/usr/lib/python2.7/dist-packages/iapws/humidAir.py is in python-iapws 1.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 | #!/usr/bin/python
# -*- coding: utf-8 -*-
"""
Guideline on the IAPWS Formulation 2001 for the Thermodynamic Properties of
Ammonia-Water Mistures
"""
from __future__ import division
from math import exp, log, pi, atan
import warnings
from scipy.optimize import fsolve
from ._iapws import M as Mw
from ._iapws import _Ice
from ._utils import deriv_G
from .iapws95 import MEoS, IAPWS95
Ma = 28.96546 # g/mol
R = 8.314472 # J/molK
def _virial(T):
"""Virial equations for humid air
Parameters
----------
T : float
Temperature [K]
Returns
-------
prop : float
dictionary with critical coefficient
Baa: Second virial coefficient of dry air [m³/mol]
Baw: Second air-water cross virial coefficient [m³/mol]
Bww: Second virial coefficient of water [m³/mol]
Caaa: Third virial coefficient of dry air [m⁶/mol]
Caaw: Third air-water cross virial coefficient [m⁶/mol]
Caww: Third air-water cross virial coefficient [m⁶/mol]
Cwww: Third virial coefficient of dry air [m⁶/mol]
Bawt: dBaw/dT [m³/molK]
Bawtt: d²Baw/dT² [m³/molK²]
Caawt: dCaaw/dT [m⁶/molK]
Caawtt: d²Caaw/dT² [m⁶/molK²]
Cawwt: dCaww/dT [m⁶/molK]
Cawwtt: d²Caww/dT² [m⁶/molK²]
Raises
------
Warning : If T isn't in range of validity
* Baa: 60 ≤ T ≤ 2000
* Baw: 130 ≤ T ≤ 2000
* Bww: 130 ≤ T ≤ 1273
* Caaa: 60 ≤ T ≤ 2000
* Caaw: 193 ≤ T ≤ 493
* Caww: 173 ≤ T ≤ 473
* Cwww: 130 ≤ T ≤ 1273
Examples
--------
>>> _virial(200)["Baa"]
-3.92722567e-5
References
----------
IAPWS, Guideline on a Virial Equation for the Fugacity of H2O in Humid Air,
http://www.iapws.org/relguide/VirialFugacity.html
IAPWS, Guideline on an Equation of State for Humid Air in Contact with
Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater, Table 10,
http://www.iapws.org/relguide/SeaAir.html
"""
# Check input parameters
if T < 60 or T > 2000:
warnings.warn("Baa out of validity range")
if T < 130 or T > 2000:
warnings.warn("Baw out of validity range")
if T < 130 or T > 1273:
warnings.warn("Bww out of validity range")
if T < 60 or T > 2000:
warnings.warn("Caaa out of validity range")
if T < 193 or T > 493:
warnings.warn("Caaw out of validity range")
if T < 173 or T > 473:
warnings.warn("Caww out of validity range")
if T < 130 or T > 1273:
warnings.warn("Cwww out of validity range")
T_ = T/100
tau = IAPWS95.Tc/T
# Table 1
# Reorganizated to easy use in equations
tb = [-0.5, 0.875, 1, 4, 6, 12, 7]
nb = [0.12533547935523e-1, 0.78957634722828e1, -0.87803203303561e1,
-0.66856572307965, 0.20433810950965, -0.66212605039687e-4,
-0.10793600908932]
bc = [0.5, 0.75, 1, 5, 1, 9, 10]
nc = [0.31802509345418, -0.26145533859358, -0.19232721156002,
-0.25709043003438, 0.17611491008752e-1, 0.22132295167546,
-0.40247669763528]
bc2 = [4, 6, 12]
nc2 = [-0.66856572307965, 0.20433810950965, -0.66212605039687e-4]
# Table 2
ai = [3.5, 3.5]
bi = [0.85, 0.95]
Bi = [0.2, 0.2]
ni = [-0.14874640856724, 0.31806110878444]
Ci = [28, 32]
Di = [700, 800]
Ai = [0.32, 0.32]
betai = [0.3, 0.3]
# Eq 5
sum1 = sum([n*tau**t for n, t in zip(nb, tb)])
sum2 = 0
for n, b, B, A, C, D in zip(ni, bi, Bi, Ai, Ci, Di):
sum2 += n*((A+1-tau)**2+B)**b*exp(-C-D*(tau-1)**2)
Bww = Mw/IAPWS95.rhoc*(sum1+sum2)
# Eq 6
sum1 = sum([n*tau**t for n, t in zip(nc, bc)])
sum2 = sum([n*tau**t for n, t in zip(nc2, bc2)])
sum3 = 0
for a, b, B, n, C, D, A, beta in zip(ai, bi, Bi, ni, Ci, Di, Ai, betai):
