/usr/lib/python2.7/dist-packages/midiutil/MidiFile.py is in python-midiutil 1.1.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 | # -----------------------------------------------------------------------------
# Name: MidiFile.py
# Purpose: MIDI file manipulation utilities
#
# Author: Mark Conway Wirt <emergentmusics) at (gmail . com>
#
# Created: 2008/04/17
# Copyright: (c) 2009-2016 Mark Conway Wirt
# License: Please see License.txt for the terms under which this
# software is distributed.
# -----------------------------------------------------------------------------
from __future__ import division, print_function
import math
import struct
import warnings
__version__ = '1.1.3'
# TICKSPERBEAT is the number of "ticks" (time measurement in the MIDI file)
# that corresponds to one beat. This number is somewhat arbitrary, but should
# be chosen to provide adequate temporal resolution.
TICKSPERBEAT = 960
controllerEventTypes = {'pan': 0x0a}
# Define some constants
MAJOR = 0
MINOR = 1
SHARPS = 1
FLATS = -1
__all__ = ['MIDIFile', 'MAJOR', 'MINOR', 'SHARPS', 'FLATS']
class MIDIEvent(object):
'''
The class to contain the MIDI Event (placed on MIDIEventList).
'''
def __init__(self, type="unknown", time=0, ordinal=0, insertion_order=0):
self.type = type
self.time = time
self.ord = ordinal
self.insertion_order = insertion_order
class GenericEvent(object):
'''
The event class from which specific events are derived
'''
def __init__(self, event_type, time, ordinal, insertion_order):
self.type = event_type
self.time = time
self.ord = ordinal
self.insertion_order = insertion_order
# self.type = 'Unknown'
def __eq__(self, other):
'''
Equality operator for Generic Events and derived classes.
In the processing of the event list, we have need to remove duplicates.
To do this we rely on the fact that the classes are hashable, and must
therefore have an equality operator (__hash__() and __eq__() must both
be defined).
This is the most embarrassing portion of the code, and anyone who knows
about OO programming would find this almost unbelievable. Here we have
a base class that knows specifics about derived classes, thus breaking
the very spirit of OO programming.
I suppose I should go back and restructure the code, perhaps removing
the derived classes altogether. At some point perhaps I will.
'''
if self.time != other.time or self.type != other.type:
return False
# What follows is code that encodes the concept of equality for each
# derived class. Believe it f you dare.
if self.type == 'note':
if self.pitch != other.pitch or self.channel != other.channel:
return False
if self.type == 'tempo':
if self.tempo != other.tempo:
return False
if self.type == 'programChange':
if (self.programNumber != other.programNumber or
self.channel != other.channel):
return False
if self.type == 'trackName':
if self.trackName != other.trackName:
return False
if self.type in ('controllerEvent', 'SysEx', 'UniversalSysEx'):
return False
return True
def __hash__(self):
'''
Return a hash code for the object.
This is needed for the removal of duplicate objects from the event
list. The only real requirement for the algorithm is that the hash of
equal objects must be equal. There is probably great opportunity for
improvements in the hashing function.
'''
# Robert Jenkin's 32 bit hash.
a = int(self.time)
a = (a + 0x7ed55d16) + (a << 12)
a = (a ^ 0xc761c23c) ^ (a >> 19)
a = (a + 0x165667b1) + (a << 5)
a = (a + 0xd3a2646c) ^ (a << 9)
a = (a + 0xfd7046c5) + (a << 3)
a = (a ^ 0xb55a4f09) ^ (a >> 16)
return a
class Note(GenericEvent):
'''
A class that encapsulates a note
'''
def __init__(self, channel, pitch, time, duration, volume, ordinal=3,
annotation=None, insertion_order=0):
self.pitch = pitch
self.duration = duration
self.volume = volume
self.channel = channel
self.annotation = annotation
super(Note, self).__init__('note', time, ordinal, insertion_order)
class Tempo(GenericEvent):
'''
A class that encapsulates a tempo meta-event
'''
def __init__(self, time, tempo, ordinal=3, insertion_order=0):
self.tempo = int(60000000 / tempo)
super(Tempo, self).__init__('tempo', time, ordinal, insertion_order)
class Copyright(GenericEvent):
'''
A class that encapsulates a copyright event
'''
def __init__(self, time, notice, ordinal=1, insertion_order=0):
self.notice = notice.encode("ISO-8859-1")
super(Copyright, self).__init__('Copyright', time, ordinal,
insertion_order)
class Text(GenericEvent):
'''
A class that encapsulates a text event
'''
def __init__(self, time, text, ordinal=1, insertion_order=0):
self.text = text.encode("ISO-8859-1")
super(Text, self).__init__('Text', time, ordinal, insertion_order)
class KeySignature(GenericEvent):
'''
A class that encapsulates a text event
'''
def __init__(self, time, accidentals, accidental_type, mode, ordinal=1,
insertion_order=0):
self.accidentals = accidentals
self.accidental_type = accidental_type
self.mode = mode
super(KeySignature, self).__init__('KeySignature', time, ordinal,
insertion_order)
class ProgramChange(GenericEvent):
'''
A class that encapsulates a program change event.
'''
def __init__(self, channel, time, programNumber, ordinal=1,
insertion_order=0):
self.programNumber = programNumber
self.channel = channel
super(ProgramChange, self).__init__('programChange', time, ordinal,
insertion_order)
class SysExEvent(GenericEvent):
'''
A class that encapsulates a System Exclusive event.
'''
def __init__(self, time, manID, payload, ordinal=1, insertion_order=0):
self.manID = manID
self.payload = payload
super(SysExEvent, self).__init__('SysEx', time, ordinal,
insertion_order)
class UniversalSysExEvent(GenericEvent):
'''
A class that encapsulates a Universal System Exclusive event.
