This file is indexed.

/usr/lib/python2.7/dist-packages/mpop/channel.py is in python-mpop 1.5.0-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright (c) 2010, 2011, 2012, 2013, 2014, 2015, 2017.

# SMHI,
# Folkborgsvägen 1,
# Norrköping,
# Sweden

# Author(s):

#   Martin Raspaud <martin.raspaud@smhi.se>
#   Adam Dybbroe <adam.dybbroe@smhi.se>

# This file is part of mpop.

# mpop is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.

# mpop is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
# A PARTICULAR PURPOSE.  See the GNU General Public License for more details.

# You should have received a copy of the GNU General Public License along with
# mpop.  If not, see <http://www.gnu.org/licenses/>.

"""This module defines satellite instrument channels as a generic class, to be
inherited when needed.
"""
import copy

import numpy as np
import logging

LOG = logging.getLogger(__name__)

try:
    from pyorbital.astronomy import sun_zenith_angle as sza
except ImportError:
    sza = None

from mpop.tools import viewzen_corr as vz_corr


class GeolocationIncompleteError(Exception):

    """Exception to try catch cases where the original data have not been read or
    expanded properly so that each pixel has a geo-location"""

    pass


class NotLoadedError(Exception):

    """Exception to be raised when attempting to use a non-loaded channel.
    """
    pass


class GenericChannel(object):

    """This is an abstract channel class. It can be a super class for
    calibrated channels data or more elaborate channels such as cloudtype or
    CTTH.
    """

    def __init__(self, name=None):
        object.__init__(self)

        # Channel name
        if name is not None and not isinstance(name, str):
            raise TypeError("Channel name must be a string, or None")
        self.name = name

        # Channel resolution, in meters.
        self.resolution = None

        # ID of the area on which the channel is defined.
        self.area_id = None

        # Area on which the channel is defined.
        self.area_def = None
        self.info = {}

    def __cmp__(self, ch2):
        if(isinstance(ch2, str)):
            return cmp(self.name, ch2)
        elif(ch2.name is not None and
             self.name is not None and
             ch2.name[0] == "_" and
             self.name[0] != "_"):
            return -1
        elif(ch2.name is not None and
             self.name is not None and
             ch2.name[0] != "_" and
             self.name[0] == "_"):
            return 1
        else:
            return cmp(self.name, ch2.name)

    def _get_area(self):
        """Getter for area.
        """
        return self.area_def or self.area_id

    def _set_area(self, area):
        """Setter for area.
        """
        if (area is None):
            self.area_def = None
            self.area_id = None
        elif(isinstance(area, str)):
            self.area_id = area
        else:
            try:
                dummy = area.area_extent
                dummy = area.x_size
                dummy = area.y_size
                dummy = area.proj_id
                dummy = area.proj_dict
                self.area_def = area
            except AttributeError:
                try:
                    dummy = area.lons
                    dummy = area.lats
                    self.area_def = area
                    self.area_id = None
                except AttributeError:
                    raise TypeError("Malformed area argument. "
                                    "Should be a string or an area object.")

    area = property(_get_area, _set_area)


class Channel(GenericChannel):

    """This is the satellite channel class. It defines satellite channels as a
    container for calibrated channel data.

    The *resolution* sets the resolution of the channel, in meters. The
    *wavelength_range* is a triplet, containing the lowest-, center-, and
    highest-wavelength values of the channel. *name* is simply the given name
    of the channel, and *data* is the data it should hold.
    """

    def __init__(self,
                 name=None,
                 resolution=0,
                 wavelength_range=[-np.inf, -np.inf, -np.inf],
                 data=None,
                 calibration_unit=None):

        GenericChannel.__init__(self, name)

        self._data = None
        self.wavelength_range = None

        if(name is None and
           wavelength_range == [-np.inf, -np.inf, -np.inf]):
            raise ValueError("Cannot define a channel with neither name "
                             "nor wavelength range.")

        if not isinstance(resolution, (int, float)):
            raise TypeError("Resolution must be an integer number of meters.")

