This file is indexed.

/usr/lib/python2.7/dist-packages/jaraco/itertools.py is in python-jaraco.itertools 2.0.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
# -*- coding: UTF-8 -*-

"""
jaraco.itertools
Tools for working with iterables.  Complements itertools and more_itertools.
"""

from __future__ import absolute_import, unicode_literals, print_function

import operator
import itertools
import collections
import math
import warnings
import functools

import six
from six.moves import queue, xrange as range

import inflect
from more_itertools import more
from more_itertools import recipes


def make_rows(num_columns, seq):
	"""
	Make a sequence into rows of num_columns columns.

	>>> tuple(make_rows(2, [1, 2, 3, 4, 5]))
	((1, 4), (2, 5), (3, None))
	>>> tuple(make_rows(3, [1, 2, 3, 4, 5]))
	((1, 3, 5), (2, 4, None))
	"""
	# calculate the minimum number of rows necessary to fit the list in
	# num_columns Columns
	num_rows, partial = divmod(len(seq), num_columns)
	if partial:
		num_rows += 1
	# break the seq into num_columns of length num_rows
	result = recipes.grouper(num_rows, seq)
	# result is now a list of columns... transpose it to return a list
	# of rows
	return zip(*result)

def bisect(seq, func=bool):
	"""
	Split a sequence into two sequences:  the first is elements that
	return False for func(element) and the second for True for
	func(element).
	By default, func is ``bool``, so uses the truth value of the object.

	>>> is_odd = lambda n: n%2
	>>> even, odd = bisect(range(5), is_odd)
	>>> list(odd)
	[1, 3]
	>>> list(even)
	[0, 2, 4]

	>>> other, zeros = bisect(reversed(range(5)))
	>>> list(zeros)
	[0]
	>>> list(other)
	[4, 3, 2, 1]

	"""
	queues = GroupbySaved(seq, func)
	return queues.get_first_n_queues(2)

class GroupbySaved(object):
	"""
	Split a sequence into n sequences where n is determined by the
	number of distinct values returned by a key function applied to each
	element in the sequence.

	>>> truthsplit = GroupbySaved(['Test', '', 30, None], bool)
	>>> truthsplit['x']
	Traceback (most recent call last):
	...
	KeyError: 'x'
	>>> true_items = truthsplit[True]
	>>> false_items = truthsplit[False]
	>>> tuple(iter(false_items))
	('', None)
	>>> tuple(iter(true_items))
	('Test', 30)

	>>> every_third_split = GroupbySaved(range(99), lambda n: n%3)
	>>> zeros = every_third_split[0]
	>>> ones = every_third_split[1]
	>>> twos = every_third_split[2]
	>>> next(zeros)
	0
	>>> next(zeros)
	3
	>>> next(ones)
	1
	>>> next(twos)
	2
	>>> next(ones)
	4
	"""
	def __init__(self, sequence, func = lambda x: x):
		self.sequence = iter(sequence)
		self.func = func
		self.queues = collections.OrderedDict()

	def __getitem__(self, key):
		try:
			return self.queues[key]
		except KeyError:
			return self.__find_queue__(key)

	def __fetch__(self):
		"get the next item from the sequence and queue it up"
		item = next(self.sequence)
		key = self.func(item)
		queue = self.queues.setdefault(key, FetchingQueue(self.__fetch__))
		queue.enqueue(item)

	def __find_queue__(self, key):
		"search for the queue indexed by key"
		try:
			while not key in self.queues:
				self.__fetch__()
			return self.queues[key]
		except StopIteration:
			raise KeyError(key)

	def get_first_n_queues(self, n):
		"""
		Run through the sequence until n queues are created and return
		them. If fewer are created, return those plus empty iterables to
		compensate.
		"""
		try:
			while len(self.queues) < n:
				self.__fetch__()
		except StopIteration:
			pass
		values = list(self.queues.values())
		missing = n - len(values)
		values.extend(iter([]) for n in range(missing))
		return values

class FetchingQueue(queue.Queue):
	"""
	A FIFO Queue that is supplied with a function to inject more into
	the queue if it is empty.