'''
def __init__(self, time, realTime, sysExChannel, code, subcode,
payload, ordinal=1, insertion_order=0):
self.realTime = realTime
self.sysExChannel = sysExChannel
self.code = code
self.subcode = subcode
self.payload = payload
super(UniversalSysExEvent, self).__init__('UniversalSysEx', time,
ordinal, insertion_order)
class ControllerEvent(GenericEvent):
'''
A class that encapsulates a program change event.
'''
def __init__(self, channel, time, controller_number, parameter,
ordinal=1, insertion_order=0):
self.parameter = parameter
self.channel = channel
self.controller_number = controller_number
super(ControllerEvent, self).__init__('controllerEvent', time, ordinal,
insertion_order)
class TrackName(GenericEvent):
'''
A class that encapsulates a program change event.
'''
def __init__(self, time, trackName, ordinal=0, insertion_order=0):
# GenericEvent.__init__(self, time,)
self.trackName = trackName.encode("ISO-8859-1")
super(TrackName, self).__init__('trackName', time, ordinal,
insertion_order)
class TimeSignature(GenericEvent):
'''
A class that encapsulates a time signature.
'''
def __init__(self, time, numerator, denominator, clocks_per_tick,
notes_per_quarter, ordinal=0, insertion_order=0):
self.numerator = numerator
self.denominator = denominator
self.clocks_per_tick = clocks_per_tick
self.notes_per_quarter = notes_per_quarter
super(TimeSignature, self).__init__('TimeSignature', time, ordinal,
insertion_order)
class MIDITrack(object):
'''
A class that encapsulates a MIDI track
'''
def __init__(self, removeDuplicates, deinterleave):
'''Initialize the MIDITrack object.
'''
self.headerString = struct.pack('cccc', b'M', b'T', b'r', b'k')
self.dataLength = 0 # Is calculated after the data is in place
self.MIDIdata = b""
self.closed = False
self.eventList = []
self.MIDIEventList = []
self.remdep = removeDuplicates
self.deinterleave = deinterleave
def addNoteByNumber(self, channel, pitch, time, duration, volume,
annotation=None, insertion_order=0):
'''
Add a note by chromatic MIDI number
'''
self.eventList.append(Note(channel, pitch, time, duration, volume,
annotation=annotation,
insertion_order=insertion_order))
def addControllerEvent(self, channel, time, controller_number, parameter,
insertion_order=0):
'''
Add a controller event.
'''
self.eventList.append(ControllerEvent(channel, time, controller_number,
parameter,
insertion_order=insertion_order))
def addTempo(self, time, tempo, insertion_order=0):
'''
Add a tempo change (or set) event.
'''
self.eventList.append(Tempo(time, tempo,
insertion_order=insertion_order))
def addSysEx(self, time, manID, payload, insertion_order=0):
'''
Add a SysEx event.
'''
self.eventList.append(SysExEvent(time, manID, payload,
insertion_order=insertion_order))
def addUniversalSysEx(self, time, code, subcode, payload,
sysExChannel=0x7F, realTime=False,
insertion_order=0):
'''
Add a Universal SysEx event.
'''
self.eventList.append(UniversalSysExEvent(time, realTime, sysExChannel,
code, subcode, payload,
insertion_order=insertion_order))
def addProgramChange(self, channel, time, program, insertion_order=0):
'''
Add a program change event.
'''
self.eventList.append(ProgramChange(channel, time, program,
insertion_order=insertion_order))
def addTrackName(self, time, trackName, insertion_order=0):
'''
Add a track name event.
'''
self.eventList.append(TrackName(time, trackName,
insertion_order=insertion_order))
def addTimeSignature(self, time, numerator, denominator, clocks_per_tick,
notes_per_quarter, insertion_order=0):
'''
Add a time signature.
'''
self.eventList.append(TimeSignature(time, numerator, denominator,
clocks_per_tick, notes_per_quarter,
insertion_order=insertion_order))
def addCopyright(self, time, notice, insertion_order=0):
'''
Add a copyright notice
'''
self.eventList.append(Copyright(time, notice,
insertion_order=insertion_order))
def addKeySignature(self, time, accidentals, accidental_type, mode,
insertion_order=0):
'''
Add a copyright notice
'''
self.eventList.append(KeySignature(time, accidentals, accidental_type,
mode,
insertion_order=insertion_order))
def addText(self, time, text, insertion_order=0):
'''
Add a text event
'''
self.eventList.append(Text(time, text,
insertion_order=insertion_order))
def changeNoteTuning(self, tunings, sysExChannel=0x7F, realTime=True,
tuningProgam=0, insertion_order=0):
'''
Change the tuning of MIDI notes
'''
payload = struct.pack('>B', tuningProgam)
payload = payload + struct.pack('>B', len(tunings))
for (noteNumber, frequency) in tunings:
payload = payload + struct.pack('>B', noteNumber)
MIDIFreqency = frequencyTransform(frequency)
for byte in MIDIFreqency:
payload = payload + struct.pack('>B', byte)
self.eventList.append(UniversalSysExEvent(0, realTime, sysExChannel,
8, 2, payload, insertion_order=insertion_order))
def processEventList(self):
'''
Process the event list, creating a MIDIEventList
For each item in the event list, one or more events in the MIDIEvent
list are created.