Tita = A+1-tau
sum3 += n*(C*(Tita**2+B)-b*(A*Tita/beta+B*a))*(Tita**2+B)**(b-1) * \
exp(-C-D*(tau-1)**2)
Cwww = 2*(Mw/IAPWS95.rhoc)**2*(sum1-sum2+2*sum3)
# Table 3
ai = [0.482737e-3, 0.105678e-2, -0.656394e-2, 0.294442e-1, -0.319317e-1]
bi = [-10.728876, 34.7802, -38.3383, 33.406]
ci = [66.5687, -238.834, -176.755]
di = [-0.237, -1.048, -3.183]
Baw = 1e-6*sum([c*T_**d for c, d in zip(ci, di)]) # Eq 7
Caaw = 1e-6*sum([a/T_**i for i, a in enumerate(ai)]) # Eq 8
Caww = -1e-6*exp(sum([b/T_**i for i, b in enumerate(bi)])) # Eq 9
# Eq T56
Bawt = 1e-6*T_/T*sum([c*d*T_**(d-1) for c, d in zip(ci, di)])
# Eq T57
Bawtt = 1e-6*T_**2/T**2*sum(
[c*d*(d-1)*T_**(d-2) for c, d in zip(ci, di)])
# Eq T59
Caawt = -1e-6*T_/T*sum([i*a*T_**(-i-1) for i, a in enumerate(ai)])
# Eq T60
Caawtt = 1e-6*T_**2/T**2*sum(
[i*(i+1)*a*T_**(-i-2) for i, a in enumerate(ai)])
# Eq T62
Cawwt = 1e-6*T_/T*sum([i*b*T_**(-i-1) for i, b in enumerate(bi)]) * \
exp(sum([b/T_**i for i, b in enumerate(bi)]))
# Eq T63
Cawwtt = -1e-6*T_**2/T**2*((
sum([i*(i+1)*b*T_**(-i-2) for i, b in enumerate(bi)]) +
sum([i*b*T_**(-i-1) for i, b in enumerate(bi)])**2) *
exp(sum([b/T_**i for i, b in enumerate(bi)])))
# Table 4
# Reorganizated to easy use in equations
ji = [0, 0.33, 1.01, 1.6, 3.6, 3.5]
ni = [0.118160747229, 0.713116392079, -0.161824192067e1, -0.101365037912,
-0.146629609713, 0.148287891978e-1]
tau = 132.6312/T
Baa = 1/10.4477*sum([n*tau**j for j, n in zip(ji, ni)]) # Eq 10
Caaa = 2/10.4477**2*(0.714140178971e-1+0.101365037912*tau**1.6) # Eq 11
prop = {}
prop["Baa"] = Baa/1000
prop["Baw"] = Baw
prop["Bww"] = Bww/1000
prop["Caaa"] = Caaa/1e6
prop["Caaw"] = Caaw
prop["Caww"] = Caww
prop["Cwww"] = Cwww/1e6
prop["Bawt"] = Bawt
prop["Bawtt"] = Bawtt
prop["Caawt"] = Caawt
prop["Caawtt"] = Caawtt
prop["Cawwt"] = Cawwt
prop["Cawwtt"] = Cawwtt
return prop
def _fugacity(T, P, x):
"""Fugacity equation for humid air
Parameters
----------
T : float
Temperature [K]
P : float
Pressure [MPa]
x : float
Mole fraction of water-vapor [-]
Returns
-------
fv : float
fugacity coefficient [MPa]
Raises
------
NotImplementedError : If input isn't in range of validity
* 193 ≤ T ≤ 473
* 0 ≤ P ≤ 5
* 0 ≤ x ≤ 1
Really the xmax is the xsaturation but isn't implemented
Examples
--------
>>> _fugacity(300, 1, 0.1)
0.0884061686
References
----------
IAPWS, Guideline on a Virial Equation for the Fugacity of H2O in Humid Air,
http://www.iapws.org/relguide/VirialFugacity.html
"""
# Check input parameters
if T < 193 or T > 473 or P < 0 or P > 5 or x < 0 or x > 1:
raise(NotImplementedError("Input not in range of validity"))
R = 8.314462 # J/molK
# Virial coefficients
vir = _virial(T)
# Eq 3
beta = x*(2-x)*vir["Bww"]+(1-x)**2*(2*vir["Baw"]-vir["Baa"])
# Eq 4
gamma = x**2*(3-2*x)*vir["Cwww"] + \
(1-x)**2*(6*x*vir["Caww"]+3*(1-2*x)*vir["Caaw"]-2*(1-x)*vir["Caaa"]) +\
(x**2*vir["Bww"]+2*x*(1-x)*vir["Baw"]+(1-x)**2*vir["Baa"]) * \
(x*(3*x-4)*vir["Bww"]+2*(1-x)*(3*x-2)*vir["Baw"]+3*(1-x)**2*vir["Baa"])
# Eq 2
fv = x*P*exp(beta*P*1e6/R/T+0.5*gamma*(P*1e6/R/T)**2)
return fv
class MEoSBlend(MEoS):
"""Special meos class to im:plement pseudocomponent blend and defining its
ancillary dew and bubble point"""
@classmethod
def _dewP(cls, T):
"""Using ancillary equation return the pressure of dew point"""
c = cls._blend["dew"]
Tj = cls._blend["Tj"]
Pj = cls._blend["Pj"]
Tita = 1-T/Tj
suma = 0
for i, n in zip(c["i"], c["n"]):
suma += n*Tita**(i/2.)
