This file is indexed.

/usr/bin/pda-landscape is in python-mlpy 2.2.0~dfsg1-3build3.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/python

from numpy import *
from optparse import OptionParser
from mlpy import *
  
# Command line parsing
parser = OptionParser()
parser.add_option("-d", "--data", metavar = "FILE", action = "store", type = "string",
                  dest = "data", help = "data - required")
parser.add_option("-s", "--standardize", action = "store_true", default = False,
                  dest = "stand", help = "standardize data")
parser.add_option("-n", "--normalize", action = "store_true", default = False,
                  dest = "norm", help = "normalize data")

parser.add_option("-k", action = "store", type = "int",
                  dest = "k", help = "k for k-fold cross validation")
parser.add_option("-c", action = "store", type = "int", nargs = 2, metavar = "SETS PAIRS",
                  dest = "c", help = "sets and pairs for monte carlo cross validation")
parser.add_option("-S", "--stratified", action = "store_true", default = False,
                  dest = "strat", help = "for stratified cv")

parser.add_option("-m", "--min", action = "store", type = "float",
                  dest = "min", help = "min value for number of regressions [default %default]", default = 1)
parser.add_option("-M", "--max", action = "store", type = "float",
                  dest = "max", help = "max value for number of regressions [default %default]", default = 20)
parser.add_option("-p", "--steps", action = "store", type = "int",
                  dest = "steps", help = "steps for number of regressions [default %default]", default = 20)
parser.add_option("-e", "--scale", action = "store", type = "string",
                  dest = "scale",  help = "scale for number of regressions: 'lin' or 'log' [default %default]", default = "lin")

parser.add_option("-l", "--lists", action = "store_true", default = False,
                  dest = "lists", help = "Canberra distance indicator")


(options, args) = parser.parse_args()
if not options.data:
    parser.error("option -d (data) is required")
if not (options.k or options.c):
    parser.error("option -k (k-fold) or -c (monte carlo) for resampling is required")
if (options.k and options.c):
    parser.error("option -k (k-fold) and -c (monte carlo) are mutually exclusive")
if not options.scale in ["lin", "log"]:
    parser.error("option -e (scale) should be 'lin' or 'log'")

# C values
if options.scale == 'lin':
    Nreg = linspace(options.min, options.max, options.steps)
elif options.scale == 'log':
    Nreg = logspace(options.min, options.max, options.steps)

# Data
x, y = data_fromfile(options.data)
if options.stand:
    x = data_standardize(x)
if options.norm:
    x = data_normalize(x)

print "samples:", x.shape[0]
print "features:", x.shape[1]

# Resampling
if options.strat:
    if options.k:
        print "stratified %d-fold cv" % options.k
        res = kfoldS(cl = y, sets = options.k)
    elif options.c:
        print "stratified monte carlo cv (%d sets, %d pairs)" %(options.c[0], options.c[1])
        res = montecarloS(cl = y, sets = options.c[0], pairs = options.c[1])
else:
    if options.k:
        print "%d-fold cv" % options.k
        res = kfold(nsamples = y.shape[0], sets = options.k)
    elif options.c:
        print "monte carlo cv (%d sets, %d pairs)" %(options.c[0], options.c[1])
        res = montecarlo(nsamples = y.shape[0], sets = options.c[0], pairs = options.c[1])


if options.lists:
    R = Ranking(method='onestep')
    lp = empty((len(res), x.shape[1]), dtype = int)
            

# Compute
for n in Nreg:
    P = Pda(Nreg = int(n)) # Initialize pda class
    ERR = 0.0 # Initialize error
    MCC = 0.0 # Initialize mcc

    for i, r in enumerate(res):
        xtr, ytr, xts, yts = x[r[0]], y[r[0]], x[r[1]], y[r[1]]
        P.compute(xtr, ytr)
        p = P.predict(xts)

        if options.lists:
            lp[i] = R.compute(xtr, ytr, P).argsort()
          
        ERR += err(yts, p)
        MCC += mcc(yts, p)

    ERR /= float(len(res))
    MCC /= float(len(res))
    
    if options.lists:
        DIST = canberra(lp, x.shape[1])
    else:
        DIST = 0.0
    
    print "Nreg %d: error %f, mcc %f, dist %f" \
          % (n, ERR, MCC, DIST)