'''
# Loop over all items in the eventList
for thing in self.eventList:
if thing.type == 'note':
event = MIDIEvent("NoteOn", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.pitch = thing.pitch
event.volume = thing.volume
event.channel = thing.channel
self.MIDIEventList.append(event)
event = MIDIEvent("NoteOff",
(thing.time + thing.duration) * TICKSPERBEAT,
thing.ord - 0.1, thing.insertion_order)
event.pitch = thing.pitch
event.volume = thing.volume
event.channel = thing.channel
self.MIDIEventList.append(event)
elif thing.type == 'tempo':
event = MIDIEvent("Tempo", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.tempo = thing.tempo
self.MIDIEventList.append(event)
elif thing.type == 'Copyright':
event = MIDIEvent("Copyright", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.notice = thing.notice
self.MIDIEventList.append(event)
elif thing.type == 'Text':
event = MIDIEvent("Text", thing.time * TICKSPERBEAT, thing.ord,
thing.insertion_order)
event.text = thing.text
self.MIDIEventList.append(event)
elif thing.type == 'KeySignature':
event = MIDIEvent("KeySignature", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.accidentals = thing.accidentals
event.accidental_type = thing.accidental_type
event.mode = thing.mode
self.MIDIEventList.append(event)
elif thing.type == 'programChange':
event = MIDIEvent("ProgramChange", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.programNumber = thing.programNumber
event.channel = thing.channel
self.MIDIEventList.append(event)
elif thing.type == 'trackName':
event = MIDIEvent("TrackName", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.trackName = thing.trackName
self.MIDIEventList.append(event)
elif thing.type == 'controllerEvent':
event = MIDIEvent("ControllerEvent", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.controller_number = thing.controller_number
event.channel = thing.channel
event.parameter = thing.parameter
self.MIDIEventList.append(event)
elif thing.type == 'SysEx':
event = MIDIEvent("SysEx", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.manID = thing.manID
event.payload = thing.payload
self.MIDIEventList.append(event)
elif thing.type == 'UniversalSysEx':
event = MIDIEvent("UniversalSysEx", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.realTime = thing.realTime
event.sysExChannel = thing.sysExChannel
event.code = thing.code
event.subcode = thing.subcode
event.payload = thing.payload
self.MIDIEventList.append(event)
elif thing.type == 'TimeSignature':
event = MIDIEvent("TimeSignature", thing.time * TICKSPERBEAT,
thing.ord, thing.insertion_order)
event.numerator = thing.numerator
event.denominator = thing.denominator
event.clocks_per_tick = thing.clocks_per_tick
event.notes_per_quarter = thing.notes_per_quarter
self.MIDIEventList.append(event)
else:
raise ValueError("Error in MIDITrack: Unknown event type %s" %
thing.type)
# Assumptions in the code expect the list to be time-sorted.
self.MIDIEventList.sort(key=sort_events)
if self.deinterleave:
self.deInterleaveNotes()
def removeDuplicates(self):
'''
Remove duplicates from the eventList.
This function will remove duplicates from the eventList. This is
necessary because we the MIDI event stream can become confused
otherwise.
'''
# For this algorithm to work, the events in the eventList must be
# hashable (that is, they must have a __hash__() and __eq__() function
# defined).
tempDict = {item: 1 for item in self.eventList}
self.eventList = list(tempDict.keys())
self.eventList.sort(key=sort_events)
def closeTrack(self):
'''
Called to close a track before writing
This function should be called to "close a track," that is to
prepare the actual data stream for writing. Duplicate events are
removed from the eventList, and the MIDIEventList is created.
Called by the parent MIDIFile object.
'''
if self.closed:
return
self.closed = True
if self.remdep:
self.removeDuplicates()
self.processEventList()
def writeMIDIStream(self):
'''
Write the meta data and note data to the packed MIDI stream.
'''
# Process the events in the eventList
self.writeEventsToStream()
# Write MIDI close event.
self.MIDIdata += struct.pack('BBBB', 0x00, 0xFF, 0x2F, 0x00)
# Calculate the entire length of the data and write to the header
self.dataLength = struct.pack('>L', len(self.MIDIdata))
def writeEventsToStream(self):
'''
Write the events in MIDIEvents to the MIDI stream.
'''
preciseTime = 0.0 # Actual time of event, ignoring round-off
actualTime = 0.0 # Time as written to midi stream, include round-off
for event in self.MIDIEventList:
preciseTime = preciseTime + event.time
# Convert the time to variable length and back, to see how much
# error is introduced
testBuffer = b""
varTime = writeVarLength(event.time)
for timeByte in varTime:
testBuffer = testBuffer + struct.pack('>B', timeByte)
(roundedVal, discard) = readVarLength(0, testBuffer)
