/usr/lib/python2.7/dist-packages/mrjob/runner.py is in python-mrjob 0.3.3.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 | # Copyright 2009-2012 Yelp and Contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import with_statement
"""Base class for all runners."""
import copy
import datetime
import getpass
import glob
import hashlib
import logging
import os
import random
import re
import shutil
import sys
from subprocess import CalledProcessError
from subprocess import Popen
from subprocess import PIPE
from subprocess import check_call
import tempfile
try:
from cStringIO import StringIO
StringIO # quiet "redefinition of unused ..." warning from pyflakes
except ImportError:
from StringIO import StringIO
from mrjob import compat
from mrjob.conf import calculate_opt_priority
from mrjob.conf import combine_cmds
from mrjob.conf import combine_dicts
from mrjob.conf import combine_envs
from mrjob.conf import combine_local_envs
from mrjob.conf import combine_lists
from mrjob.conf import combine_opts
from mrjob.conf import combine_paths
from mrjob.conf import combine_path_lists
from mrjob.conf import load_opts_from_mrjob_conf
from mrjob.util import cmd_line
from mrjob.util import file_ext
from mrjob.util import read_file
from mrjob.util import tar_and_gzip
log = logging.getLogger('mrjob.runner')
# use to detect globs and break into the part before and after the glob
GLOB_RE = re.compile(r'^(.*?)([\[\*\?].*)$')
#: cleanup options:
#:
#: * ``'ALL'``: delete local scratch, remote scratch, and logs
#: * ``'LOCAL_SCRATCH'``: delete local scratch only
#: * ``'LOGS'``: delete logs only
#: * ``'NONE'``: delete nothing
#: * ``'REMOTE_SCRATCH'``: delete remote scratch only
#: * ``'SCRATCH'``: delete local and remote scratch, but not logs
#: * ``'IF_SUCCESSFUL'`` (deprecated): same as ``ALL``. Not supported for
#: ``cleanup_on_failure``.
CLEANUP_CHOICES = ['ALL', 'LOCAL_SCRATCH', 'LOGS', 'NONE', 'REMOTE_SCRATCH',
'SCRATCH', 'IF_SUCCESSFUL']
#: .. deprecated:: 0.3.0
#:
#: the default cleanup-on-success option: ``'IF_SUCCESSFUL'``
CLEANUP_DEFAULT = 'IF_SUCCESSFUL'
_STEP_RE = re.compile(r'^M?C?R?$')
# buffer for piping files into sort on Windows
_BUFFER_SIZE = 4096
class MRJobRunner(object):
"""Abstract base class for all runners.
Runners are responsible for launching your job on Hadoop Streaming and
fetching the results.
Most of the time, you won't have any reason to construct a runner directly;
it's more like a utility that allows an :py:class:`~mrjob.job.MRJob`
to run itself. Normally things work something like this:
* Get a runner by calling :py:meth:`~mrjob.job.MRJob.make_runner` on your
job
* Call :py:meth:`~mrjob.runner.MRJobRunner.run` on your runner. This will:
* Run your job with :option:`--steps` to find out how many
mappers/reducers to run
* Copy your job and supporting files to Hadoop
* Instruct Hadoop to run your job with the appropriate
:option:`--mapper`, :option:`--combiner`, :option:`--reducer`, and
:option:`--step-num` arguments
Each runner runs a single job once; if you want to run a job multiple
times, make multiple runners.
Subclasses: :py:class:`~mrjob.emr.EMRJobRunner`,
:py:class:`~mrjob.hadoop.HadoopJobRunner`,
:py:class:`~mrjob.inline.InlineJobRunner`,
:py:class:`~mrjob.local.LocalMRJobRunner`
"""
#: alias for this runner; used for picking section of
#: :py:mod:``mrjob.conf`` to load one of ``'local'``, ``'emr'``,
#: or ``'hadoop'``
alias = None
### methods to call from your batch script ###
def __init__(self, mr_job_script=None, conf_path=None,
extra_args=None, file_upload_args=None,
hadoop_input_format=None, hadoop_output_format=None,
input_paths=None, output_dir=None, partitioner=None,
stdin=None, **opts):
"""All runners take the following keyword arguments:
:type mr_job_script: str
:param mr_job_script: the path of the ``.py`` file containing the
:py:class:`~mrjob.job.MRJob`. If this is None,
you won't actually be able to :py:meth:`run` the
job, but other utilities (e.g. :py:meth:`ls`)
will work.
:type conf_path: str
:param conf_path: Alternate path to read configs from, or ``False`` to
ignore all config files.
:type extra_args: list of str
:param extra_args: a list of extra cmd-line arguments to pass to the
mr_job script. This is a hook to allow jobs to take
additional arguments.
:param file_upload_args: a list of tuples of ``('--ARGNAME', path)``.
The file at the given path will be uploaded
to the local directory of the mr_job script
when it runs, and then passed into the script
with ``--ARGNAME``. Useful for passing in
SQLite DBs and other configuration files to
your job.
:type hadoop_input_format: str
:param hadoop_input_format: name of an optional Hadoop ``InputFormat``
class. Passed to Hadoop along with your
first step with the ``-inputformat``
option. Note that if you write your own
class, you'll need to include it in your
own custom streaming jar (see
*hadoop_streaming_jar*).