	>>> values = iter(range(10))
	>>> get_value = lambda: globals()['q'].enqueue(next(values))
	>>> q = FetchingQueue(get_value)
	>>> [x for x in q] == list(range(10))
	True

	Note that tuple(q) or list(q) would not have worked above because
	tuple(q) just copies the elements in the list (of which there are
	none).
	"""
	def __init__(self, fetcher):
		if six.PY3:
			super(FetchingQueue, self).__init__()
		else:
			queue.Queue.__init__(self)
		self._fetcher = fetcher

	def __next__(self):
		while self.empty():
			self._fetcher()
		return self.get()
	next = __next__

	def __iter__(self):
		while True:
			yield next(self)

	def enqueue(self, item):
		self.put_nowait(item)

class Count(object):
	"""
	A stop object that will count how many times it's been called and return
	False on the N+1st call.  Useful for use with takewhile.

	>>> tuple(itertools.takewhile(Count(5), range(20)))
	(0, 1, 2, 3, 4)

	>>> print('catch', Count(5))
	catch at most 5

	It's possible to construct a Count with no limit or infinite limit.

	>>> unl_c = Count(None)
	>>> inf_c = Count(float('Inf'))

	Unlimited or limited by infinity are equivalent.

	>>> unl_c == inf_c
	True

	An unlimited counter is useful for wrapping an iterable to get the
	count after it's consumed.

	>>> tuple(itertools.takewhile(unl_c, range(20)))[-3:]
	(17, 18, 19)
	>>> unl_c.count
	20

	If all you need is the count of items, consider :class:`Counter` instead.
	"""
	def __init__(self, limit):
		self.count = 0
		self.limit = limit if limit is not None else float('Inf')

	def __call__(self, arg):
		if self.count > self.limit:
			raise ValueError("Should not call count stop more anymore.")
		self.count += 1
		return self.count <= self.limit

	def __str__(self):
		if self.limit:
			return 'at most %d' % self.limit
		else:
			return 'all'

	def __eq__(self, other):
		return vars(self) == vars(other)


class islice(object):
	"""May be applied to an iterable to limit the number of items returned.
	Works similarly to count, except is called only once on an iterable.
	Functionality is identical to islice, except for __str__ and reusability.

	>>> tuple(islice(5).apply(range(20)))
	(0, 1, 2, 3, 4)

	>>> tuple(islice(None).apply(range(20)))
	(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)

	>>> print(islice(3, 10))
	items 3 to 9

	>>> print(islice(3, 10, 2))
	every 2nd item from 3 to 9
	"""
	def __init__(self, *sliceArgs):
		self.sliceArgs = sliceArgs

	def apply(self, i):
		return itertools.islice(i, *self.sliceArgs)

	def __str__(self):
		if self.sliceArgs == (None,):
			result = 'all'
		else:
			result = self._formatArgs()
		return result

	def _formatArgs(self):
		slice_range = lambda a_b: '%d to %d' % (a_b[0], a_b[1] - 1)
		if len(self.sliceArgs) == 1:
			result = 'at most %d' % self.sliceArgs
		if len(self.sliceArgs) == 2:
			result = 'items %s' % slice_range(self.sliceArgs)
		if len(self.sliceArgs) == 3:
			ord = inflect.engine().ordinal(self.sliceArgs[2])
			range = slice_range(self.sliceArgs[0:2])
			result = 'every %(ord)s item from %(range)s' % locals()
		return result

class LessThanNBlanks(object):
	"""
	An object that when called will return True until n false elements
	are encountered.