P = Pj*exp(Tj/T*suma)
return P
@classmethod
def _bubbleP(cls, T):
"""Using ancillary equation return the pressure of bubble point"""
c = cls._blend["bubble"]
Tj = cls._blend["Tj"]
Pj = cls._blend["Pj"]
Tita = 1-T/Tj
suma = 0
for i, n in zip(c["i"], c["n"]):
suma += n*Tita**(i/2.)
P = Pj*exp(Tj/T*suma)
return P
class Air(MEoSBlend):
"""Multiparameter equation of state for Air as pseudocomponent"""
name = "air"
CASNumber = "1"
formula = "N2+Ar+O2"
synonym = "R-729"
rhoc = 10.4477*Ma
Tc = 132.6306
Pc = 3786.0 # kPa
M = Ma
Tt = 59.75
Tb = 78.903
f_acent = 0.0335
momentoDipolar = 0.0
Fi0 = {"ao_log": [1, 2.490888032],
"pow": [-3, -2, -1, 0, 1, 1.5],
"ao_pow": [0.6057194e-7, -0.210274769e-4, -0.158860716e-3,
9.7450251743948, 10.0986147428912, -0.19536342e-3],
"ao_exp": [0.791309509, 0.212236768],
"titao": [25.36365, 16.90741],
"ao_exp2": [-0.197938904],
"titao2": [87.31279],
"sum2": [2./3]
}
_constants = {
"R": 8.31451,
"Tref": 132.6312, "rhoref": 10.4477*Ma,
"nr1": [0.118160747229, 0.713116392079, -0.161824192067e1,
0.714140178971e-1, -0.865421396646e-1, 0.134211176704,
0.112626704218e-1, -0.420533228842e-1, 0.349008431982e-1,
0.164957183186e-3],
"d1": [1, 1, 1, 2, 3, 3, 4, 4, 4, 6],
"t1": [0, 0.33, 1.01, 0, 0, 0.15, 0, 0.2, 0.35, 1.35],
"nr2": [-0.101365037912, -0.173813690970, -0.472103183731e-1,
-0.122523554253e-1, -0.146629609713, -0.316055879821e-1,
0.233594806142e-3, 0.148287891978e-1, -0.938782884667e-2],
"d2": [1, 3, 5, 6, 1, 3, 11, 1, 3],
"t2": [1.6, 0.8, 0.95, 1.25, 3.6, 6, 3.25, 3.5, 15],
"c2": [1, 1, 1, 1, 2, 2, 2, 3, 3],
"gamma2": [1]*9}
_blend = {
"Tj": 132.6312, "Pj": 3.78502,
"dew": {"i": [1, 2, 5, 8],
"n": [-0.1567266, -5.539635, 0.7567212, -3.514322]},
"bubble": {"i": [1, 2, 3, 4, 5, 6],
"n": [0.2260724, -7.080499, 5.700283, -12.44017, 17.81926,
-10.81364]}}
_melting = {"eq": 1, "Tref": Tb, "Pref": 5.265,
"Tmin": 59.75, "Tmax": 2000.0,
"a1": [1, 0.354935e5, -0.354935e5],
"exp1": [0, 0.178963e1, 0],
"a2": [], "exp2": [], "a3": [], "exp3": []}
_surf = {"sigma": [0.03046], "exp": [1.28]}
_rhoG = {
"eq": 3,
"ao": [-0.20466e1, -0.4752e1, -0.13259e2, -0.47652e2],
"exp": [0.41, 1, 2.8, 6.5]}
_Pv = {
"ao": [-0.1567266, -0.5539635e1, 0.7567212, -0.3514322e1],
"exp": [0.5, 1, 2.5, 4]}
@classmethod
def _Liquid_Density(cls, T):
"""Auxiliary equation for the density or saturated liquid
Parameters
----------
T : float
Temperature [K]
Returns
-------
rho : float
Saturated liquid density [kg/m³]
"""
Tc = 132.6312
rhoc = 10.4477*cls.M
Ni = [44.3413, -240.073, 285.139, -88.3366]
ti = [0.65, 0.85, 0.95, 1.1]
Tita = 1-T/Tc
suma = 1
for n, t in zip(Ni, ti):
suma += n*Tita**t
suma -= 0.892181*log(T/Tc)
rho = suma*rhoc
return rho
@staticmethod
def _visco(rho, T, fase=None):
"""Equation for the Viscosity
Parameters
----------
rho : float
Density [kg/m³]
T : float
Temperature [K]
Returns
-------