        self.resolution = resolution

        if(not isinstance(wavelength_range, (tuple, list, set)) or
           len(wavelength_range) != 3 or
           not isinstance(wavelength_range[0], float) or
           not isinstance(wavelength_range[1], float) or
           not isinstance(wavelength_range[2], float)):
            raise TypeError("Wavelength_range should be a triplet of floats.")
        elif(not (wavelength_range[0] <= wavelength_range[1]) or
             not (wavelength_range[1] <= wavelength_range[2])):
            raise ValueError("Wavelength_range should be a sorted triplet.")

        self.wavelength_range = list(wavelength_range)
        self.unit = calibration_unit
        self.data = data

    def get_reflectance(self, tb11, sun_zenith=None, tb13_4=None):
        """Get the reflectance part of an NIR channel"""

        try:
            from pyspectral.near_infrared_reflectance import Calculator
        except ImportError:
            LOG.info("Couldn't load pyspectral")

        # Check the wavelength, and if outside 3-4 microns this functionality
        # doesn't give any meaning and should not be supported
        if (self.wavelength_range[1] < 3.0 or self.wavelength_range[1] > 4.0):
            LOG.warning("Deriving the near infrared reflectance" +
                        " of a band that is outside the 3-4 micron range" +
                        " is not supported!\n\tWill do nothing...")
            return

        # Check if the sun-zenith angle was provided:
        if sun_zenith is None:
            lonlats = self.area.get_lonlats()
            sun_zenith = sza(self.info['time'], lonlats[0], lonlats[1])

        try:
            refl39 = Calculator(self.info['satname'] + self.info['satnumber'],
                                self.info['instrument_name'], self.name)
        except NameError:
            LOG.warning("pyspectral missing!")
            return

        return refl39.reflectance_from_tbs(sun_zenith, self.data,
                                           tb11, tb13_4)

    def __cmp__(self, ch2, key=0):
        if(isinstance(ch2, str)):
            return cmp(self.name, ch2)
        elif(ch2.name is not None and
             self.name is not None and
             ch2.name[0] == "_" and
             self.name[0] != "_"):
            return -1
        elif(ch2.name is not None and
             self.name is not None and
             ch2.name[0] != "_" and
             self.name[0] == "_"):
            return 1
        else:
            res = cmp(abs(self.wavelength_range[1] - key),
                      abs(ch2.wavelength_range[1] - key))
            if res == 0:
                return cmp(self.name, ch2.name)
            else:
                return res

    def __str__(self):
        if self.shape is not None:
            return ("'%s: (%.3f,%.3f,%.3f)μm, shape %s, resolution %sm'" %
                    (self.name,
                     self.wavelength_range[0],
                     self.wavelength_range[1],
                     self.wavelength_range[2],
                     self.shape,
                     self.resolution))
        else:
            return ("'%s: (%.3f,%.3f,%.3f)μm, resolution %sm, not loaded'" %
                    (self.name,
                     self.wavelength_range[0],
                     self.wavelength_range[1],
                     self.wavelength_range[2],
                     self.resolution))

    def is_loaded(self):
        """Tells if the channel contains loaded data.
        """
        return self._data is not None

    def check_range(self, min_range=1.0):
        """Check that the data of the channels has a definition domain broader
        than *min_range* and return the data, otherwise return zeros.
        """
        if not self.is_loaded():
            raise ValueError("Cannot check range of an non-loaded channel")

        if not isinstance(min_range, (float, int)):
            raise TypeError("Min_range must be a single number.")

        if isinstance(self._data, np.ma.core.MaskedArray):
            if self._data.mask.all():
                return self._data

        if((self._data.max() - self._data.min()) < min_range):
            return np.ma.zeros(self.shape)
        else:
            return self._data

    def show(self):
        """Display the channel as an image.
        """
        if not self.is_loaded():
            raise ValueError("Channel not loaded, cannot display.")