	Can be used with filter or itertools.ifilter, for example:

	>>> import itertools
	>>> sampleData = ['string 1', 'string 2', '', 'string 3', '', 'string 4', '', '', 'string 5']
	>>> first = itertools.takewhile(LessThanNBlanks(2), sampleData)
	>>> tuple(first)
	('string 1', 'string 2', '', 'string 3')
	>>> first = itertools.takewhile(LessThanNBlanks(3), sampleData)
	>>> tuple(first)
	('string 1', 'string 2', '', 'string 3', '', 'string 4')
	"""
	def __init__(self, nBlanks):
		self.limit = nBlanks
		self.count = 0

	def __call__(self, arg):
		self.count += not arg
		if self.count > self.limit:
			raise ValueError("Should not call this object anymore.")
		return self.count < self.limit

class LessThanNConsecutiveBlanks(object):
	"""
	An object that when called will return True until n consecutive
	false elements are encountered.

	Can be used with filter or itertools.ifilter, for example:

	>>> import itertools
	>>> sampleData = ['string 1', 'string 2', '', 'string 3', '', 'string 4', '', '', 'string 5']
	>>> first = itertools.takewhile(LessThanNConsecutiveBlanks(2), sampleData)
	>>> tuple(first)
	('string 1', 'string 2', '', 'string 3', '', 'string 4', '')
	"""

	def __init__(self, nBlanks):
		self.limit = nBlanks
		self.count = 0
		self.last = False

	def __call__(self, arg):
		self.count += not arg
		if arg:
			self.count = 0
		self.last = operator.truth(arg)
		if self.count > self.limit:
			raise ValueError("Should not call this object anymore.")
		return self.count < self.limit

class splitter(object):
	"""
	object that will split a string with the given arguments for each call.

	>>> s = splitter(',')
	>>> list(s('hello, world, this is your, master calling'))
	['hello', ' world', ' this is your', ' master calling']
	"""
	def __init__(self, sep = None):
		self.sep = sep

	def __call__(self, s):
		lastIndex = 0
		while True:
			nextIndex = s.find(self.sep, lastIndex)
			if nextIndex != -1:
				yield s[lastIndex:nextIndex]
				lastIndex = nextIndex + 1
			else:
				yield s[lastIndex:]
				break

def grouper_nofill_str(n, iterable):
	"""
	Take a sequence and break it up into chunks of the specified size.
	The last chunk may be smaller than size.

	This works very similar to grouper_nofill, except
	it works with strings as well.

	>>> tuple(grouper_nofill_str(3, 'foobarbaz'))
	('foo', 'bar', 'baz')

	You can still use it on non-strings too if you like.

	>>> tuple(grouper_nofill_str(42, []))
	()

	>>> tuple(grouper_nofill_str(3, list(range(10))))
	([0, 1, 2], [3, 4, 5], [6, 7, 8], [9])
	"""
	res = more.chunked(iterable, n)
	if isinstance(iterable, six.string_types):
		res = (''.join(item) for item in res)
	return res


def infinite_call(f):
	"""
	Perpetually yield the result of calling function f.

	>>> counter = itertools.count()
	>>> get_next = functools.partial(next, counter)
	>>> numbers = infinite_call(get_next)
	>>> next(numbers)
	0
	>>> next(numbers)
	1
	"""
	return (f() for _ in itertools.repeat(None))


def infiniteCall(f, *args):
	warnings.warn("Use infinite_call")
	return infinite_call(functools.partial(f, *args))


class Counter(object):
	"""
	Wrap an iterable in an object that stores the count of items
	that pass through it.

	>>> items = Counter(range(20))
	>>> values = list(items)
	>>> items.count
	20
	"""
	def __init__(self, i):
		self.count = 0
		self._orig_iter = iter(i)

	def __iter__(self):
		return self

	def __next__(self):
		result = next(self._orig_iter)
		self.count += 1
		return result
	next = __next__

	def GetCount(self):
		warnings.warn("Use count attribute directly", DeprecationWarning)
		return self.count

# todo, factor out caching capability
class iterable_test(dict):
	"""
	Test objects for iterability, caching the result by type

