This file is indexed.

/usr/lib/python2.7/dist-packages/mrjob/runner.py is in python-mrjob 0.3.3.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
# Copyright 2009-2012 Yelp and Contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import with_statement

"""Base class for all runners."""

import copy
import datetime
import getpass
import glob
import hashlib
import logging
import os
import random
import re
import shutil
import sys
from subprocess import CalledProcessError
from subprocess import Popen
from subprocess import PIPE
from subprocess import check_call
import tempfile

try:
    from cStringIO import StringIO
    StringIO  # quiet "redefinition of unused ..." warning from pyflakes
except ImportError:
    from StringIO import StringIO

from mrjob import compat
from mrjob.conf import calculate_opt_priority
from mrjob.conf import combine_cmds
from mrjob.conf import combine_dicts
from mrjob.conf import combine_envs
from mrjob.conf import combine_local_envs
from mrjob.conf import combine_lists
from mrjob.conf import combine_opts
from mrjob.conf import combine_paths
from mrjob.conf import combine_path_lists
from mrjob.conf import load_opts_from_mrjob_conf
from mrjob.util import cmd_line
from mrjob.util import file_ext
from mrjob.util import read_file
from mrjob.util import tar_and_gzip


log = logging.getLogger('mrjob.runner')

# use to detect globs and break into the part before and after the glob
GLOB_RE = re.compile(r'^(.*?)([\[\*\?].*)$')

#: cleanup options:
#:
#: * ``'ALL'``: delete local scratch, remote scratch, and logs
#: * ``'LOCAL_SCRATCH'``: delete local scratch only
#: * ``'LOGS'``: delete logs only
#: * ``'NONE'``: delete nothing
#: * ``'REMOTE_SCRATCH'``: delete remote scratch only
#: * ``'SCRATCH'``: delete local and remote scratch, but not logs
#: * ``'IF_SUCCESSFUL'`` (deprecated): same as ``ALL``. Not supported for
#:   ``cleanup_on_failure``.
CLEANUP_CHOICES = ['ALL', 'LOCAL_SCRATCH', 'LOGS', 'NONE', 'REMOTE_SCRATCH',
                   'SCRATCH', 'IF_SUCCESSFUL']

#: .. deprecated:: 0.3.0
#:
#: the default cleanup-on-success option: ``'IF_SUCCESSFUL'``
CLEANUP_DEFAULT = 'IF_SUCCESSFUL'

_STEP_RE = re.compile(r'^M?C?R?$')

# buffer for piping files into sort on Windows
_BUFFER_SIZE = 4096


class MRJobRunner(object):
    """Abstract base class for all runners.

    Runners are responsible for launching your job on Hadoop Streaming and
    fetching the results.

    Most of the time, you won't have any reason to construct a runner directly;
    it's more like a utility that allows an :py:class:`~mrjob.job.MRJob`
    to run itself. Normally things work something like this:

    * Get a runner by calling :py:meth:`~mrjob.job.MRJob.make_runner` on your
      job
    * Call :py:meth:`~mrjob.runner.MRJobRunner.run` on your runner. This will:

      * Run your job with :option:`--steps` to find out how many
        mappers/reducers to run
      * Copy your job and supporting files to Hadoop
      * Instruct Hadoop to run your job with the appropriate
        :option:`--mapper`, :option:`--combiner`, :option:`--reducer`, and
        :option:`--step-num` arguments

    Each runner runs a single job once; if you want to run a job multiple
    times, make multiple runners.

    Subclasses: :py:class:`~mrjob.emr.EMRJobRunner`,
    :py:class:`~mrjob.hadoop.HadoopJobRunner`,
    :py:class:`~mrjob.inline.InlineJobRunner`,
    :py:class:`~mrjob.local.LocalMRJobRunner`
    """

    #: alias for this runner; used for picking section of
    #: :py:mod:``mrjob.conf`` to load one of ``'local'``, ``'emr'``,
    #: or ``'hadoop'``
    alias = None

    ### methods to call from your batch script ###

    def __init__(self, mr_job_script=None, conf_path=None,
                 extra_args=None, file_upload_args=None,
                 hadoop_input_format=None, hadoop_output_format=None,
                 input_paths=None, output_dir=None, partitioner=None,
                 stdin=None, **opts):
        """All runners take the following keyword arguments:

        :type mr_job_script: str
        :param mr_job_script: the path of the ``.py`` file containing the
                              :py:class:`~mrjob.job.MRJob`. If this is None,
                              you won't actually be able to :py:meth:`run` the
                              job, but other utilities (e.g. :py:meth:`ls`)
                              will work.
        :type conf_path: str
        :param conf_path: Alternate path to read configs from, or ``False`` to
                          ignore all config files.
        :type extra_args: list of str
        :param extra_args: a list of extra cmd-line arguments to pass to the
                           mr_job script. This is a hook to allow jobs to take
                           additional arguments.
        :param file_upload_args: a list of tuples of ``('--ARGNAME', path)``.
                                 The file at the given path will be uploaded
                                 to the local directory of the mr_job script
                                 when it runs, and then passed into the script
                                 with ``--ARGNAME``. Useful for passing in
                                 SQLite DBs and other configuration files to
                                 your job.
        :type hadoop_input_format: str
        :param hadoop_input_format: name of an optional Hadoop ``InputFormat``
                                    class. Passed to Hadoop along with your
                                    first step with the ``-inputformat``
                                    option. Note that if you write your own
                                    class, you'll need to include it in your
                                    own custom streaming jar (see
                                    *hadoop_streaming_jar*).
        :type hadoop_output_format: str
        :param hadoop_output_format: name of an optional Hadoop
                                     ``OutputFormat`` class. Passed to Hadoop
                                     along with your first step with the
                                     ``-outputformat`` option. Note that if you
                                     write your own class, you'll need to
                                     include it in your own custom streaming
                                     jar (see *hadoop_streaming_jar*).
        :type input_paths: list of str
        :param input_paths: Input files for your job. Supports globs and
                            recursively walks directories (e.g.
                            ``['data/common/', 'data/training/*.gz']``). If
                            this is left blank, we'll read from stdin
        :type output_dir: str
        :param output_dir: an empty/non-existent directory where Hadoop
                           streaming should put the final output from the job.
                           If you don't specify an output directory, we'll
                           output into a subdirectory of this job's temporary
                           directory. You can control this from the command
                           line with ``--output-dir``.
        :type partitioner: str
        :param partitioner: Optional name of a Hadoop partitoner class, e.g.
                            ``'org.apache.hadoop.mapred.lib.HashPartitioner'``.
                            Hadoop streaming will use this to determine how
                            mapper output should be sorted and distributed
                            to reducers.
        :param stdin: an iterable (can be a ``StringIO`` or even a list) to use
                      as stdin. This is a hook for testing; if you set
                      ``stdin`` via :py:meth:`~mrjob.job.MRJob.sandbox`, it'll
                      get passed through to the runner. If for some reason
                      your lines are missing newlines, we'll add them;
                      this makes it easier to write automated tests.

        All runners also take the following options as keyword arguments.
        These can be defaulted in your :mod:`mrjob.conf` file:

        :type base_tmp_dir: str
        :param base_tmp_dir: path to put local temp dirs inside. By default we
                             just call :py:func:`tempfile.gettempdir`
        :type bootstrap_mrjob: bool
        :param bootstrap_mrjob: should we automatically tar up the mrjob
                                library and install it when we run the mrjob?
                                Set this to ``False`` if you've already
                                installed ``mrjob`` on your Hadoop cluster.
        :type cleanup: list
        :param cleanup: List of which kinds of directories to delete when a
                        job succeeds. See :py:data:`.CLEANUP_CHOICES`.
        :type cleanup_on_failure: list
        :param cleanup_on_failure: Which kinds of directories to clean up when
                                   a job fails. See
                                   :py:data:`.CLEANUP_CHOICES`.
        :type cmdenv: dict
        :param cmdenv: environment variables to pass to the job inside Hadoop
                       streaming
        :type hadoop_extra_args: list of str
        :param hadoop_extra_args: extra arguments to pass to hadoop streaming
        :type hadoop_streaming_jar: str
        :param hadoop_streaming_jar: path to a custom hadoop streaming jar.
        :type jobconf: dict
        :param jobconf: ``-jobconf`` args to pass to hadoop streaming. This
                        should be a map from property name to value.
                        Equivalent to passing ``['-jobconf', 'KEY1=VALUE1',
                        '-jobconf', 'KEY2=VALUE2', ...]`` to
                        *hadoop_extra_args*.
        :type label: str
        :param label: description of this job to use as the part of its name.
                      By default, we use the script's module name, or
                      ``no_script`` if there is none.
        :type owner: str
        :param owner: who is running this job. Used solely to set the job name.
                      By default, we use :py:func:`getpass.getuser`, or
                      ``no_user`` if it fails.
        :type python_archives: list of str
        :param python_archives: same as upload_archives, except they get added
                                to the job's :envvar:`PYTHONPATH`
        :type python_bin: str
        :param python_bin: Name/path of alternate python binary for
                           mappers/reducers (e.g. for use with
                           :py:mod:`virtualenv`). Defaults to ``'python'``.
        :type setup_cmds: list
        :param setup_cmds: a list of commands to run before each mapper/reducer
                           step (e.g.
                           ``['cd my-src-tree; make', 'mkdir -p /tmp/foo']``).
                           You can specify commands as strings, which will be
                           run through the shell, or lists of args, which will
                           be invoked directly. We'll use file locking to
                           ensure that multiple mappers/reducers running on
                           the same node won't run *setup_cmds* simultaneously
                           (it's safe to run ``make``).
        :type setup_scripts: list of str
        :param setup_scripts: files that will be copied into the local working
                              directory and then run. These are run after
                              *setup_cmds*. Like with *setup_cmds*, we use file
                              locking to keep multiple mappers/reducers on the
                              same node from running *setup_scripts*
                              simultaneously.
        :type steps_python_bin: str
        :param steps_python_bin: Name/path of alternate python binary to use to
                                 query the job about its steps (e.g. for use
                                 with :py:mod:`virtualenv`). Rarely needed.
                                 Defaults to ``sys.executable`` (the current
                                 Python interpreter).
        :type upload_archives: list of str
        :param upload_archives: a list of archives (e.g. tarballs) to unpack in
                                the local directory of the mr_job script when
                                it runs. You can set the local name of the dir
                                we unpack into by appending ``#localname`` to
                                the path; otherwise we just use the name of the
                                archive file (e.g. ``foo.tar.gz``)
        :type upload_files: list of str
        :param upload_files: a list of files to copy to the local directory of
                             the mr_job script when it runs. You can set the
                             local name of the dir we unpack into by appending
                             ``#localname`` to the path; otherwise we just use
                             the name of the file
        """
        self._set_opts(opts, conf_path)