:type hadoop_output_format: str
:param hadoop_output_format: name of an optional Hadoop
``OutputFormat`` class. Passed to Hadoop
along with your first step with the
``-outputformat`` option. Note that if you
write your own class, you'll need to
include it in your own custom streaming
jar (see *hadoop_streaming_jar*).
:type input_paths: list of str
:param input_paths: Input files for your job. Supports globs and
recursively walks directories (e.g.
``['data/common/', 'data/training/*.gz']``). If
this is left blank, we'll read from stdin
:type output_dir: str
:param output_dir: an empty/non-existent directory where Hadoop
streaming should put the final output from the job.
If you don't specify an output directory, we'll
output into a subdirectory of this job's temporary
directory. You can control this from the command
line with ``--output-dir``.
:type partitioner: str
:param partitioner: Optional name of a Hadoop partitoner class, e.g.
``'org.apache.hadoop.mapred.lib.HashPartitioner'``.
Hadoop streaming will use this to determine how
mapper output should be sorted and distributed
to reducers.
:param stdin: an iterable (can be a ``StringIO`` or even a list) to use
as stdin. This is a hook for testing; if you set
``stdin`` via :py:meth:`~mrjob.job.MRJob.sandbox`, it'll
get passed through to the runner. If for some reason
your lines are missing newlines, we'll add them;
this makes it easier to write automated tests.
All runners also take the following options as keyword arguments.
These can be defaulted in your :mod:`mrjob.conf` file:
:type base_tmp_dir: str
:param base_tmp_dir: path to put local temp dirs inside. By default we
just call :py:func:`tempfile.gettempdir`
:type bootstrap_mrjob: bool
:param bootstrap_mrjob: should we automatically tar up the mrjob
library and install it when we run the mrjob?
Set this to ``False`` if you've already
installed ``mrjob`` on your Hadoop cluster.
:type cleanup: list
:param cleanup: List of which kinds of directories to delete when a
job succeeds. See :py:data:`.CLEANUP_CHOICES`.
:type cleanup_on_failure: list
:param cleanup_on_failure: Which kinds of directories to clean up when
a job fails. See
:py:data:`.CLEANUP_CHOICES`.
:type cmdenv: dict
:param cmdenv: environment variables to pass to the job inside Hadoop
streaming
:type hadoop_extra_args: list of str
:param hadoop_extra_args: extra arguments to pass to hadoop streaming
:type hadoop_streaming_jar: str
:param hadoop_streaming_jar: path to a custom hadoop streaming jar.
:type jobconf: dict
:param jobconf: ``-jobconf`` args to pass to hadoop streaming. This
should be a map from property name to value.
Equivalent to passing ``['-jobconf', 'KEY1=VALUE1',
'-jobconf', 'KEY2=VALUE2', ...]`` to
*hadoop_extra_args*.
:type label: str
:param label: description of this job to use as the part of its name.
By default, we use the script's module name, or
``no_script`` if there is none.
:type owner: str
:param owner: who is running this job. Used solely to set the job name.
By default, we use :py:func:`getpass.getuser`, or
``no_user`` if it fails.
:type python_archives: list of str
:param python_archives: same as upload_archives, except they get added
to the job's :envvar:`PYTHONPATH`
:type python_bin: str
:param python_bin: Name/path of alternate python binary for
mappers/reducers (e.g. for use with
:py:mod:`virtualenv`). Defaults to ``'python'``.
:type setup_cmds: list
:param setup_cmds: a list of commands to run before each mapper/reducer
step (e.g.
``['cd my-src-tree; make', 'mkdir -p /tmp/foo']``).
You can specify commands as strings, which will be
run through the shell, or lists of args, which will
be invoked directly. We'll use file locking to
ensure that multiple mappers/reducers running on
the same node won't run *setup_cmds* simultaneously
(it's safe to run ``make``).
:type setup_scripts: list of str
:param setup_scripts: files that will be copied into the local working
directory and then run. These are run after
*setup_cmds*. Like with *setup_cmds*, we use file
locking to keep multiple mappers/reducers on the
same node from running *setup_scripts*
simultaneously.
:type steps_python_bin: str
:param steps_python_bin: Name/path of alternate python binary to use to
query the job about its steps (e.g. for use
with :py:mod:`virtualenv`). Rarely needed.
Defaults to ``sys.executable`` (the current
Python interpreter).