	>>> test = iterable_test()
	>>> test['foo']
	False
	>>> test[[]]
	True
	"""
	def __init__(self, ignore_classes=six.string_types+(six.binary_type,)):
		"""ignore_classes must include str, because if a string
		is iterable, so is a single character, and the routine runs
		into an infinite recursion"""
		assert set(six.string_types) <= set(ignore_classes), (
			'str must be in ignore_classes')
		self.ignore_classes = ignore_classes

	def __getitem__(self, candidate):
		return dict.get(self, type(candidate)) or self._test(candidate)

	def _test(self, candidate):
		try:
			if isinstance(candidate, tuple(self.ignore_classes)):
				raise TypeError
			iter(candidate)
			result = True
		except TypeError:
			result = False
		self[type(candidate)] = result
		return result

def iflatten(subject, test=None):
	if test is None:
		test = iterable_test()
	if not test[subject]:
		yield subject
	else:
		for elem in subject:
			for subelem in iflatten(elem, test):
				yield subelem

def flatten(subject, test=None):
	"""
	Flatten an iterable with possible nested iterables.

	Adapted from
	http://mail.python.org/pipermail/python-list/2003-November/233971.html

	>>> flatten(['a','b',['c','d',['e','f'],'g'],'h'])
	['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']

	Note this will normally ignore string types as iterables.

	>>> flatten(['ab', 'c'])
	['ab', 'c']

	Same for bytes

	>>> flatten([b'ab', b'c'])
	[b'ab', b'c']
	"""
	return list(iflatten(subject, test))

def empty():
	"""
	An empty iterator.
	"""
	return iter(tuple())

def is_empty(iterable):
	"""
	Return whether the iterable is empty or not. Consumes at most one item
	from the iterator to test.

	>>> is_empty(iter(range(0)))
	True
	>>> is_empty(iter(range(1)))
	False
	"""
	try:
		next(iter(iterable))
	except StopIteration:
		return True
	return False

class Reusable(object):
	"""
	An iterator that may be reset and reused.

	>>> ri = Reusable(range(3))
	>>> tuple(ri)
	(0, 1, 2)
	>>> next(ri)
	0
	>>> tuple(ri)
	(1, 2)
	>>> next(ri)
	0
	>>> ri.reset()
	>>> tuple(ri)
	(0, 1, 2)
	"""

	def __init__(self, iterable):
		self.__saved = iterable
		self.reset()

	def __iter__(self): return self

	def reset(self):
		"""
		Resets the iterator to the start.

		Any remaining values in the current iteration are discarded.
		"""
		self.__iterator, self.__saved = itertools.tee(self.__saved)

	def __next__(self):
		try:
			return next(self.__iterator)
		except StopIteration:
			# we're still going to raise the exception, but first
			#  reset the iterator so it's good for next time
			self.reset()
			raise
	next = __next__

def every_other(iterable):
	"""
	Yield every other item from the iterable

	>>> ' '.join(every_other('abcdefg'))
	'a c e g'
	"""
	items = iter(iterable)
	while True:
		yield next(items)
		next(items)

def remove_duplicates(iterable, key=None):
	"""
	Given an iterable with items that may come in as sequential duplicates,
	remove those duplicates.

	Unlike unique_justseen, this function does not remove triplicates.

	>>> ' '.join(remove_duplicates('abcaabbccaaabbbcccbcbc'))
	'a b c a b c a a b b c c b c b c'
	>>> ' '.join(remove_duplicates('aaaabbbbb'))
	'a a b b b'
	"""
	return itertools.chain.from_iterable(six.moves.map(
		every_other, six.moves.map(
			operator.itemgetter(1),
			itertools.groupby(iterable, key)
		)))

def skip_first(iterable):
	"""
	Skip the first element of an iterable

	>>> tuple(skip_first(range(10)))
	(1, 2, 3, 4, 5, 6, 7, 8, 9)
	"""
	return itertools.islice(iterable, 1, None)

def peek(iterable):
	"""
	Get the next value from an iterable, but also return an iterable
	that will subsequently return that value and the rest of the
	original iterable.

	>>> l = iter([1,2,3])
	>>> val, l = peek(l)
	>>> val
	1
	>>> list(l)
	[1, 2, 3]
	"""
	peeker, original = itertools.tee(iterable)
	return next(peeker), original

class Peekable(object):
	"""
	Wrapper for a traditional iterable to give it a peek attribute.