        # we potentially have a lot of files to copy, so we keep track
        # of them as a list of dictionaries, with the following keys:
        #
        # 'path': the path to the file on the local system
        # 'name': a unique name for the file when we copy it into HDFS etc.
        # if this is blank, we'll pick one
        # 'cache': if 'file', copy into mr_job_script's working directory
        # on the Hadoop nodes. If 'archive', uncompress the file
        self._files = []

        self._validate_cleanup()

        # add the script to our list of files (don't actually commit to
        # uploading it)
        if mr_job_script:
            self._script = {'path': mr_job_script}
            self._files.append(self._script)
            self._ran_job = False
        else:
            self._script = None
            self._ran_job = True  # don't allow user to call run()

        # setup cmds and wrapper script
        self._setup_scripts = []
        for path in self._opts['setup_scripts']:
            file_dict = self._add_file_for_upload(path)
            self._setup_scripts.append(file_dict)

        # we'll create the wrapper script later
        self._wrapper_script = None

        # extra args to our job
        self._extra_args = list(extra_args) if extra_args else []

        # extra file arguments to our job
        self._file_upload_args = []
        if file_upload_args:
            for arg, path in file_upload_args:
                file_dict = self._add_file_for_upload(path)
                self._file_upload_args.append((arg, file_dict))

        # set up uploading
        for path in self._opts['upload_archives']:
            self._add_archive_for_upload(path)
        for path in self._opts['upload_files']:
            self._add_file_for_upload(path)

        # set up python archives
        self._python_archives = []
        for path in self._opts['python_archives']:
            self._add_python_archive(path)

        # where to read input from (log files, etc.)
        self._input_paths = input_paths or ['-']  # by default read from stdin
        self._stdin = stdin or sys.stdin
        self._stdin_path = None  # temp file containing dump from stdin

        # where a tarball of the mrjob library is stored locally
        self._mrjob_tar_gz_path = None

        # store output_dir
        self._output_dir = output_dir

        # store partitioner
        self._partitioner = partitioner

        # store hadoop input and output formats
        self._hadoop_input_format = hadoop_input_format
        self._hadoop_output_format = hadoop_output_format

        # give this job a unique name
        self._job_name = self._make_unique_job_name(
            label=self._opts['label'], owner=self._opts['owner'])

        # a local tmp directory that will be cleaned up when we're done
        # access/make this using self._get_local_tmp_dir()
        self._local_tmp_dir = None

        # info about our steps. this is basically a cache for self._get_steps()
        self._steps = None

        # if this is True, we have to pipe input into the sort command
        # rather than feed it multiple files
        self._sort_is_windows_sort = None

    def _set_opts(self, opts, conf_path):
        # enforce correct arguments
        allowed_opts = set(self._allowed_opts())
        unrecognized_opts = set(opts) - allowed_opts
        if unrecognized_opts:
            log.warn('got unexpected keyword arguments: ' +
                     ', '.join(sorted(unrecognized_opts)))
            opts = dict((k, v) for k, v in opts.iteritems()
                        if k in allowed_opts)

        # issue a warning for unknown opts from mrjob.conf and filter them out
        unsanitized_opt_dicts = load_opts_from_mrjob_conf(
            self.alias, conf_path=conf_path)

        sanitized_opt_dicts = []

        for path, mrjob_conf_opts in unsanitized_opt_dicts:
            unrecognized_opts = set(mrjob_conf_opts) - allowed_opts
            if unrecognized_opts:
                log.warn('got unexpected opts from %s: %s' % (
                         path, ', '.join(sorted(unrecognized_opts))))
                new_opts = dict((k, v) for k, v in mrjob_conf_opts.iteritems()
                                if k in allowed_opts)
                sanitized_opt_dicts.append(new_opts)
            else:
                sanitized_opt_dicts.append(mrjob_conf_opts)

        # make sure all opts are at least set to None
        blank_opts = dict((key, None) for key in allowed_opts)

        # combine all of these options
        # only __init__() methods should modify self._opts!
        opt_dicts = (
            [blank_opts, self._default_opts()] +
            sanitized_opt_dicts +
            [opts]
        )
        self._opts = self.combine_opts(*opt_dicts)
        self._opt_priority = calculate_opt_priority(self._opts, opt_dicts)

    def _validate_cleanup(self):
        # old API accepts strings for cleanup
        # new API wants lists
        for opt_key in ('cleanup', 'cleanup_on_failure'):
            if isinstance(self._opts[opt_key], basestring):
                self._opts[opt_key] = [self._opts[opt_key]]

        def validate_cleanup(error_str, opt_list):
            for choice in opt_list:
                if choice not in CLEANUP_CHOICES:
                    raise ValueError(error_str % choice)
            if 'NONE' in opt_list and len(set(opt_list)) > 1:
                raise ValueError(
                    'Cannot clean up both nothing and something!')

        cleanup_error = ('cleanup must be one of %s, not %%s' %
                         ', '.join(CLEANUP_CHOICES))
        validate_cleanup(cleanup_error, self._opts['cleanup'])
        if 'IF_SUCCESSFUL' in self._opts['cleanup']:
            log.warning(
                'IF_SUCCESSFUL is deprecated and will be removed in mrjob 0.4.'
                ' Use ALL instead.')

        cleanup_failure_error = (
            'cleanup_on_failure must be one of %s, not %%s' %
            ', '.join(CLEANUP_CHOICES))
        validate_cleanup(cleanup_failure_error,
                         self._opts['cleanup_on_failure'])
        if 'IF_SUCCESSFUL' in self._opts['cleanup_on_failure']:
            raise ValueError(
                'IF_SUCCESSFUL is not supported for cleanup_on_failure.'
                ' Use NONE instead.')