        from PIL import Image as pil

        data = ((self._data - self._data.min()) * 255.0 /
                (self._data.max() - self._data.min()))
        if isinstance(data, np.ma.core.MaskedArray):
            img = pil.fromarray(np.array(data.filled(0), np.uint8))
        else:
            img = pil.fromarray(np.array(data, np.uint8))
        img.show()

    def as_image(self, stretched=True):
        """Return the channel as a :class:`mpop.imageo.geo_image.GeoImage`
        object. The *stretched* argument set to False allows the data to remain
        untouched (as opposed to crude stretched by default to obtain the same
        output as :meth:`show`).
        """
        from mpop.imageo.geo_image import GeoImage

        img = GeoImage(self._data, self.area, None)
        if stretched:
            img.stretch("crude")
        return img

    def project(self, coverage_instance):
        """Make a projected copy of the current channel using the given
        *coverage_instance*.

        See also the :mod:`mpop.projector` module.
        """
        res = Channel(name=self.name,
                      resolution=self.resolution,
                      wavelength_range=self.wavelength_range,
                      data=None,
                      calibration_unit=self.unit)
        res.area = coverage_instance.out_area
        res.info = self.info
        if hasattr(self, 'palette'):      # UH, new
            res.palette = self.palette    # UH, new
        if self.is_loaded():
            LOG.info("Projecting channel %s (%fμm)..."
                     % (self.name, self.wavelength_range[1]))
            import pyresample
            if (hasattr(coverage_instance, 'in_area') and
                isinstance(coverage_instance.in_area, pyresample.geometry.SwathDefinition) and
                    hasattr(coverage_instance.in_area.lats, 'shape') and
                    coverage_instance.in_area.lats.shape != self._data.shape):
                raise GeolocationIncompleteError("Lons and lats doesn't match data! " +
                                                 "Data can't be re-projected unless " +
                                                 "each pixel of the swath has a " +
                                                 "geo-location atached to it.")
            data = coverage_instance.project_array(self._data)
            res.data = data
            return res
        else:
            raise NotLoadedError("Can't project, channel %s (%fμm) not loaded."
                                 % (self.name, self.wavelength_range[1]))

    def get_data(self):
        """Getter for channel data.
        """
        return self._data

    def set_data(self, data):
        """Setter for channel data.
        """
        if data is None:
            del self._data
            self._data = None
        elif isinstance(data, (np.ndarray, np.ma.core.MaskedArray)):
            self._data = data
        else:
            raise TypeError("Data must be a numpy (masked) array.")

    data = property(get_data, set_data)

    @property
    def shape(self):
        """Shape of the channel.
        """
        if self.data is None:
            return None
        else:
            return self.data.shape

    def sunzen_corr(self, time_slot, lonlats=None, limit=80., mode='cos',
                    sunmask=False):
        '''Perform Sun zenith angle correction for the channel at
        *time_slot* (datetime.datetime() object) and return the
        corrected channel.  The parameter *limit* can be used to set
        the maximum zenith angle for which the correction is
        calculated.  For larger angles, the correction is the same as
        at the *limit* (default: 80.0 degrees).  Coordinate values can
        be given as a 2-tuple or a two-element list *lonlats* of numpy
        arrays; if None, the coordinates will be read from the channel
        data.  Parameter *mode* is a placeholder for other possible
        illumination corrections. The name of the new channel will be
        *original_chan.name+'_SZC'*, eg. "VIS006_SZC".  This name is
        also stored to the info dictionary of the originating channel.
        '''

        if self.info.get('sun_zen_correction_applied'):
            LOG.debug("Sun zenith correction already applied, skipping")
            return self

        import mpop.tools

        try:
            from pyorbital import astronomy
        except ImportError:
            LOG.warning("Could not load pyorbital.astronomy")
            return None

        if lonlats is None or len(lonlats) != 2:
            # Read coordinates
            LOG.debug("No valid coordinates given, reading from the "
                      "channel data")
            lons, lats = self.area.get_lonlats()
        else:
            lons, lats = lonlats

