This file is indexed.

/usr/lib/python2.7/dist-packages/intervaltree/node.py is in python-intervaltree 2.1.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
"""
intervaltree: A mutable, self-balancing interval tree for Python 2 and 3.
Queries may be by point, by range overlap, or by range envelopment.

Core logic: internal tree nodes.

Copyright 2013-2015 Chaim-Leib Halbert
Modifications Copyright 2014 Konstantin Tretyakov

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from operator import attrgetter
from math import floor, log


def l2(num):
    """
    log base 2
    :rtype real
    """
    return log(num, 2)


class Node(object):
    def __init__(self,
                 x_center=None,
                 s_center=set(),
                 left_node=None,
                 right_node=None):
        self.x_center = x_center
        self.s_center = set(s_center)
        self.left_node = left_node
        self.right_node = right_node
        self.depth = 0    # will be set when rotated
        self.balance = 0  # ditto
        self.rotate()

    @classmethod
    def from_interval(cls, interval):
        """
        :rtype : Node
        """
        center = interval.begin
        return Node(center, [interval])

    @classmethod
    def from_intervals(cls, intervals):
        """
        :rtype : Node
        """
        if not intervals:
            return None
        node = Node()
        node = node.init_from_sorted(sorted(intervals))
        return node

    def init_from_sorted(self, intervals):
        if not intervals:
            return None
        center_iv = intervals[len(intervals) // 2]
        self.x_center = center_iv.begin
        self.s_center = set()
        s_left = []
        s_right = []
        for k in intervals:
            if k.end <= self.x_center:
                s_left.append(k)
            elif k.begin > self.x_center:
                s_right.append(k)
            else:
                self.s_center.add(k)
        self.left_node = Node.from_intervals(s_left)
        self.right_node = Node.from_intervals(s_right)
        return self.rotate()

    def center_hit(self, interval):
        """Returns whether interval overlaps self.x_center."""
        return interval.contains_point(self.x_center)

    def hit_branch(self, interval):
        """
        Assuming not center_hit(interval), return which branch
        (left=0, right=1) interval is in.
        """
        return interval.begin > self.x_center

    def refresh_balance(self):
        """
        Recalculate self.balance and self.depth based on child node values.
        """
        left_depth = self.left_node.depth if self.left_node else 0
        right_depth = self.right_node.depth if self.right_node else 0
        self.depth = 1 + max(left_depth, right_depth)
        self.balance = right_depth - left_depth

    def compute_depth(self):
        """
        Recursively computes true depth of the subtree. Should only
        be needed for debugging. Unless something is wrong, the
        depth field should reflect the correct depth of the subtree.
        """
        left_depth = self.left_node.compute_depth() if self.left_node else 0
        right_depth = self.right_node.compute_depth() if self.right_node else 0
        return 1 + max(left_depth, right_depth)

    def rotate(self):
        """
        Does rotating, if necessary, to balance this node, and
        returns the new top node.
        """
        self.refresh_balance()
        if abs(self.balance) < 2:
            return self
        # balance > 0  is the heavy side
        my_heavy = self.balance > 0
        child_heavy = self[my_heavy].balance > 0
        if my_heavy == child_heavy or self[my_heavy].balance == 0:
            ## Heavy sides same
            #    self     save
            #  save   -> 1   self
            # 1
            #
            ## Heavy side balanced
            #    self     save         save
            #  save   -> 1   self  -> 1  self.rot()
            #  1  2         2
            return self.srotate()
        else:
            return self.drotate()

    def srotate(self):
        """Single rotation. Assumes that balance is +-2."""
        #     self        save         save
        #   save 3  ->   1   self  -> 1   self.rot()
        #  1   2            2   3
        #
        #  self            save                save
        # 3   save  ->  self  1    -> self.rot()   1
        #    2   1     3   2

        #assert(self.balance != 0)
        heavy = self.balance > 0
        light = not heavy
        save = self[heavy]
        #print("srotate: bal={},{}".format(self.balance, save.balance))
        #self.print_structure()
        self[heavy] = save[light]   # 2
        #assert(save[light])
        save[light] = self.rotate()  # Needed to ensure the 2 and 3 are balanced under new subnode