mu : float
Viscosity [Pa·s]
References
----------
Lemmon, E.W. and Jacobsen, R.T., Viscosity and Thermal Conductivity
Equations for Nitrogen, Oxygen, Argon, and Air, Int. J. Thermophys.,
25:21-69, 2004. doi:10.1023/B:IJOT.0000022327.04529.f3
"""
ek = 103.3
sigma = 0.36
M = 28.9586
rhoc = 10.4477*M
tau = 132.6312/T
delta = rho/rhoc
b = [0.431, -0.4623, 0.08406, 0.005341, -0.00331]
T_ = log(T/ek)
suma = 0
for i, bi in enumerate(b):
suma += bi*T_**i
omega = exp(suma)
# Eq 2
muo = 0.0266958*(M*T)**0.5/(sigma**2*omega)
n_poly = [10.72, 1.122, 0.002019, -8.876, -0.02916]
t_poly = [.2, .05, 2.4, .6, 3.6]
d_poly = [1, 4, 9, 1, 8]
l_poly = [0, 0, 0, 1, 1]
g_poly = [0, 0, 0, 1, 1]
# Eq 3
mur = 0
for n, t, d, l, g in zip(n_poly, t_poly, d_poly, l_poly, g_poly):
mur += n*tau**t*delta**d*exp(-g*delta**l)
# Eq 1
mu = muo+mur
return mu*1e-6
def _thermo(self, rho, T, fase=None):
"""Equation for the thermal conductivity
Parameters
----------
rho : float
Density [kg/m³]
T : float
Temperature [K]
fase: dict
phase properties
Returns
-------
k : float
Thermal conductivity [W/mK]
References
----------
Lemmon, E.W. and Jacobsen, R.T., Viscosity and Thermal Conductivity
Equations for Nitrogen, Oxygen, Argon, and Air, Int. J. Thermophys.,
25:21-69, 2004. doi:10.1023/B:IJOT.0000022327.04529.f3
"""
ek = 103.3
sigma = 0.36
M = 28.9586
rhoc = 10.4477*M
tau = 132.6312/T
delta = rho/rhoc
b = [0.431, -0.4623, 0.08406, 0.005341, -0.00331]
T_ = log(T/ek)
suma = 0
for i, bi in enumerate(b):
suma += bi*T_**i
omega = exp(suma)
# Eq 2
muo = 0.0266958*(M*T)**0.5/(sigma**2*omega)
# Eq 5
N = [1.308, 1.405, -1.036]
t = [-1.1, -0.3]
lo = N[0]*muo+N[1]*tau**t[0]+N[2]*tau**t[1]
n_poly = [8.743, 14.76, -16.62, 3.793, -6.142, -0.3778]
t_poly = [0.1, 0, 0.5, 2.7, 0.3, 1.3]
d_poly = [1, 2, 3, 7, 7, 11]
g_poly = [0, 0, 1, 1, 1, 1]
l_poly = [0, 0, 2, 2, 2, 2]
# Eq 6
lr = 0
for n, t, d, l, g in zip(n_poly, t_poly, d_poly, l_poly, g_poly):
lr += n*tau**t*delta**d*exp(-g*delta**l)
lc = 0
# FIXME: Tiny desviation in the test in paper, 0.06% at critical point
if fase:
qd = 0.31
Gamma = 0.055
Xio = 0.11
Tref = 265.262
k = 1.380658e-23 # J/K
# Eq 11
X = self.Pc*1e-3*rho/rhoc**2*fase.drhodP_T
ref = Air()
st = ref._Helmholtz(rho, Tref)
drho = 1e3/self.R/Tref/(1+2*delta*st["fird"]+delta**2*st["firdd"])
Xref = self.Pc*1e-3*rho/rhoc**2*drho
# Eq 10
bracket = X-Xref*Tref/T
if bracket > 0:
Xi = Xio*(bracket/Gamma)**(0.63/1.2415)
Xq = Xi/qd
# Eq 8
Omega = 2/pi*((fase.cp-fase.cv)/fase.cp*atan(Xq) +
fase.cv/fase.cp*(Xq))
# Eq 9
Omega0 = 2/pi*(1-exp(-1/(1/Xq+Xq**2/3*rhoc**2/rho**2)))
# Eq 7
lc = rho*fase.cp*k*1.01*T/6/pi/Xi/fase.mu*(Omega-Omega0)*1e15
else:
lc = 0
# Eq 4
k = lo+lr+lc
return k*1e-3
class HumidAir(object):
"""
Humid air class with complete functionality
Parameters
----------
T : float
Temperature [K]
P : float
Pressure [MPa]
rho : float