        # Calculate Sun zenith angles and the cosine
        cos_zen = astronomy.cos_zen(time_slot, lons, lats)

        # Copy the channel
        new_ch = copy.deepcopy(self)

        # Set the name
        new_ch.name += '_SZC'

        if mode == 'cos':
            new_ch.data = mpop.tools.sunzen_corr_cos(new_ch.data,
                                                     cos_zen, limit=limit)
        else:
            # Placeholder for other correction methods
            pass

        # Add information about the corrected version to original
        # channel
        self.info["sun_zen_corrected"] = self.name + '_SZC'

        if sunmask:
            if isinstance(sunmask, (float, int)):
                sunmask = sunmask
            else:
                sunmask = 90.
            cos_limit = np.cos(np.radians(sunmask))
            LOG.debug("Masking out data where sun-zenith " +
                      "is greater than %f deg", sunmask)
            LOG.debug("cos_limit = %f", cos_limit)
            # Mask out data where the sun elevation is below a threshold:
            new_ch.data = np.ma.masked_where(
                cos_zen < cos_limit, new_ch.data, copy=False)

        new_ch.info["sun_zen_correction_applied"] = True

        return new_ch

    def get_viewing_geometry(self, orbital, time_slot, altitude=None):
        '''Calculates the azimuth and elevation angle as seen by the observer 
           at the position of the current area pixel. 
           inputs:
             orbital   an orbital object define by the tle file 
                       (see pyorbital.orbital import Orbital or mpop/scene.py get_oribtal)
             time_slot time object specifying the observation time
             altitude  optinal: altitude of the observer above the earth ellipsoid
           outputs:
             azi       azimuth viewing angle in degree (south is 0, counting clockwise)
             ele       elevation viewing angle in degree (zenith is 90, horizon is 0)
        '''

        try:
            from pyorbital.orbital import Orbital
        except ImportError:
            LOG.warning("Could not load pyorbital.orbial.Orbital")
            return None

        try:
            from pyorbital import tlefile
        except ImportError:
            LOG.warning("Could not load pyorbital.tlefile")
            return None

        (lons, lats) = self.area.get_lonlats()
        # Calculate observer azimuth and elevation
        if altitude == None:
            altitude = np.zeros(lons.shape)
        azi, ele = orbital.get_observer_look(time_slot, lons, lats, altitude)

        return (azi, ele)

    def vinc_vect(phi, lembda, alpha, s, f=None, a=None, degree=True):
        """ Vincenty's Direct formular

        Returns the lat and long of projected point and reverse azimuth
        given a reference point and a distance and azimuth to project.
        lats, longs and azimuths are passed in radians.

        Keyword arguments:
            phi    Latitude in degree/radians
            lembda Longitude in degree/radians
            alpha    Geodetic azimuth in degree/radians
            s    Ellipsoidal distance in meters
            f    WGS84 parameter
            a    WGS84 parameter
            degree Boolean if in/out values are in degree or radians.
                   Default is in degree

        Returns:
            (phiout,  lembdaout,  alphaout ) as a tuple

        """
        if degree:
            phi = np.deg2rad(phi)
            lembda = np.deg2rad(lembda)
            alpha = np.deg2rad(alpha)

        if f is None:
            f = 1 / 298.257223563
        if a is None:
            a = 6378137

        two_pi = 2.0 * np.pi

        if isinstance(alpha, np.ndarray):
            alpha[alpha < 0.0] += two_pi
            alpha[alpha > two_pi] -= two_pi

        else:
            if alpha < 0.0:
                alpha = alpha + two_pi
            if (alpha > two_pi):
                alpha = alpha - two_pi
        """
        alphama = np.ma.masked_less_equal(alphama, two_pi)
        alpha = alphama - two_pi
        alpha.mask = np.ma.nomask
        logger.debug(alpha)
        """
        b = a * (1.0 - f)

        tan_u1 = (1 - f) * np.tan(phi)
        u_1 = np.arctan(tan_u1)
        sigma1 = np.arctan2(tan_u1, np.cos(alpha))

        sinalpha = np.cos(u_1) * np.sin(alpha)
        cosalpha_sq = 1.0 - sinalpha * sinalpha

        u_2 = cosalpha_sq * (a * a - b * b) / (b * b)
        aa_ = 1.0 + (u_2 / 16384) * (4096 + u_2 * (-768 + u_2 *
                                                   (320 - 175 * u_2)))
        bb_ = (u_2 / 1024) * (256 + u_2 * (-128 + u_2 * (74 - 47 * u_2)))