        # Some intervals may overlap both self.x_center and save.x_center
        # Promote those to the new tip of the tree
        promotees = [iv for iv in save[light].s_center if save.center_hit(iv)]
        if promotees:
            for iv in promotees:
                save[light] = save[light].remove(iv)  # may trigger pruning
            # TODO: Use Node.add() here, to simplify future balancing improvements.
            # For now, this is the same as augmenting save.s_center, but that may
            # change.
            save.s_center.update(promotees)
        save.refresh_balance()
        return save

    def drotate(self):
        # First rotation
        my_heavy = self.balance > 0
        self[my_heavy] = self[my_heavy].srotate()
        self.refresh_balance()

        # Second rotation
        result = self.srotate()

        return result

    def add(self, interval):
        """
        Returns self after adding the interval and balancing.
        """
        if self.center_hit(interval):
            self.s_center.add(interval)
            return self
        else:
            direction = self.hit_branch(interval)
            if not self[direction]:
                self[direction] = Node.from_interval(interval)
                self.refresh_balance()
                return self
            else:
                self[direction] = self[direction].add(interval)
                return self.rotate()

    def remove(self, interval):
        """
        Returns self after removing the interval and balancing.

        If interval is not present, raise ValueError.
        """
        # since this is a list, called methods can set this to [1],
        # making it true
        done = []
        return self.remove_interval_helper(interval, done, should_raise_error=True)

    def discard(self, interval):
        """
        Returns self after removing interval and balancing.

        If interval is not present, do nothing.
        """
        done = []
        return self.remove_interval_helper(interval, done, should_raise_error=False)

    def remove_interval_helper(self, interval, done, should_raise_error):
        """
        Returns self after removing interval and balancing.
        If interval doesn't exist, raise ValueError.

        This method may set done to [1] to tell all callers that
        rebalancing has completed.

        See Eternally Confuzzled's jsw_remove_r function (lines 1-32)
        in his AVL tree article for reference.
        """
        #trace = interval.begin == 347 and interval.end == 353
        #if trace: print('\nRemoving from {} interval {}'.format(
        #   self.x_center, interval))
        if self.center_hit(interval):
            #if trace: print('Hit at {}'.format(self.x_center))
            if not should_raise_error and interval not in self.s_center:
                done.append(1)
                #if trace: print('Doing nothing.')
                return self
            try:
                # raises error if interval not present - this is
                # desired.
                self.s_center.remove(interval)
            except:
                self.print_structure()
                raise KeyError(interval)
            if self.s_center:     # keep this node
                done.append(1)    # no rebalancing necessary
                #if trace: print('Removed, no rebalancing.')
                return self

            # If we reach here, no intervals are left in self.s_center.
            # So, prune self.
            return self.prune()
        else:  # interval not in s_center
            direction = self.hit_branch(interval)

            if not self[direction]:
                if should_raise_error:
                    raise ValueError
                done.append(1)
                return self

            #if trace:
            #   print('Descending to {} branch'.format(
            #       ['left', 'right'][direction]
            #       ))
            self[direction] = self[direction].remove_interval_helper(interval, done, should_raise_error)

            # Clean up
            if not done:
                #if trace:
                #    print('Rotating {}'.format(self.x_center))
                #    self.print_structure()
                return self.rotate()
            return self

    def search_overlap(self, point_list):
        """
        Returns all intervals that overlap the point_list.
        """
        result = set()
        for j in point_list:
            self.search_point(j, result)
        return result

    def search_point(self, point, result):
        """
        Returns all intervals that contain point.
        """
        for k in self.s_center:
            if k.begin <= point < k.end:
                result.add(k)
        if point < self.x_center and self[0]:
            return self[0].search_point(point, result)
        elif point > self.x_center and self[1]:
            return self[1].search_point(point, result)
        return result

    def prune(self):
        """
        On a subtree where the root node's s_center is empty,
        return a new subtree with no empty s_centers.
        """
        if not self[0] or not self[1]:    # if I have an empty branch
            direction = not self[0]       # graft the other branch here
            #if trace:
            #    print('Grafting {} branch'.format(
            #       'right' if direction else 'left'))

            result = self[direction]
            #if result: result.verify()
            return result
        else:
            # Replace the root node with the greatest predecessor.
            heir, self[0] = self[0].pop_greatest_child()
            #if trace:
            #    print('Replacing {} with {}.'.format(
            #        self.x_center, heir.x_center
            #        ))
            #    print('Removed greatest predecessor:')
            #    self.print_structure()