roundedTime = actualTime + roundedVal
# Calculate the delta between the two and apply it to event time.
delta = preciseTime - roundedTime
event.time = event.time + delta
# Now update the actualTime value, using the updated event time.
testBuffer = b""
varTime = writeVarLength(event.time)
for timeByte in varTime:
testBuffer = testBuffer + struct.pack('>B', timeByte)
(roundedVal, discard) = readVarLength(0, testBuffer)
actualTime = actualTime + roundedVal
for event in self.MIDIEventList:
if event.type == "NoteOn":
code = 0x9 << 4 | event.channel
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', event.pitch)
self.MIDIdata += struct.pack('>B', event.volume)
elif event.type == "NoteOff":
code = 0x8 << 4 | event.channel
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', event.pitch)
self.MIDIdata += struct.pack('>B', event.volume)
elif event.type == "Tempo":
code = 0xFF
subcode = 0x51
fourbite = struct.pack('>L', event.tempo)
threebite = fourbite[1:4] # Just discard the MSB
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', subcode)
self.MIDIdata += struct.pack('>B', 0x03)
self.MIDIdata += threebite
elif event.type == "Text":
code = 0xFF
subcode = 0x01
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', subcode)
payloadLength = len(event.text)
payloadLengthVar = writeVarLength(payloadLength)
for i in range(len(payloadLengthVar)):
self.MIDIdata += struct.pack("b", payloadLengthVar[i])
self.MIDIdata += event.text
elif event.type == "Copyright":
code = 0xFF
subcode = 0x02
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', subcode)
payloadLength = len(event.notice)
payloadLengthVar = writeVarLength(payloadLength)
for i in range(len(payloadLengthVar)):
self.MIDIdata += struct.pack("b", payloadLengthVar[i])
self.MIDIdata += event.notice
elif event.type == "TimeSignature":
code = 0xFF
subcode = 0x58
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', subcode)
self.MIDIdata += struct.pack('>B', 0x04)
self.MIDIdata += struct.pack('>B', event.numerator)
self.MIDIdata += struct.pack('>B', event.denominator)
self.MIDIdata += struct.pack('>B', event.clocks_per_tick)
# 32nd notes per quarter note
self.MIDIdata += struct.pack('>B', event.notes_per_quarter)
elif event.type == "KeySignature":
code = 0xFF
subcode = 0x59
event_subtype = 0x02
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', subcode)
self.MIDIdata += struct.pack('>B', event_subtype)
self.MIDIdata += struct.pack('>b', event.accidentals *
event.accidental_type)
self.MIDIdata += struct.pack('>B', event.mode)
elif event.type == 'ProgramChange':
code = 0xC << 4 | event.channel
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', event.programNumber)
elif event.type == 'TrackName':
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('B', 0xFF)
self.MIDIdata += struct.pack('B', 0X03)
dataLength = len(event.trackName)
dataLenghtVar = writeVarLength(dataLength)
for i in range(0, len(dataLenghtVar)):
self.MIDIdata += struct.pack("b", dataLenghtVar[i])
self.MIDIdata += event.trackName
elif event.type == "ControllerEvent":
code = 0xB << 4 | event.channel
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
self.MIDIdata += struct.pack('>B', event.controller_number)
self.MIDIdata += struct.pack('>B', event.parameter)
elif event.type == "SysEx":
code = 0xF0
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
payloadLength = writeVarLength(len(event.payload)+2)
for lenByte in payloadLength:
self.MIDIdata += struct.pack('>B', lenByte)
self.MIDIdata += struct.pack('>B', event.manID)
self.MIDIdata += event.payload
self.MIDIdata += struct.pack('>B', 0xF7)
elif event.type == "UniversalSysEx":
code = 0xF0
varTime = writeVarLength(event.time)
for timeByte in varTime:
self.MIDIdata += struct.pack('>B', timeByte)
self.MIDIdata += struct.pack('>B', code)
# Do we need to add a length?
payloadLength = writeVarLength(len(event.payload)+5)
for lenByte in payloadLength:
self.MIDIdata += struct.pack('>B', lenByte)
if event.realTime:
self.MIDIdata += struct.pack('>B', 0x7F)
else:
self.MIDIdata += struct.pack('>B', 0x7E)
self.MIDIdata += struct.pack('>B', event.sysExChannel)
self.MIDIdata += struct.pack('>B', event.code)
self.MIDIdata += struct.pack('>B', event.subcode)
self.MIDIdata += event.payload
self.MIDIdata += struct.pack('>B', 0xF7)
def deInterleaveNotes(self):
'''
Correct Interleaved notes.
Because we are writing multiple notes in no particular order, we
can have notes which are interleaved with respect to their start
and stop times. This method will correct that. It expects that the
MIDIEventList has been time-ordered.
'''
tempEventList = []
stack = {}
for event in self.MIDIEventList:
if event.type == 'NoteOn':
if str(event.pitch)+str(event.channel) in stack:
stack[str(event.pitch)+str(event.channel)].append(event.time)
else:
stack[str(event.pitch)+str(event.channel)] = [event.time]
tempEventList.append(event)
elif event.type == 'NoteOff':
if len(stack[str(event.pitch)+str(event.channel)]) > 1:
event.time = stack[str(event.pitch)+str(event.channel)].pop()
tempEventList.append(event)
else:
stack[str(event.pitch)+str(event.channel)].pop()
tempEventList.append(event)
else:
tempEventList.append(event)
self.MIDIEventList = tempEventList
# Note that ``processEventList`` makes the ordinality of a note off event
# a bit lower than the note on event, so this sort will make concomitant
# note off events processed first.
self.MIDIEventList.sort(key=sort_events)
def adjustTimeAndOrigin(self, origin, adjust):
'''
Adjust Times to be relative, and zero-origined.
If adjust is True, the track will be shifted. Regardelss times
are converted to relative values here.
'''
if len(self.MIDIEventList) == 0:
return
tempEventList = []
internal_origin = origin if adjust else 0.0
runningTime = 0
for event in self.MIDIEventList:
adjustedTime = event.time - internal_origin
event.time = adjustedTime - runningTime
runningTime = adjustedTime
tempEventList.append(event)
self.MIDIEventList = tempEventList
def writeTrack(self, fileHandle):
'''
Write track to disk.
'''
fileHandle.write(self.headerString)
fileHandle.write(self.dataLength)
fileHandle.write(self.MIDIdata)
class MIDIHeader(object):
'''
Class to encapsulate the MIDI header structure.
This class encapsulates a MIDI header structure. It isn't used for much,
but it will create the appropriately packed identifier string that all
MIDI files should contain. It is used by the MIDIFile class to create a
complete and well formed MIDI pattern.
'''
def __init__(self, numTracks, file_format):
''' Initialize the data structures
'''
self.headerString = struct.pack('cccc', b'M', b'T', b'h', b'd')
self.headerSize = struct.pack('>L', 6)
# Format 1 = multi-track file
self.format = struct.pack('>H', file_format)
self.numeric_format = file_format
delta = 1 if file_format == 1 else 0
self.numTracks = struct.pack('>H', numTracks + delta)
self.ticksPerBeat = struct.pack('>H', TICKSPERBEAT)
def writeFile(self, fileHandle):
fileHandle.write(self.headerString)
fileHandle.write(self.headerSize)
fileHandle.write(self.format)
fileHandle.write(self.numTracks)
fileHandle.write(self.ticksPerBeat)
class MIDIFile(object):
'''
A class that encapsulates a full, well-formed MIDI file object.