:type upload_archives: list of str
:param upload_archives: a list of archives (e.g. tarballs) to unpack in
the local directory of the mr_job script when
it runs. You can set the local name of the dir
we unpack into by appending ``#localname`` to
the path; otherwise we just use the name of the
archive file (e.g. ``foo.tar.gz``)
:type upload_files: list of str
:param upload_files: a list of files to copy to the local directory of
the mr_job script when it runs. You can set the
local name of the dir we unpack into by appending
``#localname`` to the path; otherwise we just use
the name of the file
"""
self._set_opts(opts, conf_path)
# we potentially have a lot of files to copy, so we keep track
# of them as a list of dictionaries, with the following keys:
#
# 'path': the path to the file on the local system
# 'name': a unique name for the file when we copy it into HDFS etc.
# if this is blank, we'll pick one
# 'cache': if 'file', copy into mr_job_script's working directory
# on the Hadoop nodes. If 'archive', uncompress the file
self._files = []
self._validate_cleanup()
# add the script to our list of files (don't actually commit to
# uploading it)
if mr_job_script:
self._script = {'path': mr_job_script}
self._files.append(self._script)
self._ran_job = False
else:
self._script = None
self._ran_job = True # don't allow user to call run()
# setup cmds and wrapper script
self._setup_scripts = []
for path in self._opts['setup_scripts']:
file_dict = self._add_file_for_upload(path)
self._setup_scripts.append(file_dict)
# we'll create the wrapper script later
self._wrapper_script = None
# extra args to our job
self._extra_args = list(extra_args) if extra_args else []
# extra file arguments to our job
self._file_upload_args = []
if file_upload_args:
for arg, path in file_upload_args:
file_dict = self._add_file_for_upload(path)
self._file_upload_args.append((arg, file_dict))
# set up uploading
for path in self._opts['upload_archives']:
self._add_archive_for_upload(path)
for path in self._opts['upload_files']:
self._add_file_for_upload(path)
# set up python archives
self._python_archives = []
for path in self._opts['python_archives']:
self._add_python_archive(path)
# where to read input from (log files, etc.)
self._input_paths = input_paths or ['-'] # by default read from stdin
self._stdin = stdin or sys.stdin
self._stdin_path = None # temp file containing dump from stdin
# where a tarball of the mrjob library is stored locally
self._mrjob_tar_gz_path = None
# store output_dir
self._output_dir = output_dir
# store partitioner
self._partitioner = partitioner
# store hadoop input and output formats
self._hadoop_input_format = hadoop_input_format
self._hadoop_output_format = hadoop_output_format
# give this job a unique name
self._job_name = self._make_unique_job_name(
label=self._opts['label'], owner=self._opts['owner'])
# a local tmp directory that will be cleaned up when we're done
# access/make this using self._get_local_tmp_dir()
self._local_tmp_dir = None
# info about our steps. this is basically a cache for self._get_steps()
self._steps = None
# if this is True, we have to pipe input into the sort command
# rather than feed it multiple files
self._sort_is_windows_sort = None
def _set_opts(self, opts, conf_path):
# enforce correct arguments
allowed_opts = set(self._allowed_opts())
unrecognized_opts = set(opts) - allowed_opts
if unrecognized_opts:
log.warn('got unexpected keyword arguments: ' +
', '.join(sorted(unrecognized_opts)))
opts = dict((k, v) for k, v in opts.iteritems()
if k in allowed_opts)
# issue a warning for unknown opts from mrjob.conf and filter them out
unsanitized_opt_dicts = load_opts_from_mrjob_conf(
self.alias, conf_path=conf_path)
sanitized_opt_dicts = []
for path, mrjob_conf_opts in unsanitized_opt_dicts:
unrecognized_opts = set(mrjob_conf_opts) - allowed_opts
if unrecognized_opts:
log.warn('got unexpected opts from %s: %s' % (
path, ', '.join(sorted(unrecognized_opts))))
new_opts = dict((k, v) for k, v in mrjob_conf_opts.iteritems()
if k in allowed_opts)
sanitized_opt_dicts.append(new_opts)
else:
sanitized_opt_dicts.append(mrjob_conf_opts)
# make sure all opts are at least set to None
blank_opts = dict((key, None) for key in allowed_opts)
# combine all of these options
# only __init__() methods should modify self._opts!
opt_dicts = (
[blank_opts, self._default_opts()] +
sanitized_opt_dicts +
[opts]
)
self._opts = self.combine_opts(*opt_dicts)
self._opt_priority = calculate_opt_priority(self._opts, opt_dicts)
def _validate_cleanup(self):
# old API accepts strings for cleanup
# new API wants lists
for opt_key in ('cleanup', 'cleanup_on_failure'):
if isinstance(self._opts[opt_key], basestring):
self._opts[opt_key] = [self._opts[opt_key]]
def validate_cleanup(error_str, opt_list):
for choice in opt_list:
if choice not in CLEANUP_CHOICES:
raise ValueError(error_str % choice)
if 'NONE' in opt_list and len(set(opt_list)) > 1:
raise ValueError(
'Cannot clean up both nothing and something!')
cleanup_error = ('cleanup must be one of %s, not %%s' %
', '.join(CLEANUP_CHOICES))
validate_cleanup(cleanup_error, self._opts['cleanup'])
if 'IF_SUCCESSFUL' in self._opts['cleanup']:
log.warning(
'IF_SUCCESSFUL is deprecated and will be removed in mrjob 0.4.'
' Use ALL instead.')
cleanup_failure_error = (
'cleanup_on_failure must be one of %s, not %%s' %
', '.join(CLEANUP_CHOICES))
validate_cleanup(cleanup_failure_error,
self._opts['cleanup_on_failure'])
if 'IF_SUCCESSFUL' in self._opts['cleanup_on_failure']:
raise ValueError(
'IF_SUCCESSFUL is not supported for cleanup_on_failure.'