Density [kg/m³]
v : float
Specific volume [m³/kg]
A : float
Mass fraction of dry air in humid air [kg/kg]
xa : float
Mole fraction of dry air in humid air [-]
W : float
Mass fraction of water in humid air [kg/kg]
xw : float
Mole fraction of water in humid air [-]
Notes
-----
* It needs two incoming properties of T, P, rho.
* v as a alternate input parameter to rho
* For composition need one of A, xa, W, xw.
Returns
-------
The calculated instance has the following properties:
* P: Pressure [MPa]
* T: Temperature [K]
* g: Specific Gibbs free energy [kJ/kg]
* a: Specific Helmholtz free energy [kJ/kg]
* v: Specific volume [m³/kg]
* rho: Density [kg/m³]
* h: Specific enthalpy [kJ/kg]
* u: Specific internal energy [kJ/kg]
* s: Specific entropy [kJ/kg·K]
* cp: Specific isobaric heat capacity [kJ/kg·K]
* w: Speed of sound [m/s]
* alfav: Isobaric cubic expansion coefficient [1/K]
* betas: Isoentropic temperature-pressure coefficient [-]
* xkappa: Isothermal Expansion Coefficient [-]
* ks: Adiabatic Compressibility [1/MPa]
* A: Mass fraction of dry air in humid air [kg/kg]
* xa: Mole fraction of dry air in humid air [-]
* W: Mass fraction of water in humid air [kg/kg]
* xw: Mole fraction of water in humid air [-]
* mu: Relative chemical potential [kJ/kg]
* muw: Chemical potential of water [kJ/kg]
* M: Molar mass of humid air [g/mol]
* HR: Humidity ratio [-]
* xa: Mole fraction of dry air [-]
* xw: Mole fraction of water [-]
* xa_sat: Mole fraction of dry air at saturation state [-]
* RH: Relative humidity
"""
kwargs = {"T": 0.0,
"P": 0.0,
"rho": 0.0,
"v": 0.0,
"A": None,
"xa": None,
"W": None,
"xw": None}
status = 0
msg = "Undefined"
def __init__(self, **kwargs):
"""Constructor, define common constant and initinialice kwargs"""
self.kwargs = HumidAir.kwargs.copy()
self.__call__(**kwargs)
def __call__(self, **kwargs):
"""Make instance callable to can add input parameter one to one"""
# Check alernate input parameters
if kwargs.get("v", 0):
kwargs["rho"] = 1./kwargs["v"]
del kwargs["v"]
if kwargs.get("W", 0):
kwargs["A"] = 1-kwargs["W"]
del kwargs["W"]
if kwargs.get("xw", 0):
kwargs["xa"] = 1-kwargs["xw"]
del kwargs["xw"]
self.kwargs.update(kwargs)
if self.calculable:
self.status = 1
self.calculo()
self.msg = ""
@property
def calculable(self):
"""Check if inputs are enough to define state"""
self._mode = ""
if self.kwargs["T"] and self.kwargs["P"]:
self._mode = "TP"
elif self.kwargs["T"] and self.kwargs["rho"]:
self._mode = "Trho"
elif self.kwargs["P"] and self.kwargs["rho"]:
self._mode = "Prho"
# Composition definition
self._composition = ""
if self.kwargs["A"] is not None:
self._composition = "A"
elif self.kwargs["xa"] is not None:
self._composition = "xa"
return bool(self._mode) and bool(self._composition)
def calculo(self):
"""Calculate procedure"""
T = self.kwargs["T"]
rho = self.kwargs["rho"]