This is a container object that contains a header (:class:`MIDIHeader`),
one or more tracks (class:`MIDITrack`), and the data associated with a
proper and well-formed MIDI file.
'''
def __init__(self, numTracks=1, removeDuplicates=True, deinterleave=True,
adjust_origin=None, file_format=1):
'''
Initialize the MIDIFile class
:param numTracks: The number of tracks the file contains. Integer,
one or greater
:param removeDuplicates: If set to ``True`` remove duplicate events
before writing to disk
:param deinterleave: If set to ``True`` deinterleave the notes in
the stream
:param adjust_origin: If set to ``True`` (or left at the default of
``None``) shift all the events in the tracks so that the first
event takes place at time t=0
:param file_format: The format of the multi-track file. This should
either be ``1`` (the default, and the most widely supported
format) or ``2``.
Note that the default for ``adjust_origin`` will change in a future
release, so one should probably explicitly set it.
Example:
.. code::
# Create a two-track MIDIFile
from midiutil.MidiFile import MIDIFile
midi_file = MIDIFile(2)
A Note on File Formats
----------------------
In previous versions of this code the file written was format 2
(which can be thought of as a collection of independent tracks) but
was identified as format 1. In this version one can specify either
format 1 or 2.
In format 1 files there is a separate tempo track which contains
tempo and time signature data, but contains no note data. If one
creates a single track format 1 file the actual file has two tracks
-- one for tempo data and one for note data. In the track indexing
the tempo track can be ignored. In other words track 0 is the note
track (the second track in the file). However, tempo and time
signature data will be written to the first, tempo track. This is
done to try and preserve as much interoperability with previous
versions as possible.
In a format 2 file all tracks are indexed and the track parameter
is interpreted literally.
'''
self.header = MIDIHeader(numTracks, file_format)
self.tracks = list()
if file_format == 1:
delta = 1
else:
delta = 0
self.numTracks = numTracks + delta
self.closed = False
if adjust_origin is None:
self.adjust_origin = True
warnings.warn("Please explicitly set adjust_origin. Default "
"behaviour will change in a future version.",
FutureWarning)
else:
self.adjust_origin = adjust_origin
for i in range(0, self.numTracks):
self.tracks.append(MIDITrack(removeDuplicates, deinterleave))
# to keep track of the order of insertion for new sorting
self.event_counter = 0
# Public Functions. These (for the most part) wrap the MIDITrack functions,
# where most Processing takes place.
def addNote(self, track, channel, pitch, time, duration, volume,
annotation=None):
"""
Add notes to the MIDIFile object
:param track: The track to which the note is added.
:param channel: the MIDI channel to assign to the note. [Integer, 0-15]
:param pitch: the MIDI pitch number [Integer, 0-127].
:param time: the time (in beats) at which the note sounds [Float].
:param duration: the duration of the note (in beats) [Float].
:param volume: the volume (velocity) of the note. [Integer, 0-127].
:param annotation: Arbitrary data to attach to the note.
The ``annotation`` parameter attaches arbitrary data to the note. This
is not used in the code, but can be useful anyway. As an example,
I have created a project that uses MIDIFile to write
`csound <http://csound.github.io/>`_ orchestra files directly from the
class ``EventList``.
"""
if self.header.numeric_format == 1:
track += 1
self.tracks[track].addNoteByNumber(channel, pitch, time, duration,
volume, annotation=annotation,
insertion_order=self.event_counter)
self.event_counter += 1
def addTrackName(self, track, time, trackName):
"""
Name a track.
:param track: The track to which the name is assigned.
:param time: The time (in beats) at which the track name event is
placed. In general this should probably be time 0 (the beginning
of the track).
:param trackName: The name to assign to the track [String]
"""
if self.header.numeric_format == 1:
track += 1
self.tracks[track].addTrackName(time, trackName,
insertion_order=self.event_counter)
self.event_counter += 1
def addTimeSignature(self, track, time, numerator, denominator,
clocks_per_tick, notes_per_quarter=8):
'''
Add a time signature event.
:param track: The track to which the signature is assigned. Note that
in a format 1 file this parameter is ignored and the event is
written to the tempo track
:param time: The time (in beats) at which the event is placed.
In general this should probably be time 0 (the beginning of the
track).
:param numerator: The numerator of the time signature. [Int]
:param denominator: The denominator of the time signature, expressed as
a power of two (see below). [Int]
:param clocks_per_tick: The number of MIDI clock ticks per metronome
click (see below).
:param notes_per_quarter: The number of annotated 32nd notes in a MIDI
quarter note. This is almost always 8 (the default), but some
sequencers allow this value to be changed. Unless you know that
your sequencing software supports it, this should be left at its
default value.
The data format for this event is a little obscure.
The ``denominator`` should be specified as a power of 2, with
a half note being one, a quarter note being two, and eight note
being three, etc. Thus, for example, a 4/4 time signature would
have a ``numerator`` of 4 and a ``denominator`` of 2. A 7/8 time
signature would be a ``numerator`` of 7 and a ``denominator``
of 3.