' Use NONE instead.')
@classmethod
def _allowed_opts(cls):
"""A list of the options that can be passed to :py:meth:`__init__`
*and* can be defaulted from :mod:`mrjob.conf`."""
return [
'base_tmp_dir',
'bootstrap_mrjob',
'cleanup',
'cleanup_on_failure',
'cmdenv',
'hadoop_extra_args',
'hadoop_streaming_jar',
'hadoop_version',
'jobconf',
'label',
'owner',
'python_archives',
'python_bin',
'setup_cmds',
'setup_scripts',
'steps_python_bin',
'upload_archives',
'upload_files',
]
@classmethod
def _default_opts(cls):
"""A dictionary giving the default value of options."""
# getpass.getuser() isn't available on all systems, and may fail
try:
owner = getpass.getuser()
except:
owner = None
return {
'base_tmp_dir': tempfile.gettempdir(),
'bootstrap_mrjob': True,
'cleanup': ['ALL'],
'cleanup_on_failure': ['NONE'],
'hadoop_version': '0.20',
'owner': owner,
'python_bin': ['python'],
'steps_python_bin': [sys.executable or 'python'],
}
@classmethod
def _opts_combiners(cls):
"""Map from option name to a combine_*() function used to combine
values for that option. This allows us to specify that some options
are lists, or contain environment variables, or whatever."""
return {
'base_tmp_dir': combine_paths,
'cmdenv': combine_envs,
'hadoop_extra_args': combine_lists,
'jobconf': combine_dicts,
'python_archives': combine_path_lists,
'python_bin': combine_cmds,
'setup_cmds': combine_lists,
'setup_scripts': combine_path_lists,
'steps_python_bin': combine_cmds,
'upload_archives': combine_path_lists,
'upload_files': combine_path_lists,
}
@classmethod
def combine_opts(cls, *opts_list):
"""Combine options from several sources (e.g. defaults, mrjob.conf,
command line). Options later in the list take precedence.
You don't need to re-implement this in a subclass
"""
return combine_opts(cls._opts_combiners(), *opts_list)
### Running the job and parsing output ###
def run(self):
"""Run the job, and block until it finishes.
Raise an exception if there are any problems.
"""
assert not self._ran_job
self._run()
self._ran_job = True
def stream_output(self):
"""Stream raw lines from the job's output. You can parse these
using the read() method of the appropriate HadoopStreamingProtocol
class."""
assert self._ran_job
output_dir = self.get_output_dir()
log.info('Streaming final output from %s' % output_dir)
def split_path(path):
while True:
base, name = os.path.split(path)
# no more elements
if not name:
break
yield name
path = base
for filename in self.ls(output_dir):
subpath = filename[len(output_dir):]
if not any(name.startswith('_') for name in split_path(subpath)):
for line in self._cat_file(filename):
yield line
def _cleanup_local_scratch(self):
"""Cleanup any files/directories on the local machine we created while
running this job. Should be safe to run this at any time, or multiple
times.
This particular function removes any local tmp directories
added to the list self._local_tmp_dirs
This won't remove output_dir if it's outside of our scratch dir.
"""
if self._local_tmp_dir:
log.info('removing tmp directory %s' % self._local_tmp_dir)
try:
shutil.rmtree(self._local_tmp_dir)
except OSError, e:
log.exception(e)
self._local_tmp_dir = None
def _cleanup_remote_scratch(self):
"""Cleanup any files/directories on the remote machine (S3) we created
while running this job. Should be safe to run this at any time, or
multiple times.
"""
pass # this only happens on EMR
def _cleanup_logs(self):
"""Cleanup any log files that are created as a side-effect of the job.
"""
pass # this only happens on EMR
def _cleanup_jobs(self):
"""Stop any jobs that we created that are still running."""
pass # this only happens on EMR
def cleanup(self, mode=None):
"""Clean up running jobs, scratch dirs, and logs, subject to the
*cleanup* option passed to the constructor.
If you create your runner in a :keyword:`with` block,
:py:meth:`cleanup` will be called automatically::
with mr_job.make_runner() as runner:
...
# cleanup() called automatically here
:param mode: override *cleanup* passed into the constructor. Should be
a list of strings from :py:data:`CLEANUP_CHOICES`
"""
if self._ran_job:
mode = mode or self._opts['cleanup']
else:
mode = mode or self._opts['cleanup_on_failure']
# always terminate running jobs
self._cleanup_jobs()
def mode_has(*args):
return any((choice in mode) for choice in args)
if mode_has('ALL', 'SCRATCH', 'LOCAL_SCRATCH', 'IF_SUCCESSFUL'):
self._cleanup_local_scratch()
if mode_has('ALL', 'SCRATCH', 'REMOTE_SCRATCH', 'IF_SUCCESSFUL'):
self._cleanup_remote_scratch()
if mode_has('ALL', 'LOGS', 'IF_SUCCESSFUL'):
self._cleanup_logs()
def counters(self):
"""Get counters associated with this run in this form::
[{'group name': {'counter1': 1, 'counter2': 2}},
{'group name': ...}]
The list contains an entry for every step of the current job, ignoring
earlier steps in the same job flow.
