundle):
            bundle = self.bundle(step.bundle)
            for i in step.swaps:
                bundle.insert(i, bundle.pop())
            return
        rule, data = step
        data = dict(data)
        result = rule.function(self, **data)
        if rule.targets:
            name = self.new_name()
            self.names_to_values[name] = result
            self.__printer.singleton_pprinters.setdefault(
                id(result), lambda obj, p, cycle: p.text(name),
            )
            for target in rule.targets:
                self.bundle(target).append(VarReference(name))

    def check_invariants(self):
        for invar in self.invariants():
            if invar.precondition and not invar.precondition(self):
                continue
            invar.function(self)