P = self.kwargs["P"]
# Composition alternate definition
if self._composition == "A":
A = self.kwargs["A"]
elif self._composition == "xa":
xa = self.kwargs["xa"]
A = xa/(1-(1-xa)*(1-Mw/Ma))
# Thermodynamic definition
if self._mode == "TP":
def f(rho):
fav = self._fav(T, rho, A)
return rho**2*fav["fird"]/1000-P
rho = fsolve(f, 1)[0]
elif self._mode == "Prho":
def f(T):
fav = self._fav(T, rho, A)
return rho**2*fav["fird"]/1000-P
T = fsolve(f, 300)[0]
# General calculation procedure
fav = self._fav(T, rho, A)
# Common thermodynamic properties
prop = self._prop(T, rho, fav)
self.T = T
self.rho = rho
self.v = 1/rho
self.P = prop["P"]
self.s = prop["s"]
self.cp = prop["cp"]
self.h = prop["h"]
self.g = prop["g"]
self.u = self.h-self.P*1000*self.v
self.alfav = prop["alfav"]
self.betas = prop["betas"]
self.xkappa = prop["xkappa"]
self.ks = prop["ks"]
self.w = prop["w"]
# Coligative properties
coligative = self._coligative(rho, A, fav)
self.A = A
self.W = 1-A
self.mu = coligative["mu"]
self.muw = coligative["muw"]
self.M = coligative["M"]
self.HR = coligative["HR"]
self.xa = coligative["xa"]
self.xw = coligative["xw"]
self.Pv = (1-self.xa)*self.P
# Saturation related properties
A_sat = self._eq(self.T, self.P)
self.xa_sat = A_sat*Mw/Ma/(1-A_sat*(1-Mw/Ma))
self.RH = (1-self.xa)/(1-self.xa_sat)
def derivative(self, z, x, y):
"""Wrapper derivative for custom derived properties
where x, y, z can be: P, T, v, rho, u, h, s, g, a"""
return deriv_G(self, z, x, y, self)
def _eq(self, T, P):
"""Procedure for calculate the composition in saturation state
Parameters
----------
T : float
Temperature [K]
P : float
Pressure [MPa]
Returns
-------
Asat : float
Saturation mass fraction of dry air in humid air [kg/kg]
"""
if T <= 273.16:
ice = _Ice(T, P)
gw = ice["g"]
rho = ice["rho"]
else:
water = IAPWS95(T=T, P=P)
gw = water.g
rho = water.rho
def f(a):
fa = self._fav(T, rho, a)
muw = fa["fir"]+rho*fa["fird"]-a*fa["fira"]
return gw-muw
Asat = fsolve(f, 0.9)[0]
return Asat
def _prop(self, T, rho, fav):
"""Thermodynamic properties of humid air
Parameters
----------
T : float
Temperature [K]
rho : float
Density [kg/m³]
fav : dict
dictionary with helmholtz energy and derivatives
Returns
-------
prop : dictionary with thermodynamic properties of humid air
P: Pressure [MPa]
s: Specific entropy [kJ/kgK]
cp: Specific isobaric heat capacity [kJ/kgK]
h: Specific enthalpy [kJ/kg]
g: Specific gibbs energy [kJ/kg]
alfav: Thermal expansion coefficient [1/K]
betas: Isentropic T-P coefficient [K/MPa]
xkappa: Isothermal compressibility [1/MPa]
ks: Isentropic compressibility [1/MPa]
w: Speed of sound [m/s]
References
----------
IAPWS, Guideline on an Equation of State for Humid Air in Contact with
Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater, Table 5,
http://www.iapws.org/relguide/SeaAir.html
"""
prop = {}