"""
raise NotImplementedError
def print_counters(self, limit_to_steps=None):
"""Display this run's counters in a user-friendly way.
:type first_step_num: int
:param first_step_num: Display step number of the counters from the
first step
:type limit_to_steps: list of int
:param limit_to_steps: List of step numbers *relative to this job* to
print, indexed from 1
"""
for step_num, step_counters in enumerate(self.counters()):
step_num = step_num + 1
if limit_to_steps is None or step_num in limit_to_steps:
log.info('Counters from step %d:' % step_num)
if step_counters.keys():
for group_name in sorted(step_counters.keys()):
log.info(' %s:' % group_name)
group_counters = step_counters[group_name]
for counter_name in sorted(group_counters.keys()):
log.info(' %s: %d' % (
counter_name, group_counters[counter_name]))
else:
log.info(' (no counters found)')
### hooks for the with statement ###
def __enter__(self):
"""Don't do anything special at start of with block"""
return self
def __exit__(self, type, value, traceback):
"""Call self.cleanup() at end of with block."""
self.cleanup()
### more runner information ###
def get_opts(self):
"""Get options set for this runner, as a dict."""
return copy.deepcopy(self._opts)
@classmethod
def get_default_opts(self):
"""Get default options for this runner class, as a dict."""
blank_opts = dict((key, None) for key in self._allowed_opts())
return self.combine_opts(blank_opts, self._default_opts())
def get_job_name(self):
"""Get the unique name for the job run by this runner.
This has the format ``label.owner.date.time.microseconds``
"""
return self._job_name
### file management utilties ###
# Some simple filesystem operations that work for all runners.
# To access files on HDFS (when using
# :py:class:``~mrjob.hadoop.HadoopJobRunner``) and S3 (when using
# ``~mrjob.emr.EMRJobRunner``), use ``hdfs://...`` and ``s3://...``,
# respectively.
# We don't currently support ``mv()`` and ``cp()`` because S3 doesn't
# really have directories, so the semantics get a little weird.
# Some simple filesystem operations that are easy to implement.
# We don't support mv() and cp() because they don't totally make sense
# on S3, which doesn't really have moves or directories!
def get_output_dir(self):
"""Find the directory containing the job output. If the job hasn't
run yet, returns None"""
if not self._ran_job:
return None
return self._output_dir
def du(self, path_glob):
"""Get the total size of files matching ``path_glob``
Corresponds roughly to: ``hadoop fs -dus path_glob``
"""
return sum(os.path.getsize(path) for path in self.ls(path_glob))
def ls(self, path_glob):
"""Recursively list all files in the given path.
We don't return directories for compatibility with S3 (which
has no concept of them)
Corresponds roughly to: ``hadoop fs -lsr path_glob``
"""
for path in glob.glob(path_glob):
if os.path.isdir(path):
for dirname, _, filenames in os.walk(path):
for filename in filenames:
yield os.path.join(dirname, filename)
else:
yield path
def cat(self, path):
"""cat output from a given path. This would automatically decompress
.gz and .bz2 files.
Corresponds roughly to: ``hadoop fs -cat path``
"""
for filename in self.ls(path):
for line in self._cat_file(filename):
yield line
def mkdir(self, path):
"""Create the given dir and its subdirs (if they don't already
exist).
Corresponds roughly to: ``hadoop fs -mkdir path``
"""
if not os.path.isdir(path):
os.makedirs(path)
def path_exists(self, path_glob):
"""Does the given path exist?
Corresponds roughly to: ``hadoop fs -test -e path_glob``
"""
return bool(glob.glob(path_glob))
def path_join(self, dirname, filename):
"""Join a directory name and filename."""
return os.path.join(dirname, filename)
def rm(self, path_glob):
"""Recursively delete the given file/directory, if it exists
Corresponds roughly to: ``hadoop fs -rmr path_glob``
"""
for path in glob.glob(path_glob):
if os.path.isdir(path):
log.debug('Recursively deleting %s' % path)
shutil.rmtree(path)
else:
log.debug('Deleting %s' % path)
os.remove(path)
def touchz(self, path):
"""Make an empty file in the given location. Raises an error if
a non-zero length file already exists in that location.
Correponds to: ``hadoop fs -touchz path``
"""
if os.path.isfile(path) and os.path.getsize(path) != 0:
raise OSError('Non-empty file %r already exists!' % (path,))
# zero out the file
open(path, 'w').close()
def _md5sum_file(self, fileobj, block_size=(512 ** 2)): # 256K default
md5 = hashlib.md5()
while True:
data = fileobj.read(block_size)
if not data:
break
md5.update(data)
return md5.hexdigest()
def md5sum(self, path):
"""Generate the md5 sum of the file at ``path``"""
with open(path, 'rb') as f:
return self._md5sum_file(f)
### other methods you need to implement in your subclass ###
def get_hadoop_version(self):
"""Return the version number of the Hadoop environment as a string if
Hadoop is being used or simulated. Return None if not applicable.
:py:class:`~mrjob.emr.EMRJobRunner` infers this from the job flow.