    @classmethod
    def _allowed_opts(cls):
        """A list of the options that can be passed to :py:meth:`__init__`
        *and* can be defaulted from :mod:`mrjob.conf`."""
        return [
            'base_tmp_dir',
            'bootstrap_mrjob',
            'cleanup',
            'cleanup_on_failure',
            'cmdenv',
            'hadoop_extra_args',
            'hadoop_streaming_jar',
            'hadoop_version',
            'jobconf',
            'label',
            'owner',
            'python_archives',
            'python_bin',
            'setup_cmds',
            'setup_scripts',
            'steps_python_bin',
            'upload_archives',
            'upload_files',
        ]

    @classmethod
    def _default_opts(cls):
        """A dictionary giving the default value of options."""
        # getpass.getuser() isn't available on all systems, and may fail
        try:
            owner = getpass.getuser()
        except:
            owner = None

        return {
            'base_tmp_dir': tempfile.gettempdir(),
            'bootstrap_mrjob': True,
            'cleanup': ['ALL'],
            'cleanup_on_failure': ['NONE'],
            'hadoop_version': '0.20',
            'owner': owner,
            'python_bin': ['python'],
            'steps_python_bin': [sys.executable or 'python'],
        }

    @classmethod
    def _opts_combiners(cls):
        """Map from option name to a combine_*() function used to combine
        values for that option. This allows us to specify that some options
        are lists, or contain environment variables, or whatever."""
        return {
            'base_tmp_dir': combine_paths,
            'cmdenv': combine_envs,
            'hadoop_extra_args': combine_lists,
            'jobconf': combine_dicts,
            'python_archives': combine_path_lists,
            'python_bin': combine_cmds,
            'setup_cmds': combine_lists,
            'setup_scripts': combine_path_lists,
            'steps_python_bin': combine_cmds,
            'upload_archives': combine_path_lists,
            'upload_files': combine_path_lists,
        }

    @classmethod
    def combine_opts(cls, *opts_list):
        """Combine options from several sources (e.g. defaults, mrjob.conf,
        command line). Options later in the list take precedence.

        You don't need to re-implement this in a subclass
        """
        return combine_opts(cls._opts_combiners(), *opts_list)

    ### Running the job and parsing output ###

    def run(self):
        """Run the job, and block until it finishes.

        Raise an exception if there are any problems.
        """
        assert not self._ran_job
        self._run()
        self._ran_job = True

    def stream_output(self):
        """Stream raw lines from the job's output. You can parse these
        using the read() method of the appropriate HadoopStreamingProtocol
        class."""
        assert self._ran_job

        output_dir = self.get_output_dir()
        log.info('Streaming final output from %s' % output_dir)

        def split_path(path):
            while True:
                base, name = os.path.split(path)

                # no more elements
                if not name:
                    break

                yield name

                path = base

        for filename in self.ls(output_dir):
            subpath = filename[len(output_dir):]
            if not any(name.startswith('_') for name in split_path(subpath)):
                for line in self._cat_file(filename):
                    yield line

    def _cleanup_local_scratch(self):
        """Cleanup any files/directories on the local machine we created while
        running this job. Should be safe to run this at any time, or multiple
        times.

        This particular function removes any local tmp directories
        added to the list self._local_tmp_dirs

        This won't remove output_dir if it's outside of our scratch dir.
        """
        if self._local_tmp_dir:
            log.info('removing tmp directory %s' % self._local_tmp_dir)
            try:
                shutil.rmtree(self._local_tmp_dir)
            except OSError, e:
                log.exception(e)

        self._local_tmp_dir = None

    def _cleanup_remote_scratch(self):
        """Cleanup any files/directories on the remote machine (S3) we created
        while running this job. Should be safe to run this at any time, or
        multiple times.
        """
        pass  # this only happens on EMR

    def _cleanup_logs(self):
        """Cleanup any log files that are created as a side-effect of the job.
        """
        pass  # this only happens on EMR

    def _cleanup_jobs(self):
        """Stop any jobs that we created that are still running."""
        pass  # this only happens on EMR

    def cleanup(self, mode=None):
        """Clean up running jobs, scratch dirs, and logs, subject to the
        *cleanup* option passed to the constructor.

        If you create your runner in a :keyword:`with` block,
        :py:meth:`cleanup` will be called automatically::

            with mr_job.make_runner() as runner:
                ...

            # cleanup() called automatically here

        :param mode: override *cleanup* passed into the constructor. Should be
                     a list of strings from :py:data:`CLEANUP_CHOICES`
        """
        if self._ran_job:
            mode = mode or self._opts['cleanup']
        else:
            mode = mode or self._opts['cleanup_on_failure']

        # always terminate running jobs
        self._cleanup_jobs()

        def mode_has(*args):
            return any((choice in mode) for choice in args)

        if mode_has('ALL', 'SCRATCH', 'LOCAL_SCRATCH', 'IF_SUCCESSFUL'):
            self._cleanup_local_scratch()

        if mode_has('ALL', 'SCRATCH', 'REMOTE_SCRATCH', 'IF_SUCCESSFUL'):
            self._cleanup_remote_scratch()

        if mode_has('ALL', 'LOGS', 'IF_SUCCESSFUL'):
            self._cleanup_logs()

    def counters(self):
        """Get counters associated with this run in this form::

            [{'group name': {'counter1': 1, 'counter2': 2}},
             {'group name': ...}]

        The list contains an entry for every step of the current job, ignoring
        earlier steps in the same job flow.
        """
        raise NotImplementedError

    def print_counters(self, limit_to_steps=None):
        """Display this run's counters in a user-friendly way.