The ``clocks_per_tick`` argument specifies the number of clock
ticks per metronome click. By definition there are 24 ticks in
a quarter note, so a metronome click per quarter note would be
24. A click every third eighth note would be 3 * 12 = 36.
'''
if self.header.numeric_format == 1:
track = 0
self.tracks[track].addTimeSignature(time, numerator, denominator,
clocks_per_tick, notes_per_quarter,
insertion_order=self.event_counter)
self.event_counter += 1
def addTempo(self, track, time, tempo):
"""
Add notes to the MIDIFile object
:param track: The track to which the tempo event is added. Note that
in a format 1 file this parameter is ignored and the tempo is
written to the tempo track
:param time: The time (in beats) at which tempo event is placed
:param tempo: The tempo, in Beats per Minute. [Integer]
"""
if self.header.numeric_format == 1:
track = 0
self.tracks[track].addTempo(time, tempo,
insertion_order=self.event_counter)
self.event_counter += 1
def addCopyright(self, track, time, notice):
"""
Add a copyright notice to the MIDIFile object
:param track: The track to which the notice is added.
:param time: The time (in beats) at which notice event is placed. In
general this sould be time t=0
:param notice: The copyright notice [String]
"""
if self.header.numeric_format == 1:
track += 1
self.tracks[track].addCopyright(time, notice,
insertion_order=self.event_counter)
self.event_counter += 1
def addKeySignature(self, track, time, accidentals, accidental_type, mode,
insertion_order=0):
'''
Add a Key Signature to a track
:param track: The track to which this should be added
:param time: The time at which the signature should be placed
:param accidentals: The number of accidentals in the key signature
:param accidental_type: The type of accidental
:param mode: The mode of the scale
The easiest way to use this function is to make sure that the symbolic
constants for accidental_type and mode are imported. By doing this:
.. code::
from midiutil.MidiFile import *
one gets the following constants defined:
* ``SHARPS``
* ``FLATS``
* ``MAJOR``
* ``MINOR``
So, for example, if one wanted to create a key signature for a minor
scale with three sharps:
.. code::
MyMIDI.addKeySignature(0, 0, 3, SHARPS, MINOR)
'''
if self.header.numeric_format == 1:
track += 1
self.tracks[track].addKeySignature(time, accidentals, accidental_type,
mode,
insertion_order=self.event_counter)
self.event_counter += 1
def addText(self, track, time, text):
"""
Add a text event
:param track: The track to which the notice is added.
:param time: The time (in beats) at which text event is placed.
:param text: The text to adde [ASCII String]
"""
if self.header.numeric_format == 1:
track += 1
self.tracks[track].addText(time, text,
insertion_order=self.event_counter)
self.event_counter += 1
def addProgramChange(self, track, channel, time, program):
"""
Add a MIDI program change event.
:param track: The track to which program change event is added.
:param channel: the MIDI channel to assign to the event.
[Integer, 0-15]
:param time: The time (in beats) at which the program change event is
placed [Float].
:param program: the program number. [Integer, 0-127].
"""
self.tracks[track].addProgramChange(channel, time, program,
insertion_order=self.event_counter)
self.event_counter += 1
def addControllerEvent(self, track, channel, time, controller_number,
parameter):
"""
Add a channel control event
:param track: The track to which the event is added.
:param channel: the MIDI channel to assign to the event.
[Integer, 0-15]
:param time: The time (in beats) at which the event is placed [Float].
:param controller_number: The controller ID of the event.
:param parameter: The event's parameter, the meaning of which varies by
event type.
"""
if self.header.numeric_format == 1:
track += 1
self.tracks[track].addControllerEvent(channel, time, controller_number,
parameter, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
def makeRPNCall(self, track, channel, time, controller_msb, controller_lsb,
data_msb, data_lsb, time_order=False):
'''
Perform a Registered Parameter Number Call
:param track: The track to which this applies
:param channel: The channel to which this applies
:param time: The time of the event
:param controller_msb: The Most significant byte of the controller. In
common usage this will usually be 0
:param controller_lsb: The Least significant Byte for the controller
message. For example, for a fine-tuning change this would be 01.
:param data_msb: The Most Significant Byte of the controller's
parameter.
:param data_lsb: The Least Significant Byte of the controller's
parameter. If not needed this should be set to ``None``
:param time_order: Order the control events in time (see below)
As an example, if one were to change a channel's tuning program::
makeRPNCall(track, channel, time, 0, 3, 0, program)
(Note, however, that there is a convenience function,
``changeTuningProgram``, that does this for you.)
The ``time_order`` parameter is something of a work-around for
sequencers that do not preserve the order of events from the MIDI files
they import. Within this code care is taken to preserve the order of
events as specified, but some sequencers seem to transmit events
occurring at the same time in an arbitrary order. By setting this
parameter to ``True`` something of a work-around is performed: each
successive event (of which there are three or four for this event type)
is placed in the time stream a small delta from the preceding one.
Thus, for example, the controllers are set before the data bytes in
this call.
'''
if self.header.numeric_format == 1:
track += 1
delta = 1.0 / (TICKSPERBEAT - 10) if time_order else 0.0
self.tracks[track].addControllerEvent(channel, time, 101,
controller_msb, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
self.tracks[track].addControllerEvent(channel, time + delta, 100,
controller_lsb, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
self.tracks[track].addControllerEvent(channel, time + (2.0 * delta), 6,
data_msb, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
if data_lsb is not None:
self.tracks[track].addControllerEvent(channel, time + (3.0*delta),
38, data_lsb, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
def makeNRPNCall(self, track, channel, time, controller_msb,
controller_lsb, data_msb, data_lsb, time_order=False):
'''
Perform a Non-Registered Parameter Number Call
:param track: The track to which this applies
:param channel: The channel to which this applies
:param time: The time of the event
:param controller_msb: The Most significant byte of thecontroller. In
common usage this will usually be 0
:param controller_lsb: The least significant byte for the controller
message. For example, for a fine-tunning change this would be 01.
:param data_msb: The most significant byte of the controller's
parameter.