	>>> nums = Peekable(range(2))
	>>> nums.peek()
	0
	>>> nums.peek()
	0
	>>> next(nums)
	0
	>>> nums.peek()
	1
	>>> next(nums)
	1
	>>> nums.peek()
	Traceback (most recent call last):
	...
	StopIteration

	Peekable should accept an iterable and not just an iterator.

	>>> list(Peekable(range(2)))
	[0, 1]
	"""
	def __new__(cls, iterator):
		# if the iterator is already 'peekable', return it; otherwise
		# wrap it
		if hasattr(iterator, 'peek'):
			return iterator
		else:
			return object.__new__(cls)

	def __init__(self, iterator):
		self.iterator = iter(iterator)

	def __iter__(self):
		return self

	def __next__(self):
		return next(self.iterator)
	next = __next__

	def peek(self):
		result, self.iterator = peek(self.iterator)
		return result


def takewhile_peek(predicate, iterable):
	"""
	Like takewhile, but takes a peekable iterable and doesn't
	consume the non-matching item.

	>>> items = Peekable(range(10))
	>>> is_small = lambda n: n < 4

	>>> small_items = takewhile_peek(is_small, items)

	>>> list(small_items)
	[0, 1, 2, 3]

	>>> list(items)
	[4, 5, 6, 7, 8, 9]
	"""
	while True:
		if not predicate(iterable.peek()):
			break
		yield next(iterable)


def first(iterable):
	"""
	Return the first item from the iterable.

	>>> first(range(11))
	0
	>>> first([3,2,1])
	3
	>>> iter = range(11)
	>>> first(iter)
	0

	"""
	iterable = iter(iterable)
	return next(iterable)

def last(iterable):
	"""
	Return the last item from the iterable, discarding the rest.

	>>> last(range(20))
	19
	>>> last([])
	Traceback (most recent call last):
	...
	ValueError: Iterable contains no items
	"""
	for item in iterable:
		pass
	try:
		return item
	except NameError:
		raise ValueError("Iterable contains no items")

def one(item):
	"""
	Return the first element from the iterable, but raise an exception
	if elements remain in the iterable after the first.

	>>> one(['val'])
	'val'

	>>> one(['val', 'other'])
	Traceback (most recent call last):
	...
	ValueError: ...values to unpack...

	>>> one([])
	Traceback (most recent call last):
	...
	ValueError: ...values to unpack...

	>>> numbers = itertools.count()
	>>> one(numbers)
	Traceback (most recent call last):
	...
	ValueError: ...values to unpack...
	>>> next(numbers)
	2
	"""
	result, = item
	return result

def nwise(iter, n):
	"""
	Like pairwise, except returns n-tuples of adjacent items.
	s -> (s0,s1,...,sn), (s1,s2,...,s(n+1)), ...
	"""
	iterset = [iter]
	while len(iterset) < n:
		iterset[-1:] = itertools.tee(iterset[-1])
		next(iterset[-1], None)
	return six.moves.zip(*iterset)

def window(iter, pre_size=1, post_size=1):
	"""
	Given an iterable, return a new iterable which yields triples of
	(pre, item, post), where pre and post are the items preceeding and
	following the item (or None if no such item is appropriate). pre
	and post will always be pre_size and post_size in length.

	>>> example = window(range(10), pre_size=2)
	>>> pre, item, post = next(example)
	>>> pre
	(None, None)
	>>> post
	(1,)
	>>> next(example)
	((None, 0), 1, (2,))
	>>> list(example)[-1]
	((7, 8), 9, (None,))
	"""
	pre_iter, iter = itertools.tee(iter)
	pre_iter = itertools.chain((None,) * pre_size, pre_iter)
	pre_iter = nwise(pre_iter, pre_size)
	post_iter, iter = itertools.tee(iter)
	post_iter = itertools.chain(post_iter, (None,) * post_size)
	post_iter = nwise(post_iter, post_size)
	next(post_iter, None)
	return six.moves.zip(pre_iter, iter, post_iter)

class IterSaver(object):
	def __init__(self, n, iterable):
		self.n = n
		self.iterable = iterable
		self.buffer = collections.deque()

	def __next__(self):
		while len(self.buffer) <= self.n:
			self.buffer.append(next(self.iterable))
		return self.buffer.popleft()
	next = __next__

def partition_items(count, bin_size):
	"""
	Given the total number of items, determine the number of items that
	can be added to each bin with a limit on the bin size.