            #if self[0]: self[0].verify()
            #if self[1]: self[1].verify()

            # Set up the heir as the new root node
            (heir[0], heir[1]) = (self[0], self[1])
            #if trace: print('Setting up the heir:')
            #if trace: heir.print_structure()

            # popping the predecessor may have unbalanced this node;
            # fix it
            heir.refresh_balance()
            heir = heir.rotate()
            #heir.verify()
            #if trace: print('Rotated the heir:')
            #if trace: heir.print_structure()
            return heir

    def pop_greatest_child(self):
        """
        Used when pruning a node with both a left and a right branch.
        Returns (greatest_child, node), where:
          * greatest_child is a new node to replace the removed node.
          * node is the subtree after:
              - removing the greatest child
              - balancing
              - moving overlapping nodes into greatest_child

        Assumes that self.s_center is not empty.

        See Eternally Confuzzled's jsw_remove_r function (lines 34-54)
        in his AVL tree article for reference.
        """
        #print('Popping from {}'.format(self.x_center))
        if not self.right_node:         # This node is the greatest child.
            # To reduce the chances of an overlap with a parent, return
            # a child node containing the smallest possible number of
            # intervals, as close as possible to the maximum bound.
            ivs = sorted(self.s_center, key=attrgetter('end', 'begin'))
            max_iv = ivs.pop()
            new_x_center = self.x_center
            while ivs:
                next_max_iv = ivs.pop()
                if next_max_iv.end == max_iv.end: continue
                new_x_center = max(new_x_center, next_max_iv.end)
            def get_new_s_center():
                for iv in self.s_center:
                    if iv.contains_point(new_x_center): yield iv

            # Create a new node with the largest x_center possible.
            child = Node.from_intervals(get_new_s_center())
            #     [iv for iv in self.s_center if iv.contains_point(child_x_center)]
            # )
            child.x_center = new_x_center
            self.s_center -= child.s_center

            #print('Pop hit! Returning child   = {}'.format(
            #    child.print_structure(tostring=True)
            #    ))
            #assert not child[0]
            #assert not child[1]

            if self.s_center:
                #print('     and returning newnode = {}'.format( self ))
                #self.verify()
                return child, self
            else:
                #print('     and returning newnode = {}'.format( self[0] ))
                #if self[0]: self[0].verify()
                return child, self[0]  # Rotate left child up

        else:
            #print('Pop descent to {}'.format(self[1].x_center))
            (greatest_child, self[1]) = self[1].pop_greatest_child()
            self.refresh_balance()
            new_self = self.rotate()

            # Move any overlaps into greatest_child
            for iv in set(new_self.s_center):
                if iv.contains_point(greatest_child.x_center):
                    new_self.s_center.remove(iv)
                    greatest_child.add(iv)

            #print('Pop Returning child   = {}'.format(
            #    greatest_child.print_structure(tostring=True)
            #    ))
            if new_self.s_center:
                #print('and returning newnode = {}'.format(
                #    new_self.print_structure(tostring=True)
                #    ))
                #new_self.verify()
                return greatest_child, new_self
            else:
                new_self = new_self.prune()
                #print('and returning prune = {}'.format(
                #    new_self.print_structure(tostring=True)
                #    ))
                #if new_self: new_self.verify()
                return greatest_child, new_self

    def contains_point(self, p):
        """
        Returns whether this node or a child overlaps p.
        """
        for iv in self.s_center:
            if iv.contains_point(p):
                return True
        branch = self[p > self.x_center]
        return branch and branch.contains_point(p)

    def all_children(self):
        return self.all_children_helper(set())

    def all_children_helper(self, result):
        result.update(self.s_center)
        if self[0]:
            self[0].all_children_helper(result)
        if self[1]:
            self[1].all_children_helper(result)
        return result

    def verify(self, parents=set()):
        """
        ## DEBUG ONLY ##
        Recursively ensures that the invariants of an interval subtree
        hold.
        """
        assert(isinstance(self.s_center, set))