:py:class:`~mrjob.hadoop.HadoopJobRunner` gets this from
``hadoop version``. :py:class:`~mrjob.local.LocalMRJobRunner` has an
additional `hadoop_version` option to specify which version it
simulates, with a default of 0.20.
:py:class:`~mrjob.inline.InlineMRJobRunner` does not simulate Hadoop at
all.
"""
return None
# you'll probably wan't to add your own __init__() and cleanup() as well
def _run(self):
"""Run the job."""
raise NotImplementedError
def _cat_file(self, filename):
"""cat a file, decompress if necessary."""
for line in read_file(filename):
yield line
### internal utilities for implementing MRJobRunners ###
def _split_path(self, path):
"""Split a path like /foo/bar.py#baz.py into (path, name)
(in this case: '/foo/bar.py', 'baz.py').
It's valid to specify no name with something like '/foo/bar.py#'
In practice this means that we'll pick a name.
"""
if '#' in path:
path, name = path.split('#', 1)
if '/' in name or '#' in name:
raise ValueError('Bad name %r; must not contain # or /' % name)
# empty names are okay
else:
name = os.path.basename(path)
return name, path
def _add_file(self, path):
"""Add a file that's uploaded, but not added to the working
dir for *mr_job_script*.
You probably want _add_for_upload() in most cases
"""
name, path = self._split_path(path)
file_dict = {'path': path, 'name': name}
self._files.append(file_dict)
return file_dict
def _add_for_upload(self, path, what):
"""Add a file to our list of files to copy into the working
dir for *mr_job_script*.
path -- path to the file on the local filesystem. Normally
we just use the file's name as it's remote name. You can
use a # character to pick a different name for the file:
/foo/bar#baz -> upload /foo/bar as baz
/foo/bar# -> upload /foo/bar, pick any name for it
upload -- either 'file' (just copy) or 'archive' (uncompress)
Returns:
The internal dictionary representing the file (in case we
want to point to it).
"""
name, path = self._split_path(path)
file_dict = {'path': path, 'name': name, 'upload': what}
self._files.append(file_dict)
return file_dict
def _add_file_for_upload(self, path):
return self._add_for_upload(path, 'file')
def _add_archive_for_upload(self, path):
return self._add_for_upload(path, 'archive')
def _add_python_archive(self, path):
file_dict = self._add_archive_for_upload(path)
self._python_archives.append(file_dict)
def _get_cmdenv(self):
"""Get the environment variables to use inside Hadoop.
These should be `self._opts['cmdenv']` combined with python
archives added to :envvar:`PYTHONPATH`.
This function calls :py:meth:`MRJobRunner._name_files`
(since we need to know where each python archive ends up in the job's
working dir)
"""
self._name_files()
# on Windows, PYTHONPATH should be separated by ;, not :
cmdenv_combiner = self._opts_combiners()['cmdenv']
envs_to_combine = ([{'PYTHONPATH': file_dict['name']}
for file_dict in self._python_archives] +
[self._opts['cmdenv']])
return cmdenv_combiner(*envs_to_combine)
def _assign_unique_names_to_files(self, name_field, prefix='', match=None):
"""Go through self._files, and fill in name_field for all files where
it's not already filled, so that every file has a unique value for
name_field. We'll try to give the file the same name as its local path
(and we'll definitely keep the extension the same).
Args:
name_field -- field to fill in (e.g. 'name', 's3_uri', hdfs_uri')
prefix -- prefix to prepend to each name (e.g. a path to a tmp dir)
match -- a function that returns a true value if the path should
just be copied verbatim to the name (for example if we're
assigning HDFS uris and the path starts with 'hdfs://').
"""
# handle files that are already on S3, HDFS, etc.
if match:
for file_dict in self._files:
path = file_dict['path']
if match(path) and not file_dict.get(name_field):
file_dict[name_field] = path
# check for name collisions
name_to_path = {}
for file_dict in self._files:
name = file_dict.get(name_field)
if name:
path = file_dict['path']
if name in name_to_path and path != name_to_path[name]:
raise ValueError("Can't copy both %s and %s to %s" %
(path, name_to_path[name], name))
name_to_path[name] = path
# give names to files that don't have them
for file_dict in self._files:
if not file_dict.get(name_field):
path = file_dict['path']
basename = os.path.basename(path)
name = prefix + basename
# if name is taken, prepend some random stuff to it
while name in name_to_path:
name = prefix + '%08x-%s' % (
random.randint(0, 2 ** 32 - 1), basename)
file_dict[name_field] = name
name_to_path[name] = path # reserve this name
def _name_files(self):
"""Fill in the 'name' field for every file in self._files so
that they all have unique names.
It's safe to run this method as many times as you want.
"""
self._assign_unique_names_to_files('name')
def _get_local_tmp_dir(self):
"""Create a tmp directory on the local filesystem that will be
cleaned up by self.cleanup()"""
if not self._local_tmp_dir:
path = os.path.join(self._opts['base_tmp_dir'], self._job_name)
log.info('creating tmp directory %s' % path)
os.makedirs(path)
self._local_tmp_dir = path
return self._local_tmp_dir
def _make_unique_job_name(self, label=None, owner=None):
"""Come up with a useful unique ID for this job.