:param data_lsb: The least significant byte of the controller's
parameter. If none is needed this should be set to ``None``
:param time_order: Order the control events in time (see below)
The ``time_order`` parameter is something of a work-around for
sequencers that do not preserve the order of events from the MIDI files
they import. Within this code care is taken to preserve the order of
events as specified, but some sequencers seem to transmit events
occurring at the same time in an arbitrary order. By setting this
parameter to ``True`` something of a work-around is performed: each
successive event (of which there are three or four for this event type)
is placed in the time stream a small delta from the preceding one.
Thus, for example, the controllers are set before the data bytes in
this call.
'''
if self.header.numeric_format == 1:
track += 1
delta = 1.0 / (TICKSPERBEAT - 10) if time_order else 0.0
self.tracks[track].addControllerEvent(channel, time, 99,
controller_msb, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
self.tracks[track].addControllerEvent(channel, time + delta, 98,
controller_lsb, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
self.tracks[track].addControllerEvent(channel, time + (2 * delta), 6,
data_msb, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
if data_lsb is not None:
self.tracks[track].addControllerEvent(channel, time + (3 * delta),
38, data_lsb, insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
def changeTuningBank(self, track, channel, time, bank, time_order=False):
'''
Change the tuning bank for a selected track
:param track: The track to which the data should be written
:param channel: The channel for the event
:param time: The time of the event
:param bank: The tuning bank (0-127)
:param time_order: Preserve the ordering of the component events by
ordering in time. See ``makeRPNCall()`` for a discussion of when
this may be necessary
Note that this is a convenience function, as the same
functionality is available from directly sequencing controller
events.
The specified tuning should already have been written to the
stream with ``changeNoteTuning``. '''
self.makeRPNCall(track, channel, time, 0, 4, 0, bank,
time_order=time_order)
def changeTuningProgram(self, track, channel, time, program,
time_order=False):
'''
Change the tuning program for a selected track
:param track: The track to which the data should be written
:param channel: The channel for the event
:param time: The time of the event
:param program: The tuning program number (0-127)
:param time_order: Preserve the ordering of the component events by
ordering in time. See ``makeRPNCall()`` for a discussion of when
this may be necessary
Note that this is a convenience function, as the same
functionality is available from directly sequencing controller
events.
The specified tuning should already have been written to the
stream with ``changeNoteTuning``. '''
self.makeRPNCall(track, channel, time, 0, 3, 0, program,
time_order=time_order)
def changeNoteTuning(self, track, tunings, sysExChannel=0x7F,
realTime=True, tuningProgam=0):
"""
Add a real-time MIDI tuning standard update to a track.
:param track: The track to which the tuning is applied.
:param tunings: A list to tuples representing the tuning. See below for
an explanation.
:param sysExChannel: The SysEx channel of the event. This is mapped to
"manufacturer ID" in the event which is written. Unless there is a
specific reason for changing it, it should be left at its default
value.
:param realTime: Speicifes if the Universal SysEx event should be
flagged as real-time or non-real-time. As with the ``sysExChannel``
argument, this should in general be left at it's default value.
:param tuningProgram: The tuning program number.
This function specifically implements the "real time single note tuning
change" (although the name is misleading, as multiple notes can be
included in each event). It should be noted that not all hardware or
software implements the MIDI tuning standard, and that which does often
does not implement it in its entirety.
The ``tunings`` argument is a list of tuples, in (*note number*,
*frequency*) format. As an example, if one wanted to change the
frequency on MIDI note 69 to 500 (it is normally 440 Hz), one could do
it thus:
.. code:: python
from midiutil.MidiFile import MIDIFile
MyMIDI = MIDIFile(1)
tuning = [(69, 500)]
MyMIDI.changeNoteTuning(0, tuning, tuningProgam=0)
"""
if self.header.numeric_format == 1:
track += 1
self.tracks[track].changeNoteTuning(tunings, sysExChannel, realTime,
tuningProgam,
insertion_order=self.event_counter)
self.event_counter += 1
def addSysEx(self, track, time, manID, payload):
'''
Add a System Exclusive event.
:param track: The track to which the event should be written
:param time: The time of the event.
:param manID: The manufacturer ID for the event
:param payload: The payload for the event. This should be a
binary-packed value, and will vary for each type and function.
**Note**: This is a low-level MIDI function, so care must be used in
constructing the payload. It is recommended that higher-level helper
functions be written to wrap this function and construct the payload if
a developer finds him or herself using the function heavily.
'''
if self.header.numeric_format == 1:
track += 1
self.tracks[track].addSysEx(time, manID, payload,
insertion_order=self.event_counter)
self.event_counter += 1
def addUniversalSysEx(self, track, time, code, subcode, payload,
sysExChannel=0x7F, realTime=False):
'''
Add a Univeral System Exclusive event.
:param track: The track to which the event should be written
:param time: The time of the event, in beats.
:param code: The event code. [Integer]
:param subcode: The event sub-code [Integer]
:param payload: The payload for the event. This should be a
binary-packed value, and will vary for each type and function.
:param sysExChannel: The SysEx channel.
:param realTime: Sets the real-time flag. Defaults to non-real-time.
:param manID: The manufacturer ID for the event
**Note**: This is a low-level MIDI function, so care must be used in
constructing the payload. It is recommended that higher-level helper
functions be written to wrap this function and construct the payload if
a developer finds him or herself using the function heavily. As an
example of such a helper function, see the ``changeNoteTuning()``
function, which uses the event to create a real-time note tuning
update.
'''
if self.header.numeric_format == 1:
track += 1
self.tracks[track].addUniversalSysEx(time, code, subcode, payload,
sysExChannel, realTime,
insertion_order=self.event_counter) # noqa: E128
self.event_counter += 1
def writeFile(self, fileHandle):
'''
Write the MIDI File.
:param fileHandle: A file handle that has been opened for binary
writing.