prop["P"] = rho**2*fav["fird"]/1000 # Eq T1
prop["s"] = -fav["firt"] # Eq T2
prop["cp"] = -T*fav["firtt"]+T*rho*fav["firdt"]**2/( # Eq T3
2*fav["fird"]+rho*fav["firdd"])
prop["h"] = fav["fir"]-T*fav["firt"]+rho*fav["fird"] # Eq T4
prop["g"] = fav["fir"]+rho*fav["fird"] # Eq T5
prop["alfav"] = fav["firdt"]/(2*fav["fird"]+rho*fav["firdd"]) # Eq T6
prop["betas"] = 1000*fav["firdt"]/rho/( # Eq T7
rho*fav["firdt"]**2-fav["firtt"]*(2*fav["fird"]+rho*fav["firdd"]))
prop["xkappa"] = 1e3/(rho**2*(2*fav["fird"]+rho*fav["firdd"])) # Eq T8
prop["ks"] = 1000*fav["firtt"]/rho**2/( # Eq T9
fav["firtt"]*(2*fav["fird"]+rho*fav["firdd"])-rho*fav["firdt"]**2)
prop["w"] = (rho**2*1000*(fav["firtt"]*fav["firdd"]-fav["firdt"]**2) /
fav["firtt"]+2*rho*fav["fird"]*1000)**0.5 # Eq T10
return prop
def _coligative(self, rho, A, fav):
"""Miscelaneous properties of humid air
Parameters
----------
rho : float
Density [kg/m³]
A : float
Mass fraction of dry air in humid air [kg/kg]
fav : dict
dictionary with helmholtz energy and derivatives
Returns
-------
prop : dictionary with calculated properties
mu: Relative chemical potential [kJ/kg]
muw: Chemical potential of water [kJ/kg]
M: Molar mass of humid air [g/mol]
HR: Humidity ratio [-]
xa: Mole fraction of dry air [-]
xw: Mole fraction of water [-]
References
----------
IAPWS, Guideline on an Equation of State for Humid Air in Contact with
Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater, Table 12,
http://www.iapws.org/relguide/SeaAir.html
"""
prop = {}
prop["mu"] = fav["fira"]
prop["muw"] = fav["fir"]+rho*fav["fird"]-A*fav["fira"]
prop["M"] = 1/((1-A)/Mw+A/Ma)
prop["HR"] = 1/A-1
prop["xa"] = A*Mw/Ma/(1-A*(1-Mw/Ma))
prop["xw"] = 1-prop["xa"]
return prop
def _fav(self, T, rho, A):
"""Specific Helmholtz energy of humid air and derivatives
Parameters
----------
T : float
Temperature [K]
rho : float
Density [kg/m³]
A : float
Mass fraction of dry air in humid air [kg/kg]
Returns
-------
prop : dictionary with helmholtz energy and derivatives
fir [kJ/kg]
fira: [∂fav/∂A]T,ρ [kJ/kg]
firt: [∂fav/∂T]A,ρ [kJ/kgK]
fird: [∂fav/∂ρ]A,T [kJ/m³kg²]
firaa: [∂²fav/∂A²]T,ρ [kJ/kg]
firat: [∂²fav/∂A∂T]ρ [kJ/kgK]
firad: [∂²fav/∂A∂ρ]T [kJ/m³kg²]
firtt: [∂²fav/∂T²]A,ρ [kJ/kgK²]
firdt: [∂²fav/∂T∂ρ]A [kJ/m³kg²K]
firdd: [∂²fav/∂ρ²]A,T [kJ/m⁶kg³]
References
----------
IAPWS, Guideline on an Equation of State for Humid Air in Contact with
Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater, Table 6,
http://www.iapws.org/relguide/SeaAir.html
"""
water = IAPWS95()
rhov = (1-A)*rho
fv = water._derivDimensional(rhov, T)
air = Air()
rhoa = A*rho
fa = air._derivDimensional(rhoa, T)
fmix = self._fmix(T, rho, A)
prop = {}
# Eq T11
prop["fir"] = (1-A)*fv["fir"] + A*fa["fir"] + fmix["fir"]
# Eq T12
prop["fira"] = -fv["fir"]-rhov*fv["fird"]+fa["fir"] + \
rhoa*fa["fird"]+fmix["fira"]