        :type first_step_num: int
        :param first_step_num: Display step number of the counters from the
                               first step
        :type limit_to_steps: list of int
        :param limit_to_steps: List of step numbers *relative to this job* to
                               print, indexed from 1
        """
        for step_num, step_counters in enumerate(self.counters()):
            step_num = step_num + 1
            if limit_to_steps is None or step_num in limit_to_steps:
                log.info('Counters from step %d:' % step_num)
                if step_counters.keys():
                    for group_name in sorted(step_counters.keys()):
                        log.info('  %s:' % group_name)
                        group_counters = step_counters[group_name]
                        for counter_name in sorted(group_counters.keys()):
                            log.info('    %s: %d' % (
                                counter_name, group_counters[counter_name]))
                else:
                    log.info('  (no counters found)')

    ### hooks for the with statement ###

    def __enter__(self):
        """Don't do anything special at start of with block"""
        return self

    def __exit__(self, type, value, traceback):
        """Call self.cleanup() at end of with block."""
        self.cleanup()

    ### more runner information ###

    def get_opts(self):
        """Get options set for this runner, as a dict."""
        return copy.deepcopy(self._opts)

    @classmethod
    def get_default_opts(self):
        """Get default options for this runner class, as a dict."""
        blank_opts = dict((key, None) for key in self._allowed_opts())
        return self.combine_opts(blank_opts, self._default_opts())

    def get_job_name(self):
        """Get the unique name for the job run by this runner.
        This has the format ``label.owner.date.time.microseconds``
        """
        return self._job_name

    ### file management utilties ###

    # Some simple filesystem operations that work for all runners.

    # To access files on HDFS (when using
    # :py:class:``~mrjob.hadoop.HadoopJobRunner``) and S3 (when using
    # ``~mrjob.emr.EMRJobRunner``), use ``hdfs://...`` and  ``s3://...``,
    # respectively.

    # We don't currently support ``mv()`` and ``cp()`` because S3 doesn't
    # really have directories, so the semantics get a little weird.

    # Some simple filesystem operations that are easy to implement.

    # We don't support mv() and cp() because they don't totally make sense
    # on S3, which doesn't really have moves or directories!

    def get_output_dir(self):
        """Find the directory containing the job output. If the job hasn't
        run yet, returns None"""
        if not self._ran_job:
            return None

        return self._output_dir

    def du(self, path_glob):
        """Get the total size of files matching ``path_glob``

        Corresponds roughly to: ``hadoop fs -dus path_glob``
        """
        return sum(os.path.getsize(path) for path in self.ls(path_glob))

    def ls(self, path_glob):
        """Recursively list all files in the given path.

        We don't return directories for compatibility with S3 (which
        has no concept of them)

        Corresponds roughly to: ``hadoop fs -lsr path_glob``
        """
        for path in glob.glob(path_glob):
            if os.path.isdir(path):
                for dirname, _, filenames in os.walk(path):
                    for filename in filenames:
                        yield os.path.join(dirname, filename)
            else:
                yield path

    def cat(self, path):
        """cat output from a given path. This would automatically decompress
        .gz and .bz2 files.

        Corresponds roughly to: ``hadoop fs -cat path``
        """
        for filename in self.ls(path):
            for line in self._cat_file(filename):
                yield line

    def mkdir(self, path):
        """Create the given dir and its subdirs (if they don't already
        exist).

        Corresponds roughly to: ``hadoop fs -mkdir path``
        """
        if not os.path.isdir(path):
            os.makedirs(path)

    def path_exists(self, path_glob):
        """Does the given path exist?

        Corresponds roughly to: ``hadoop fs -test -e path_glob``
        """
        return bool(glob.glob(path_glob))

    def path_join(self, dirname, filename):
        """Join a directory name and filename."""
        return os.path.join(dirname, filename)

    def rm(self, path_glob):
        """Recursively delete the given file/directory, if it exists

        Corresponds roughly to: ``hadoop fs -rmr path_glob``
        """
        for path in glob.glob(path_glob):
            if os.path.isdir(path):
                log.debug('Recursively deleting %s' % path)
                shutil.rmtree(path)
            else:
                log.debug('Deleting %s' % path)
                os.remove(path)

    def touchz(self, path):
        """Make an empty file in the given location. Raises an error if
        a non-zero length file already exists in that location.

        Correponds to: ``hadoop fs -touchz path``
        """
        if os.path.isfile(path) and os.path.getsize(path) != 0:
            raise OSError('Non-empty file %r already exists!' % (path,))

        # zero out the file
        open(path, 'w').close()

    def _md5sum_file(self, fileobj, block_size=(512 ** 2)):  # 256K default
        md5 = hashlib.md5()
        while True:
            data = fileobj.read(block_size)
            if not data:
                break
            md5.update(data)
        return md5.hexdigest()

    def md5sum(self, path):
        """Generate the md5 sum of the file at ``path``"""
        with open(path, 'rb') as f:
            return self._md5sum_file(f)

    ### other methods you need to implement in your subclass ###

    def get_hadoop_version(self):
        """Return the version number of the Hadoop environment as a string if
        Hadoop is being used or simulated. Return None if not applicable.