        # Starting with the approximation
        sigma = (s / (b * aa_))
        last_sigma = 2.0 * sigma + 2.0  # something impossible

        # Iterate the following three equations
        # until there is no significant change in sigma

        # two_sigma_m , delta_sigma

        def iter_sigma(sigma, last_sigma, sigma1, s, b, aa_, bb_):
            while (abs((last_sigma - sigma) / sigma) > 1.0e-9):
                two_sigma_m = 2 * sigma1 + sigma

                delta_sigma = (bb_ * np.sin(sigma) *
                               (np.cos(two_sigma_m) + (bb_ / 4) *
                                (np.cos(sigma) *
                                 (-1 + 2 * np.power(np.cos(two_sigma_m), 2) -
                                  (bb_ / 6) * np.cos(two_sigma_m) *
                                  (-3 + 4 * np.power(np.sin(sigma), 2)) *
                                  (-3 + 4 * np.power(np.cos(two_sigma_m), 2))))))
                last_sigma = sigma
                sigma = (s / (b * aa_)) + delta_sigma

            return(sigma, two_sigma_m)

        # Check for array inputs
        arraybool = [isinstance(ele, np.ndarray) for ele in (sigma, last_sigma,
                                                             sigma1)]
        logger.debug("Sigma Arrays?: " + str(arraybool))
        if all(arraybool):
            viter_sigma = np.vectorize(iter_sigma)
            sigma, two_sigma_m = viter_sigma(sigma, last_sigma, sigma1, s, b, aa_,
                                             bb_)

        else:
            sigma, two_sigma_m = iter_sigma(sigma, last_sigma, sigma1, s, b, aa_,
                                            bb_)

        phiout = np.arctan2((np.sin(u_1) * np.cos(sigma) +
                             np.cos(u_1) * np.sin(sigma) * np.cos(alpha)),
                            ((1 - f) * np.sqrt(np.power(sinalpha, 2) +
                                               pow(np.sin(u_1) *
                                                   np.sin(sigma) -
                                                   np.cos(u_1) *
                                                   np.cos(sigma) *
                                                   np.cos(alpha), 2))))

        deltalembda = np.arctan2((np.sin(sigma) * np.sin(alpha)),
                                 (np.cos(u_1) * np.cos(sigma) -
                                  np.sin(u_1) * np.sin(sigma) * np.cos(alpha)))

        cc_ = (f / 16) * cosalpha_sq * (4 + f * (4 - 3 * cosalpha_sq))

        omega = (deltalembda - (1 - cc_) * f * sinalpha *
                 (sigma + cc_ * np.sin(sigma) * (np.cos(two_sigma_m) + cc_ *
                                                 np.cos(sigma) *
                                                 (-1 + 2 *
                                                  np.power(np.cos(two_sigma_m),
                                                           2)))))

        lembdaout = lembda + omega

        alphaout = np.arctan2(sinalpha, (-np.sin(u_1) * np.sin(sigma) +
                                         np.cos(u_1) * np.cos(sigma) *
                                         np.cos(alpha)))

        alphaout = alphaout + two_pi / 2.0

        if isinstance(alphaout, np.ndarray):
            alphaout[alphaout < 0.0] += two_pi
            alphaout[alphaout > two_pi] -= two_pi

        else:
            if alphaout < 0.0:
                alphaout = alphaout + two_pi
            if (alphaout > two_pi):
                alphaout = alphaout - two_pi

        if degree:
            phiout = np.rad2deg(phiout)
            lembdaout = np.rad2deg(lembdaout)
            alphaout = np.rad2deg(alphaout)

        return(phiout, lembdaout, alphaout)