We use this to choose the output directory, etc. for the job.
"""
# use the name of the script if one wasn't explicitly
# specified
if not label:
if self._script:
label = os.path.basename(
self._script['path']).split('.')[0]
else:
label = 'no_script'
if not owner:
owner = 'no_user'
now = datetime.datetime.utcnow()
return '%s.%s.%s.%06d' % (
label, owner,
now.strftime('%Y%m%d.%H%M%S'), now.microsecond)
def _get_steps(self):
"""Call the mr_job to find out how many steps it has, and whether
there are mappers and reducers for each step. Validate its
output.
Returns output like ['MR', 'M']
(two steps, second only has a mapper)
We'll cache the result (so you can call _get_steps() as many times
as you want)
"""
if self._steps is None:
if not self._script:
self._steps = []
else:
args = (self._opts['steps_python_bin'] +
[self._script['path'], '--steps'] +
self._mr_job_extra_args(local=True))
log.debug('> %s' % cmd_line(args))
# add . to PYTHONPATH (in case mrjob isn't actually installed)
env = combine_local_envs(os.environ,
{'PYTHONPATH': os.path.abspath('.')})
steps_proc = Popen(args, stdout=PIPE, stderr=PIPE, env=env)
stdout, stderr = steps_proc.communicate()
if steps_proc.returncode != 0:
raise Exception(
'error getting step information: %s', stderr)
steps = stdout.strip().split(' ')
# verify that this is a proper step description
if not steps or not stdout:
raise ValueError('step description is empty!')
for step in steps:
if len(step) < 1 or not _STEP_RE.match(step):
raise ValueError(
'unexpected step type %r in steps %r' %
(step, stdout))
self._steps = steps
return self._steps
def _mr_job_extra_args(self, local=False):
"""Return arguments to add to every invocation of MRJob.
:type local: boolean
:param local: if this is True, use files' local paths rather than
the path they'll have inside Hadoop streaming
"""
return self._get_file_upload_args(local=local) + self._extra_args
def _get_file_upload_args(self, local=False):
"""Arguments used to pass through config files, etc from the job
runner through to the local directory where the script is run.
:type local: boolean
:param local: if this is True, use files' local paths rather than
the path they'll have inside Hadoop streaming
"""
args = []
for arg, file_dict in self._file_upload_args:
args.append(arg)
if local:
args.append(file_dict['path'])
else:
args.append(file_dict['name'])
return args
def _wrapper_script_content(self):
"""Output a python script to the given file descriptor that runs
setup_cmds and setup_scripts, and then runs its arguments.
This will give names to our files if they don't already have names.
"""
self._name_files()
out = StringIO()
def writeln(line=''):
out.write(line + '\n')
# imports
writeln('from fcntl import flock, LOCK_EX, LOCK_UN')
writeln('from subprocess import check_call, PIPE')
writeln('import sys')
writeln()
# make lock file and lock it
writeln("lock_file = open('/tmp/wrapper.lock.%s', 'a')" %
self._job_name)
writeln('flock(lock_file, LOCK_EX)')
writeln()
# run setup cmds
if self._opts['setup_cmds']:
writeln('# run setup cmds:')
for cmd in self._opts['setup_cmds']:
# only use the shell for strings, not for lists of arguments
# redir stdout to /dev/null so that it won't get confused
# with the mapper/reducer's output
writeln(
"check_call(%r, shell=%r, stdout=open('/dev/null', 'w'))"
% (cmd, bool(isinstance(cmd, basestring))))
writeln()
# run setup scripts
if self._setup_scripts:
writeln('# run setup scripts:')
for file_dict in self._setup_scripts:
writeln("check_call(%r, stdout=open('/dev/null', 'w'))" % (
['./' + file_dict['name']],))
writeln()
# unlock the lock file
writeln('flock(lock_file, LOCK_UN)')
writeln()
# run the real script
writeln('# run the real mapper/reducer')
writeln('check_call(sys.argv[1:])')
return out.getvalue()
def _create_wrapper_script(self, dest='wrapper.py'):
"""Create the wrapper script, and write it into our local temp
directory (by default, to a file named wrapper.py).
This will set self._wrapper_script, and append it to self._files
This will do nothing if setup_cmds and setup_scripts are
empty, or _create_wrapper_script() has already been called.
"""
if not (self._opts['setup_cmds'] or self._setup_scripts):
return
if self._wrapper_script:
return
path = os.path.join(self._get_local_tmp_dir(), dest)
log.info('writing wrapper script to %s' % path)
contents = self._wrapper_script_content()
for line in StringIO(contents):
log.debug('WRAPPER: ' + line.rstrip('\r\n'))
f = open(path, 'w')
f.write(contents)
f.close()
self._wrapper_script = {'path': path}
self._files.append(self._wrapper_script)
def _dump_stdin_to_local_file(self):
"""Dump STDIN to a file in our local dir, and set _stdin_path
to point at it.
You can safely call this multiple times; it'll only read from
stdin once.