        :py:class:`~mrjob.emr.EMRJobRunner` infers this from the job flow.
        :py:class:`~mrjob.hadoop.HadoopJobRunner` gets this from
        ``hadoop version``. :py:class:`~mrjob.local.LocalMRJobRunner` has an
        additional `hadoop_version` option to specify which version it
        simulates, with a default of 0.20.
        :py:class:`~mrjob.inline.InlineMRJobRunner` does not simulate Hadoop at
        all.
        """
        return None

    # you'll probably wan't to add your own __init__() and cleanup() as well

    def _run(self):
        """Run the job."""
        raise NotImplementedError

    def _cat_file(self, filename):
        """cat a file, decompress if necessary."""
        for line in read_file(filename):
            yield line

    ### internal utilities for implementing MRJobRunners ###

    def _split_path(self, path):
        """Split a path like /foo/bar.py#baz.py into (path, name)
        (in this case: '/foo/bar.py', 'baz.py').

        It's valid to specify no name with something like '/foo/bar.py#'
        In practice this means that we'll pick a name.
        """
        if '#' in path:
            path, name = path.split('#', 1)
            if '/' in name or '#' in name:
                raise ValueError('Bad name %r; must not contain # or /' % name)
            # empty names are okay
        else:
            name = os.path.basename(path)

        return name, path

    def _add_file(self, path):
        """Add a file that's uploaded, but not added to the working
        dir for *mr_job_script*.

        You probably want _add_for_upload() in most cases
        """
        name, path = self._split_path(path)
        file_dict = {'path': path, 'name': name}
        self._files.append(file_dict)
        return file_dict

    def _add_for_upload(self, path, what):
        """Add a file to our list of files to copy into the working
        dir for *mr_job_script*.

        path -- path to the file on the local filesystem. Normally
            we just use the file's name as it's remote name. You can
            use a  # character to pick a different name for the file:

            /foo/bar#baz -> upload /foo/bar as baz
            /foo/bar# -> upload /foo/bar, pick any name for it

        upload -- either 'file' (just copy) or 'archive' (uncompress)

        Returns:
        The internal dictionary representing the file (in case we
        want to point to it).
        """
        name, path = self._split_path(path)

        file_dict = {'path': path, 'name': name, 'upload': what}
        self._files.append(file_dict)

        return file_dict

    def _add_file_for_upload(self, path):
        return self._add_for_upload(path, 'file')

    def _add_archive_for_upload(self, path):
        return self._add_for_upload(path, 'archive')

    def _add_python_archive(self, path):
        file_dict = self._add_archive_for_upload(path)
        self._python_archives.append(file_dict)

    def _get_cmdenv(self):
        """Get the environment variables to use inside Hadoop.

        These should be `self._opts['cmdenv']` combined with python
        archives added to :envvar:`PYTHONPATH`.

        This function calls :py:meth:`MRJobRunner._name_files`
        (since we need to know where each python archive ends up in the job's
        working dir)
        """
        self._name_files()
        # on Windows, PYTHONPATH should be separated by ;, not :
        cmdenv_combiner = self._opts_combiners()['cmdenv']
        envs_to_combine = ([{'PYTHONPATH': file_dict['name']}
                            for file_dict in self._python_archives] +
                           [self._opts['cmdenv']])

        return cmdenv_combiner(*envs_to_combine)

    def _assign_unique_names_to_files(self, name_field, prefix='', match=None):
        """Go through self._files, and fill in name_field for all files where
        it's not already filled, so that every file has a unique value for
        name_field. We'll try to give the file the same name as its local path
        (and we'll definitely keep the extension the same).

        Args:
        name_field -- field to fill in (e.g. 'name', 's3_uri', hdfs_uri')
        prefix -- prefix to prepend to each name (e.g. a path to a tmp dir)
        match -- a function that returns a true value if the path should
            just be copied verbatim to the name (for example if we're
            assigning HDFS uris and the path starts with 'hdfs://').
        """
        # handle files that are already on S3, HDFS, etc.
        if match:
            for file_dict in self._files:
                path = file_dict['path']
                if match(path) and not file_dict.get(name_field):
                    file_dict[name_field] = path

        # check for name collisions
        name_to_path = {}

        for file_dict in self._files:
            name = file_dict.get(name_field)
            if name:
                path = file_dict['path']
                if name in name_to_path and path != name_to_path[name]:
                    raise ValueError("Can't copy both %s and %s to %s" %
                                     (path, name_to_path[name], name))
                name_to_path[name] = path

        # give names to files that don't have them
        for file_dict in self._files:
            if not file_dict.get(name_field):
                path = file_dict['path']
                basename = os.path.basename(path)
                name = prefix + basename
                # if name is taken, prepend some random stuff to it
                while name in name_to_path:
                    name = prefix + '%08x-%s' % (
                        random.randint(0, 2 ** 32 - 1), basename)
                file_dict[name_field] = name
                name_to_path[name] = path  # reserve this name

    def _name_files(self):
        """Fill in the 'name' field for every file in self._files so
        that they all have unique names.

        It's safe to run this method as many times as you want.
        """
        self._assign_unique_names_to_files('name')

    def _get_local_tmp_dir(self):
        """Create a tmp directory on the local filesystem that will be
        cleaned up by self.cleanup()"""
        if not self._local_tmp_dir:
            path = os.path.join(self._opts['base_tmp_dir'], self._job_name)
            log.info('creating tmp directory %s' % path)
            os.makedirs(path)
            self._local_tmp_dir = path

        return self._local_tmp_dir

    def _make_unique_job_name(self, label=None, owner=None):
        """Come up with a useful unique ID for this job.