    def parallax_corr(self, cth=None, time_slot=None, orbital=None, azi=None, ele=None, fill="False"):
        '''Perform the parallax correction for channel at
        *time_slot* (datetime.datetime() object), assuming the cloud top height cth
        and the viewing geometry given by the satellite orbital "orbital" and return the
        corrected channel. 
        Authors: Ulrich Hamann (MeteoSwiss), Thomas Leppelt (DWD)
        Example calls:
            * calling this function (using orbital and time_slot)
                 orbital = data.get_oribtal()
                 data["VIS006"].parallax_corr(cth=data["CTTH"].height, time_slot=data.time_slot, orbital=orbital)
            * calling this function (using viewing geometry)
                 orbital = data.get_oribtal()
                 (azi, ele) = get_viewing_geometry(self, orbital, time_slot)
                 data["VIS006"].parallax_corr(cth=data["CTTH"].height, azi=azi, ele=ele)
        Optional input:
          cth        The parameter cth is the cloud top height 
                     (or  the altitude of the object that should be shifted).
                     cth must have the same size and projection as the channel

          orbital    an orbital object define by the tle file 
                     (see pyorbital.orbital import Orbital or mpop/scene.py get_oribtal)
          azi        azimuth viewing angle in degree (south is 0, counting clockwise)
                     e.g. as given by self.get_viewing_geometry
          ele        elevation viewing angle in degree (zenith is 90, horizon is 0)
                     e.g. as given by self.get_viewing_geometry
          fill       specifies the interpolation method to fill the gaps
                     (basically areas behind the cloud that can't be observed by the satellite instrument)
                     "False" (default): no interpolation, gaps are np.nan values and mask is set accordingly
                     "nearest": fill gaps with nearest neighbour
                     "bilinear": use scipy.interpolate.griddata with linear interpolation 
                                 to fill the gaps

        output: 
          parallax corrected channel
                     the content of the channel will be parallax corrected.
                     The name of the new channel will be
                     *original_chan.name+'_PC'*, eg. "IR_108_PC". This name is
                     also stored to the info dictionary of the originating channel.
        '''

        # get time_slot from info, if present
        if time_slot == None:
            if "time" in self.info.keys():
                time_slot = self.info["time"]

        if azi == None or ele == None:
            if time_slot == None or orbital == None:
                print "*** Error in parallax_corr (mpop/channel.py)"
                print "    parallax_corr needs either time_slot and orbital"
                print "    data[\"IR_108\"].parallax_corr(data[\"CTTH\"].height, time_slot=data.time_slot, orbital=orbital)"
                print "    or the azimuth and elevation angle"
                print "    data[\"IR_108\"].parallax_corr(data[\"CTTH\"].height, azi=azi, ele=ele)"
                quit()
            else:
                print (
                    "... calculate viewing geometry (orbit and time are given)")
                (azi, ele) = self.get_viewing_geometry(orbital, time_slot)
        else:
            print ("... azimuth and elevation angle given")

        # mask the cloud top height
        cth_ = np.ma.masked_where(cth < 0, cth, copy=False)

        # Elevation displacement
        dz = cth_ / np.tan(np.deg2rad(ele))

        # Create the new channel (by copying) and initialize the data with None
        # values
        new_ch = copy.deepcopy(self)
        new_ch.data[:, :] = np.nan

        # Set the name
        new_ch.name += '_PC'

        # Add information about the corrected version to original channel
        self.info["parallax_corrected"] = self.name + '_PC'

        # get projection coordinates in meter
        (proj_x, proj_y) = self.area.get_proj_coords()

        print "... calculate parallax shift"
        # shifting pixels according to parallax corretion
        # shift West-East   in m  # ??? sign correct ???
        proj_x_pc = proj_x - np.sin(np.deg2rad(azi)) * dz
        # shift North-South in m
        proj_y_pc = proj_y + np.cos(np.deg2rad(azi)) * dz

        # get indices for the pixels for the original position
        (y, x) = self.area.get_xy_from_proj_coords(proj_x, proj_y)
        # comment: might be done more efficient with meshgrid
        # >>> x = np.arange(-5.01, 5.01, 0.25)
        # >>> y = np.arange(-5.01, 5.01, 0.25)
        # >>> xx, yy = np.meshgrid(x, y)
        # get indices for the pixels at the parallax corrected position
        (y_pc, x_pc) = self.area.get_xy_from_proj_coords(proj_x_pc, proj_y_pc)