        bal = self.balance
        assert abs(bal) < 2, \
            "Error: Rotation should have happened, but didn't! \n{}".format(
                self.print_structure(tostring=True)
            )
        self.refresh_balance()
        assert bal == self.balance, \
            "Error: self.balance not set correctly! \n{}".format(
                self.print_structure(tostring=True)
            )

        assert self.s_center, \
            "Error: s_center is empty! \n{}".format(
                self.print_structure(tostring=True)
            )
        for iv in self.s_center:
            assert hasattr(iv, 'begin')
            assert hasattr(iv, 'end')
            assert iv.begin < iv.end
            assert iv.overlaps(self.x_center)
            for parent in sorted(parents):
                assert not iv.contains_point(parent), \
                    "Error: Overlaps ancestor ({})! \n{}\n\n{}".format(
                        parent, iv, self.print_structure(tostring=True)
                    )
        if self[0]:
            assert self[0].x_center < self.x_center, \
                "Error: Out-of-order left child! {}".format(self.x_center)
            self[0].verify(parents.union([self.x_center]))
        if self[1]:
            assert self[1].x_center > self.x_center, \
                "Error: Out-of-order right child! {}".format(self.x_center)
            self[1].verify(parents.union([self.x_center]))

    def __getitem__(self, index):
        """
        Returns the left child if input is equivalent to False, or
        the right side otherwise.
        """
        if index:
            return self.right_node
        else:
            return self.left_node

    def __setitem__(self, key, value):
        """Sets the left (0) or right (1) child."""
        if key:
            self.right_node = value
        else:
            self.left_node = value

    def __str__(self):
        """
        Shows info about this node.

        Since Nodes are internal data structures not revealed to the
        user, I'm not bothering to make this copy-paste-executable as a
        constructor.
        """
        return "Node<{0}, depth={1}, balance={2}>".format(
            self.x_center,
            self.depth,
            self.balance
        )
        #fieldcount = 'c_count,has_l,has_r = <{}, {}, {}>'.format(
        #    len(self.s_center),
        #    bool(self.left_node),
        #    bool(self.right_node)
        #)
        #fields = [self.x_center, self.balance, fieldcount]
        #return "Node({}, b={}, {})".format(*fields)

    def count_nodes(self):
        """
        Count the number of Nodes in this subtree.
        :rtype: int
        """
        count = 1
        if self.left_node:
            count += self.left_node.count_nodes()
        if self.right_node:
            count += self.right_node.count_nodes()
        return count

    def depth_score(self, n, m):
        """
        Calculates flaws in balancing the tree.
        :param n: size of tree
        :param m: number of Nodes in tree
        :rtype: real
        """
        if n == 0:
            return 0.0

        # dopt is the optimal maximum depth of the tree
        dopt = 1 + int(floor(l2(m)))
        f = 1 / float(1 + n - dopt)
        return f * self.depth_score_helper(1, dopt)

    def depth_score_helper(self, d, dopt):
        """
        Gets a weighted count of the number of Intervals deeper than dopt.
        :param d: current depth, starting from 0
        :param dopt: optimal maximum depth of a leaf Node
        :rtype: real
        """
        # di is how may levels deeper than optimal d is
        di = d - dopt
        if di > 0:
            count = di * len(self.s_center)
        else:
            count = 0
        if self.right_node:
            count += self.right_node.depth_score_helper(d + 1, dopt)
        if self.left_node:
            count += self.left_node.depth_score_helper(d + 1, dopt)
        return count

    def print_structure(self, indent=0, tostring=False):
        """
        For debugging.
        """
        nl = '\n'
        sp = indent * '    '

        rlist = [str(self) + nl]
        if self.s_center:
            for iv in sorted(self.s_center):
                rlist.append(sp + ' ' + repr(iv) + nl)
        if self.left_node:
            rlist.append(sp + '<:  ')  # no CR
            rlist.append(self.left_node.print_structure(indent + 1, True))
        if self.right_node:
            rlist.append(sp + '>:  ')  # no CR
            rlist.append(self.right_node.print_structure(indent + 1, True))
        result = ''.join(rlist)
        if tostring:
            return result
        else:
            print(result)