'''
self.header.writeFile(fileHandle)
# Close the tracks and have them create the MIDI event data structures.
self.close()
# Write the MIDI Events to file.
for i in range(0, self.numTracks):
self.tracks[i].writeTrack(fileHandle)
def shiftTracks(self, offset=0):
"""Shift tracks to be zero-origined, or origined at offset.
Note that the shifting of the time in the tracks uses the MIDIEventList
-- in other words it is assumed to be called in the stage where the
MIDIEventList has been created. This function, however, it meant to
operate on the eventList itself.
"""
origin = 1000000 # A little silly, but we'll assume big enough
for track in self.tracks:
if len(track.eventList) > 0:
for event in track.eventList:
if event.time < origin:
origin = event.time
for track in self.tracks:
tempEventList = []
# runningTime = 0
for event in track.eventList:
adjustedTime = event.time - origin
# event.time = adjustedTime - runningTime + offset
event.time = adjustedTime + offset
# runningTime = adjustedTime
tempEventList.append(event)
track.eventList = tempEventList
# End Public Functions ########################
def close(self):
'''
Close the MIDIFile for further writing.
To close the File for events, we must close the tracks, adjust the time
to be zero-origined, and have the tracks write to their MIDI Stream
data structure.
'''
if self.closed:
return
for i in range(0, self.numTracks):
self.tracks[i].closeTrack()
# We want things like program changes to come before notes when
# they are at the same time, so we sort the MIDI events by their
# ordinality
self.tracks[i].MIDIEventList.sort(key=sort_events)
origin = self.findOrigin()
for i in range(0, self.numTracks):
self.tracks[i].adjustTimeAndOrigin(origin, self.adjust_origin)
self.tracks[i].writeMIDIStream()
self.closed = True
def findOrigin(self):
'''
Find the earliest time in the file's tracks.append.
'''
origin = 1000000 # A little silly, but we'll assume big enough
# Note: This code assumes that the MIDIEventList has been sorted, so this
# should be insured before it is called. It is probably a poor design to do
# this.
# TODO: -- Consider making this less efficient but more robust by not
# assuming the list to be sorted.
for track in self.tracks:
if len(track.MIDIEventList) > 0:
if track.MIDIEventList[0].time < origin:
origin = track.MIDIEventList[0].time
return origin
def writeVarLength(i):
'''
Accept an input, and write a MIDI-compatible variable length stream
The MIDI format is a little strange, and makes use of so-called variable
length quantities. These quantities are a stream of bytes. If the most
significant bit is 1, then more bytes follow. If it is zero, then the
byte in question is the last in the stream
'''
input = int(i+0.5)
output = [0, 0, 0, 0]
reversed = [0, 0, 0, 0]
count = 0
result = input & 0x7F
output[count] = result
count = count + 1
input = input >> 7
while input > 0:
result = input & 0x7F
result = result | 0x80
output[count] = result
count = count + 1
input = input >> 7
reversed[0] = output[3]
reversed[1] = output[2]
reversed[2] = output[1]
reversed[3] = output[0]
return reversed[4-count:4]
# readVarLength is taken from the MidiFile class.
def readVarLength(offset, buffer):
'''
A function to read a MIDI variable length variable.
It returns a tuple of the value read and the number of bytes processed. The
input is an offset into the buffer, and the buffer itself.
'''
toffset = offset
output = 0
bytesRead = 0
while True:
output = output << 7
byte = struct.unpack_from('>B', buffer, toffset)[0]
toffset = toffset + 1
bytesRead = bytesRead + 1
output = output + (byte & 127)
if (byte & 128) == 0:
break
return (output, bytesRead)
def frequencyTransform(freq):
'''
Returns a three-byte transform of a frequency.
'''
resolution = 16384
freq = float(freq)
dollars = 69 + 12 * math.log(freq/(float(440)), 2)
firstByte = int(dollars)
lowerFreq = 440 * pow(2.0, ((float(firstByte) - 69.0)/12.0))
centDif = 1200 * math.log((freq/lowerFreq), 2) if freq != lowerFreq else 0
cents = round(centDif/100 * resolution) # round?
secondByte = min([int(cents) >> 7, 0x7F])
thirdByte = cents - (secondByte << 7)
thirdByte = min([thirdByte, 0x7f])
if thirdByte == 0x7f and secondByte == 0x7F and firstByte == 0x7F:
thirdByte = 0x7e
thirdByte = int(thirdByte)
return [firstByte, secondByte, thirdByte]
def returnFrequency(freqBytes):
'''
The reverse of frequencyTransform. Given a byte stream, return a frequency.
'''
resolution = 16384.0
baseFrequency = 440 * pow(2.0, (float(freqBytes[0]-69.0)/12.0))
frac = (float((int(freqBytes[1]) << 7) + int(freqBytes[2]))
* 100.0) / resolution
frequency = baseFrequency * pow(2.0, frac/1200.0)
return frequency
def sort_events(event):
'''
.. py:function:: sort_events(event)
The key function used to sort events (both MIDI and Generic)
:param event: An object of type :class:`MIDIEvent` or (a derrivative)
:class:`GenericEvent`
This function should be provided as the ``key`` for both
``list.sort()`` and ``sorted()``. By using it sorting will be as
follows:
* Events are ordered in time. An event that takes place earlier will
appear earlier
* If two events happen at the same time, the secondary sort key is
``ord``. Thus a class of events can be processed earlier than
another. One place this is used in the code is to make sure that note
off events are processed before note on events.
* If time and ordinality are the same, they are sorted in the order in
which they were originally added to the list. Thus, for example, if
one is making an RPN call one can specify the controller change
events in the proper order and be sure that they will end up in the
file that way.
'''
return (event.time, event.ord, event.insertion_order)
|