        # copy cloud free satellite pixels (surface observations)
        ind = np.where(cth_.mask == True)
        new_ch.data[x[ind], y[ind]] = self.data[x[ind], y[ind]]

        print "... copy data to parallax corrected position"
        # copy cloudy pixel with new position modified with parallax shift
        ind = np.where(x_pc.mask == False)
        new_ch.data[x_pc[ind], y_pc[ind]] = self.data[x[ind], y[ind]]

        # Mask out data gaps (areas behind the clouds)
        new_ch.data = np.ma.masked_where(
            np.isnan(new_ch.data), new_ch.data, copy=False)

        if fill.lower() == "false":
            return new_ch
        elif fill == "nearest":
            print "*** fill missing values with nearest neighbour"
            from scipy.ndimage import distance_transform_edt
            invalid = np.isnan(new_ch.data)
            ind = distance_transform_edt(
                invalid, return_distances=False, return_indices=True)
            new_ch.data = new_ch.data[tuple(ind)]
        elif fill == "bilinear":
            # this function does not interpolate at the outer boundaries
            from scipy.interpolate import griddata
            ind = np.where(new_ch.data.mask == False)
            points = np.transpose(np.append([y[ind]], [x[ind]], axis=0))
            values = new_ch.data[ind]
            new_ch.data = griddata(points, values, (y, x), method='linear')

            # fill the remaining pixels with nearest neighbour
            from scipy.ndimage import distance_transform_edt
            invalid = np.isnan(new_ch.data)
            ind = distance_transform_edt(
                invalid, return_distances=False, return_indices=True)
            new_ch.data = new_ch.data[tuple(ind)]
        else:
            print "*** Error in parallax_corr (channel.py)"
            print "    unknown gap fill method ", fill
            quit()

        return new_ch

    def viewzen_corr(self, view_zen_angle_data):
        """Apply atmospheric correction on a copy of this channel data
        using the given satellite zenith angle data of the same shape.
        Returns a new channel containing the corrected data.
        The name of the new channel will be *original_chan.name+'_VZC'*,
        eg. "IR108_VZC".  This name is also stored to the info dictionary of
        the originating channel.
        """

        # copy channel data which will be corrected in place
        chn_data = self.data.copy()
        CHUNK_SZ = 500
        for start in xrange(0, chn_data.shape[1], CHUNK_SZ):
            # apply correction on channel data
            vz_corr(chn_data[:, start:start + CHUNK_SZ],
                    view_zen_angle_data[:, start:start + CHUNK_SZ])

        new_ch = Channel(name=self.name + "_VZC",
                         resolution=self.resolution,
                         wavelength_range=self.wavelength_range,
                         data=chn_data,
                         calibration_unit=self.unit)

        # Add information about the corrected version to original channel
        self.info["view_zen_corrected"] = self.name + '_VZC'

        return new_ch

    # Arithmetic operations on channels.

    def __pow__(self, other):
        return Channel(name="new", data=self.data ** other)

    def __rpow__(self, other):
        return Channel(name="new", data=self.data ** other)

    def __mul__(self, other):
        return Channel(name="new", data=self.data * other)

    def __rmul__(self, other):
        return Channel(name="new", data=self.data * other)

    def __add__(self, other):
        return Channel(name="new", data=self.data + other)

    def __radd__(self, other):
        return Channel(name="new", data=self.data + other)

    def __sub__(self, other):
        return Channel(name="new", data=self.data - other)

    def __rsub__(self, other):
        return Channel(name="new", data=self.data - other)

    def __div__(self, other):
        return Channel(name="new", data=self.data / other)

    def __rdiv__(self, other):
        return Channel(name="new", data=self.data / other)

    def __neg__(self):
        return Channel(name="new", data=-self.data)

    def __abs__(self):
        return Channel(name="new", data=abs(self.data))