        We use this to choose the output directory, etc. for the job.
        """
        # use the name of the script if one wasn't explicitly
        # specified
        if not label:
            if self._script:
                label = os.path.basename(
                    self._script['path']).split('.')[0]
            else:
                label = 'no_script'

        if not owner:
            owner = 'no_user'

        now = datetime.datetime.utcnow()
        return '%s.%s.%s.%06d' % (
            label, owner,
            now.strftime('%Y%m%d.%H%M%S'), now.microsecond)

    def _get_steps(self):
        """Call the mr_job to find out how many steps it has, and whether
        there are mappers and reducers for each step. Validate its
        output.

        Returns output like ['MR', 'M']
        (two steps, second only has a mapper)

        We'll cache the result (so you can call _get_steps() as many times
        as you want)
        """
        if self._steps is None:
            if not self._script:
                self._steps = []
            else:
                args = (self._opts['steps_python_bin'] +
                        [self._script['path'], '--steps'] +
                        self._mr_job_extra_args(local=True))
                log.debug('> %s' % cmd_line(args))
                # add . to PYTHONPATH (in case mrjob isn't actually installed)
                env = combine_local_envs(os.environ,
                                   {'PYTHONPATH': os.path.abspath('.')})
                steps_proc = Popen(args, stdout=PIPE, stderr=PIPE, env=env)
                stdout, stderr = steps_proc.communicate()

                if steps_proc.returncode != 0:
                    raise Exception(
                        'error getting step information: %s', stderr)

                steps = stdout.strip().split(' ')

                # verify that this is a proper step description
                if not steps or not stdout:
                    raise ValueError('step description is empty!')
                for step in steps:
                    if len(step) < 1 or not _STEP_RE.match(step):
                        raise ValueError(
                            'unexpected step type %r in steps %r' %
                                         (step, stdout))

                self._steps = steps

        return self._steps

    def _mr_job_extra_args(self, local=False):
        """Return arguments to add to every invocation of MRJob.

        :type local: boolean
        :param local: if this is True, use files' local paths rather than
            the path they'll have inside Hadoop streaming
        """
        return self._get_file_upload_args(local=local) + self._extra_args

    def _get_file_upload_args(self, local=False):
        """Arguments used to pass through config files, etc from the job
        runner through to the local directory where the script is run.

        :type local: boolean
        :param local: if this is True, use files' local paths rather than
            the path they'll have inside Hadoop streaming
        """
        args = []
        for arg, file_dict in self._file_upload_args:
            args.append(arg)
            if local:
                args.append(file_dict['path'])
            else:
                args.append(file_dict['name'])
        return args

    def _wrapper_script_content(self):
        """Output a python script to the given file descriptor that runs
        setup_cmds and setup_scripts, and then runs its arguments.

        This will give names to our files if they don't already have names.
        """
        self._name_files()

        out = StringIO()

        def writeln(line=''):
            out.write(line + '\n')

        # imports
        writeln('from fcntl import flock, LOCK_EX, LOCK_UN')
        writeln('from subprocess import check_call, PIPE')
        writeln('import sys')
        writeln()

        # make lock file and lock it
        writeln("lock_file = open('/tmp/wrapper.lock.%s', 'a')" %
                self._job_name)
        writeln('flock(lock_file, LOCK_EX)')
        writeln()

        # run setup cmds
        if self._opts['setup_cmds']:
            writeln('# run setup cmds:')
            for cmd in self._opts['setup_cmds']:
                # only use the shell for strings, not for lists of arguments
                # redir stdout to /dev/null so that it won't get confused
                # with the mapper/reducer's output
                writeln(
                    "check_call(%r, shell=%r, stdout=open('/dev/null', 'w'))"
                    % (cmd, bool(isinstance(cmd, basestring))))
            writeln()

        # run setup scripts
        if self._setup_scripts:
            writeln('# run setup scripts:')
            for file_dict in self._setup_scripts:
                writeln("check_call(%r, stdout=open('/dev/null', 'w'))" % (
                    ['./' + file_dict['name']],))
            writeln()

        # unlock the lock file
        writeln('flock(lock_file, LOCK_UN)')
        writeln()

        # run the real script
        writeln('# run the real mapper/reducer')
        writeln('check_call(sys.argv[1:])')

        return out.getvalue()

    def _create_wrapper_script(self, dest='wrapper.py'):
        """Create the wrapper script, and write it into our local temp
        directory (by default, to a file named wrapper.py).

        This will set self._wrapper_script, and append it to self._files

        This will do nothing if setup_cmds and setup_scripts are
        empty, or _create_wrapper_script() has already been called.
        """
        if not (self._opts['setup_cmds'] or self._setup_scripts):
            return

        if self._wrapper_script:
            return

        path = os.path.join(self._get_local_tmp_dir(), dest)
        log.info('writing wrapper script to %s' % path)

        contents = self._wrapper_script_content()
        for line in StringIO(contents):
            log.debug('WRAPPER: ' + line.rstrip('\r\n'))

        f = open(path, 'w')
        f.write(contents)
        f.close()

        self._wrapper_script = {'path': path}
        self._files.append(self._wrapper_script)

    def _dump_stdin_to_local_file(self):
        """Dump STDIN to a file in our local dir, and set _stdin_path
        to point at it.