	So if you want to partition 11 items into groups of 3, you'll want
	three of three and one of two.

	>>> partition_items(11, 3)
	[3, 3, 3, 2]

	But if you only have ten items, you'll have two groups of three and
	two of two.

	>>> partition_items(10, 3)
	[3, 3, 2, 2]
	"""
	num_bins = int(math.ceil(count / float(bin_size)))
	bins = [0] * num_bins
	for i in range(count):
		bins[i % num_bins] += 1
	return bins

def balanced_rows(n, iterable, fillvalue=None):
	"""
	Like grouper, but balance the rows to minimize fill per row.
	balanced_rows(3, 'ABCDEFG', 'x') --> ABC DEx FGx"
	"""
	iterable, iterable_copy = itertools.tee(iterable)
	count = len(tuple(iterable_copy))
	for allocation in partition_items(count, n):
		row = itertools.islice(iterable, allocation)
		if allocation < n:
			row = itertools.chain(row, [fillvalue])
		yield tuple(row)

def reverse_lists(lists):
	"""
	>>> reverse_lists([[1,2,3], [4,5,6]])
	[[3, 2, 1], [6, 5, 4]]
	"""

	return list(map(list, map(reversed, lists)))

def always_iterable(item):
	"""
	Given an object, always return an iterable. If the item is not
	already iterable, return a tuple containing only the item. If item is
	None, an empty iterable is returned.

	>>> always_iterable([1,2,3])
	[1, 2, 3]
	>>> always_iterable('foo')
	('foo',)
	>>> always_iterable(None)
	()
	>>> always_iterable(range(10))
	range(0, 10)
	>>> def _test_func(): yield "I'm iterable"
	>>> print(next(always_iterable(_test_func())))
	I'm iterable

	Although mappings are iterable, treat each like a singleton, as
	it's more like an object than a sequence.

	>>> always_iterable(dict(a=1))
	({'a': 1},)
	"""
	if item is None:
		item = ()
	singleton = (
		isinstance(item, six.string_types)
		or isinstance(item, collections.Mapping)
		or not hasattr(item, '__iter__')
	)
	return (item,) if singleton else item

def suppress_exceptions(callables, *exceptions):
	"""
	Call each callable in callables, suppressing any exceptions supplied. If
	no exception classes are supplied, all Exceptions will be suppressed.

	>>> import functools
	>>> c1 = functools.partial(int, 'a')
	>>> c2 = functools.partial(int, '10')
	>>> list(suppress_exceptions((c1, c2)))
	[10]
	>>> list(suppress_exceptions((c1, c2), KeyError))
	Traceback (most recent call last):
	...
	ValueError: invalid literal for int() with base 10: 'a'
	"""
	if not exceptions:
		exceptions = Exception,
	for callable in callables:
		try:
			yield callable()
		except exceptions:
			pass

def apply(func, iterable):
	"""
	Like 'map', invoking func on each item in the iterable,
	except return the original item and not the return
	value from the function.

	Useful when the side-effect of the func is what's desired.

	>>> res = apply(print, range(1, 4))
	>>> list(res)
	1
	2
	3
	[1, 2, 3]
	"""
	for item in iterable:
		func(item)
		yield item


def list_or_single(iterable):
    """
    Given an iterable, return the items as a list. If the iterable contains
    exactly one item, return that item. Correlary function to always_iterable.

    >>> list_or_single(iter('abcd'))
    ['a', 'b', 'c', 'd']
    >>> list_or_single(['a'])
    'a'
    """
    result = list(iterable)
    if len(result) == 1:
        result = result[0]
    return result