"""
if self._stdin_path is None:
# prompt user, so they don't think the process has stalled
log.info('reading from STDIN')
stdin_path = os.path.join(self._get_local_tmp_dir(), 'STDIN')
log.debug('dumping stdin to local file %s' % stdin_path)
with open(stdin_path, 'w') as stdin_file:
for line in self._stdin:
# catch missing newlines (this often happens with test data)
if not line.endswith('\n'):
line += '\n'
stdin_file.write(line)
self._stdin_path = stdin_path
return self._stdin_path
def _create_mrjob_tar_gz(self):
"""Make a tarball of the mrjob library, without .pyc or .pyo files,
and return its path. This will also set self._mrjob_tar_gz_path
It's safe to call this method multiple times (we'll only create
the tarball once.)
"""
if self._mrjob_tar_gz_path is None:
# find mrjob library
import mrjob
if not os.path.basename(mrjob.__file__).startswith('__init__.'):
raise Exception(
"Bad path for mrjob library: %s; can't bootstrap mrjob",
mrjob.__file__)
mrjob_dir = os.path.dirname(mrjob.__file__) or '.'
tar_gz_path = os.path.join(
self._get_local_tmp_dir(), 'mrjob.tar.gz')
def filter_path(path):
filename = os.path.basename(path)
return not(file_ext(filename).lower() in ('.pyc', '.pyo') or
# filter out emacs backup files
filename.endswith('~') or
# filter out emacs lock files
filename.startswith('.#') or
# filter out MacFuse resource forks
filename.startswith('._'))
log.debug('archiving %s -> %s as %s' % (
mrjob_dir, tar_gz_path, os.path.join('mrjob', '')))
tar_and_gzip(
mrjob_dir, tar_gz_path, filter=filter_path, prefix='mrjob')
self._mrjob_tar_gz_path = tar_gz_path
return self._mrjob_tar_gz_path
def _hadoop_conf_args(self, step_num, num_steps):
"""Build a list of extra arguments to the hadoop binary.
This handles *cmdenv*, *hadoop_extra_args*, *hadoop_input_format*,
*hadoop_output_format*, *jobconf*, and *partitioner*.
This doesn't handle input, output, mappers, reducers, or uploading
files.
"""
assert 0 <= step_num < num_steps
args = []
# hadoop_extra_args
args.extend(self._opts['hadoop_extra_args'])
# new-style jobconf
version = self.get_hadoop_version()
if compat.uses_generic_jobconf(version):
for key, value in sorted(self._opts['jobconf'].iteritems()):
args.extend(['-D', '%s=%s' % (key, value)])
# partitioner
if self._partitioner:
args.extend(['-partitioner', self._partitioner])
# cmdenv
for key, value in sorted(self._get_cmdenv().iteritems()):
args.append('-cmdenv')
args.append('%s=%s' % (key, value))
# hadoop_input_format
if (step_num == 0 and self._hadoop_input_format):
args.extend(['-inputformat', self._hadoop_input_format])
# hadoop_output_format
if (step_num == num_steps - 1 and self._hadoop_output_format):
args.extend(['-outputformat', self._hadoop_output_format])
# old-style jobconf
if not compat.uses_generic_jobconf(version):
for key, value in sorted(self._opts['jobconf'].iteritems()):
args.extend(['-jobconf', '%s=%s' % (key, value)])
return args
def _invoke_sort(self, input_paths, output_path):
"""Use the local sort command to sort one or more input files. Raise
an exception if there is a problem.
This is is just a wrapper to handle limitations of Windows sort
(see Issue #288).
:type input_paths: list of str
:param input_paths: paths of one or more input files
:type output_path: str
:param output_path: where to pipe sorted output into
"""
if not input_paths:
raise ValueError('Must specify at least one input path.')
# ignore locale when sorting
env = os.environ.copy()
env['LC_ALL'] = 'C'
log.info('writing to %s' % output_path)
err_path = os.path.join(self._get_local_tmp_dir(), 'sort-stderr')
# assume we're using UNIX sort unless we know otherwise
if (not self._sort_is_windows_sort) or len(input_paths) == 1:
with open(output_path, 'w') as output:
with open(err_path, 'w') as err:
args = ['sort'] + list(input_paths)
log.info('> %s' % cmd_line(args))
try:
check_call(args, stdout=output, stderr=err, env=env)
return
except CalledProcessError:
pass
# Looks like we're using Windows sort
self._sort_is_windows_sort = True
log.info('Piping files into sort for Windows compatibility')
with open(output_path, 'w') as output:
with open(err_path, 'w') as err:
args = ['sort']
log.info('> %s' % cmd_line(args))
proc = Popen(args, stdin=PIPE, stdout=output, stderr=err,
env=env)
# shovel bytes into the sort process
for input_path in input_paths:
with open(input_path, 'r') as input:
while True:
buf = input.read(_BUFFER_SIZE)
if not buf:
break
proc.stdin.write(buf)
proc.stdin.close()
proc.wait()
if proc.returncode == 0:
return
# looks like there was a problem. log it and raise an error
with open(err_path) as err:
for line in err:
log.error('STDERR: %s' % line.rstrip('\r\n'))
raise CalledProcessError(proc.returncode, args)
|