        You can safely call this multiple times; it'll only read from
        stdin once.
        """
        if self._stdin_path is None:
            # prompt user, so they don't think the process has stalled
            log.info('reading from STDIN')

            stdin_path = os.path.join(self._get_local_tmp_dir(), 'STDIN')
            log.debug('dumping stdin to local file %s' % stdin_path)
            with open(stdin_path, 'w') as stdin_file:
                for line in self._stdin:
                    # catch missing newlines (this often happens with test data)
                    if not line.endswith('\n'):
                        line += '\n'
                    stdin_file.write(line)

            self._stdin_path = stdin_path

        return self._stdin_path

    def _create_mrjob_tar_gz(self):
        """Make a tarball of the mrjob library, without .pyc or .pyo files,
        and return its path. This will also set self._mrjob_tar_gz_path

        It's safe to call this method multiple times (we'll only create
        the tarball once.)
        """
        if self._mrjob_tar_gz_path is None:
            # find mrjob library
            import mrjob

            if not os.path.basename(mrjob.__file__).startswith('__init__.'):
                raise Exception(
                    "Bad path for mrjob library: %s; can't bootstrap mrjob",
                    mrjob.__file__)

            mrjob_dir = os.path.dirname(mrjob.__file__) or '.'

            tar_gz_path = os.path.join(
                self._get_local_tmp_dir(), 'mrjob.tar.gz')

            def filter_path(path):
                filename = os.path.basename(path)
                return not(file_ext(filename).lower() in ('.pyc', '.pyo') or
                    # filter out emacs backup files
                    filename.endswith('~') or
                    # filter out emacs lock files
                    filename.startswith('.#') or
                    # filter out MacFuse resource forks
                    filename.startswith('._'))

            log.debug('archiving %s -> %s as %s' % (
                mrjob_dir, tar_gz_path, os.path.join('mrjob', '')))
            tar_and_gzip(
                mrjob_dir, tar_gz_path, filter=filter_path, prefix='mrjob')
            self._mrjob_tar_gz_path = tar_gz_path

        return self._mrjob_tar_gz_path

    def _hadoop_conf_args(self, step_num, num_steps):
        """Build a list of extra arguments to the hadoop binary.

        This handles *cmdenv*, *hadoop_extra_args*, *hadoop_input_format*,
        *hadoop_output_format*, *jobconf*, and *partitioner*.

        This doesn't handle input, output, mappers, reducers, or uploading
        files.
        """
        assert 0 <= step_num < num_steps

        args = []

        # hadoop_extra_args
        args.extend(self._opts['hadoop_extra_args'])

        # new-style jobconf
        version = self.get_hadoop_version()
        if compat.uses_generic_jobconf(version):
            for key, value in sorted(self._opts['jobconf'].iteritems()):
                args.extend(['-D', '%s=%s' % (key, value)])

        # partitioner
        if self._partitioner:
            args.extend(['-partitioner', self._partitioner])

        # cmdenv
        for key, value in sorted(self._get_cmdenv().iteritems()):
            args.append('-cmdenv')
            args.append('%s=%s' % (key, value))

        # hadoop_input_format
        if (step_num == 0 and self._hadoop_input_format):
            args.extend(['-inputformat', self._hadoop_input_format])

        # hadoop_output_format
        if (step_num == num_steps - 1 and self._hadoop_output_format):
            args.extend(['-outputformat', self._hadoop_output_format])

        # old-style jobconf
        if not compat.uses_generic_jobconf(version):
            for key, value in sorted(self._opts['jobconf'].iteritems()):
                args.extend(['-jobconf', '%s=%s' % (key, value)])

        return args

    def _invoke_sort(self, input_paths, output_path):
        """Use the local sort command to sort one or more input files. Raise
        an exception if there is a problem.

        This is is just a wrapper to handle limitations of Windows sort
        (see Issue #288).

        :type input_paths: list of str
        :param input_paths: paths of one or more input files
        :type output_path: str
        :param output_path: where to pipe sorted output into
        """
        if not input_paths:
            raise ValueError('Must specify at least one input path.')

        # ignore locale when sorting
        env = os.environ.copy()
        env['LC_ALL'] = 'C'

        log.info('writing to %s' % output_path)

        err_path = os.path.join(self._get_local_tmp_dir(), 'sort-stderr')

        # assume we're using UNIX sort unless we know otherwise
        if (not self._sort_is_windows_sort) or len(input_paths) == 1:
            with open(output_path, 'w') as output:
                with open(err_path, 'w') as err:
                    args = ['sort'] + list(input_paths)
                    log.info('> %s' % cmd_line(args))
                    try:
                        check_call(args, stdout=output, stderr=err, env=env)
                        return
                    except CalledProcessError:
                        pass

        # Looks like we're using Windows sort
        self._sort_is_windows_sort = True

        log.info('Piping files into sort for Windows compatibility')
        with open(output_path, 'w') as output:
            with open(err_path, 'w') as err:
                args = ['sort']
                log.info('> %s' % cmd_line(args))
                proc = Popen(args, stdin=PIPE, stdout=output, stderr=err,
                             env=env)

                # shovel bytes into the sort process
                for input_path in input_paths:
                    with open(input_path, 'r') as input:
                        while True:
                            buf = input.read(_BUFFER_SIZE)
                            if not buf:
                                break
                            proc.stdin.write(buf)

                proc.stdin.close()
                proc.wait()

                if proc.returncode == 0:
                    return

        # looks like there was a problem. log it and raise an error
        with open(err_path) as err:
            for line in err:
                log.error('STDERR: %s' % line.rstrip('\r\n'))
        raise CalledProcessError(proc.returncode, args)