# Eq T13
prop["firt"] = (1-A)*fv["firt"]+A*fa["firt"]+fmix["firt"]
# Eq T14
prop["fird"] = (1-A)**2*fv["fird"]+A**2*fa["fird"]+fmix["fird"]
# Eq T15
prop["firaa"] = rho*(2*fv["fird"]+rhov*fv["firdd"] +
2*fa["fird"]+rhoa*fa["firdd"])+fmix["firaa"]
# Eq T16
prop["firat"] = -fv["firt"]-rhov*fv["firdt"]+fa["firt"] + \
rhoa*fa["firdt"]+fmix["firat"]
# Eq T17
prop["firad"] = -(1-A)*(2*fv["fird"]+rhov*fv["firdd"]) + \
A*(2*fa["fird"]+rhoa*fa["firdd"])+fmix["firad"]
# Eq T18
prop["firtt"] = (1-A)*fv["firtt"]+A*fa["firtt"]+fmix["firtt"]
# Eq T19
prop["firdt"] = (1-A)**2*fv["firdt"]+A**2*fa["firdt"]+fmix["firdt"]
# Eq T20
prop["firdd"] = (1-A)**3*fv["firdd"]+A**3*fa["firdd"]+fmix["firdd"]
return prop
def _fmix(self, T, rho, A):
"""Specific Helmholtz energy of air-water interaction
Parameters
----------
T : float
Temperature [K]
rho : float
Density [kg/m³]
A : float
Mass fraction of dry air in humid air [kg/kg]
Returns
-------
prop : dictionary with helmholtz energy and derivatives
fir
fira: [∂fmix/∂A]T,ρ
firt: [∂fmix/∂T]A,ρ
fird: [∂fmix/∂ρ]A,T
firaa: [∂²fmix/∂A²]T,ρ
firat: [∂²fmix/∂A∂T]ρ
firad: [∂²fmix/∂A∂ρ]T
firtt: [∂²fmix/∂T²]A,ρ
firdt: [∂²fmix/∂T∂ρ]A
firdd: [∂²fmix/∂ρ²]A,T
References
----------
IAPWS, Guideline on an Equation of State for Humid Air in Contact with
Seawater and Ice, Consistent with the IAPWS Formulation 2008 for the
Thermodynamic Properties of Seawater, Table 10,
http://www.iapws.org/relguide/SeaAir.html
"""
Ma = Air.M/1000
Mw = IAPWS95.M/1000
vir = _virial(T)
Baw = vir["Baw"]
Bawt = vir["Bawt"]
Bawtt = vir["Bawtt"]
Caaw = vir["Caaw"]
Caawt = vir["Caawt"]
Caawtt = vir["Caawtt"]
Caww = vir["Caww"]
Cawwt = vir["Cawwt"]
Cawwtt = vir["Cawwtt"]
# Eq T45
f = 2*A*(1-A)*rho*R*T/Ma/Mw*(Baw+3*rho/4*(A/Ma*Caaw+(1-A)/Mw*Caww))
# Eq T46
fa = 2*rho*R*T/Ma/Mw*((1-2*A)*Baw+3*rho/4*(
A*(2-3*A)/Ma*Caaw+(1-A)*(1-3*A)/Mw*Caww))
# Eq T47
ft = 2*A*(1-A)*rho*R/Ma/Mw*(
Baw+T*Bawt+3*rho/4*(A/Ma*(Caaw+T*Caawt)+(1-A)/Mw*(Caww+T*Cawwt)))
# Eq T48
fd = A*(1-A)*R*T/Ma/Mw*(2*Baw+3*rho*(A/Ma*Caaw+(1-A)/Mw*Caww))
# Eq T49
faa = rho*R*T/Ma/Mw*(-4*Baw+3*rho*((1-3*A)/Ma*Caaw-(2-3*A)/Mw*Caww))
# Eq T50
fat = 2*rho*R/Ma/Mw*(1-2*A)*(Baw+T*Bawt)+3*rho**2*R/2/Ma/Mw*(
A*(2-3*A)/Ma*(Caaw+T*Caawt)+(1-A)*(1-3*A)/Mw*(Caww+T*Cawwt))
# Eq T51
fad = 2*R*T/Ma/Mw*((1-2*A)*Baw+3/2*rho*(
A*(2-3*A)/Ma*Caaw+(1-A)*(1-3*A)/Mw*Caww))
# Eq T52
ftt = 2*A*(1-A)*rho*R/Ma/Mw*(2*Bawt+T*Bawtt+3*rho/4*(
A/Ma*(2*Caawt+T*Caawtt)+(1-A)/Mw*(2*Cawwt+T*Cawwtt)))
# Eq T53
ftd = 2*A*(1-A)*R/Ma/Mw*(Baw+T*Bawt+3*rho/2*(
A/Ma*(Caaw+T*Caawt)+(1-A)/Mw*(Caww+T*Cawwt)))
# Eq T54
fdd = 3*A*(1-A)*R*T/Ma/Mw*(A/Ma*Caaw+(1-A)/Mw*Caww)
prop = {}
prop["fir"] = f/1000
prop["fira"] = fa/1000
prop["firt"] = ft/1000
prop["fird"] = fd/1000
prop["firaa"] = faa/1000
prop["firat"] = fat/1000
prop["firad"] = fad/1000
prop["firtt"] = ftt/1000
prop["firdt"] = ftd/1000
prop["firdd"] = fdd/1000
return prop
|