This file is indexed.

/usr/lib/python2.7/dist-packages/neo/description.py is in python-neo 0.3.3-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# -*- coding: utf-8 -*-
"""
This file is a bundle of utilities to describe Neo object representation
(attributes and relationships).

It can be used to:
 * generate diagrams of neo
 * some generics IO like (databases mapper, hdf5, neomatlab, ...)
 * tests
 * external SQL mappers (Cf OpenElectrophy, Gnode)


**classes_necessary_attributes**
This dict descibes attributes that are necessary to initialize an instance.
It a dict of list of tuples.
Each attribute is described by a tuple:
 * for standard type, the tuple is: (name + python type)
 * for np.ndarray type, the tuple is: (name + np.ndarray + ndim + dtype)
 * for pq.Quantities, the tuple is: (name + pq.Quantity + ndim)
ndim is the dimensionaly of the array: 1=vector, 2=matrix, 3=cube, ...
Special case: ndim=0 means that neo expects a scalar, so Quantity.shape=(1,).
That is in fact a vector (ndim=1) with one element only in Quantities package.

For some neo.object, the data is not held by a field, but by the object itself.
This is the case for AnalogSignal, SpikeTrain: they inherit from Quantity,
which itself inherits from numpy.array.
In theses cases, the classes_inheriting_quantities dict provide a list of
classes inhiriting Quantity and there attribute that will become Quantity
itself.


**classes_recommended_attributes**
This dict describes recommended attributes, which are optional at
initialization. If present, they will be stored as attributes of the object.
The notation is the same as classes_necessary_attributes.

"""

from datetime import datetime

import numpy as np
import quantities as pq

from neo.core import objectlist


class_by_name = {}
name_by_class = {}

for ob in objectlist:
    class_by_name[ob.__name__] = ob
    name_by_class[ob] = ob.__name__


# parent to children
one_to_many_relationship = {
    'Block': ['Segment', 'RecordingChannelGroup'],
    'Segment': ['AnalogSignal', 'AnalogSignalArray',
                'IrregularlySampledSignal', 'Event', 'EventArray',
                'Epoch', 'EpochArray', 'SpikeTrain', 'Spike'],
    'RecordingChannel': ['AnalogSignal', 'IrregularlySampledSignal'],
    'RecordingChannelGroup': ['Unit', 'AnalogSignalArray'],
    'Unit': ['SpikeTrain', 'Spike']
    }

# reverse: child to parent
many_to_one_relationship = {}
for p, children in one_to_many_relationship.items():
    for c in children:
        if c not in many_to_one_relationship:
            many_to_one_relationship[c] = []
        if p not in many_to_one_relationship[c]:
            many_to_one_relationship[c].append(p)

many_to_many_relationship = {
    'RecordingChannel': ['RecordingChannelGroup'],
    'RecordingChannelGroup': ['RecordingChannel'],
    }
# check bijectivity
for p, children in many_to_many_relationship.items():
    for c in children:
        if c not in many_to_many_relationship:
            many_to_many_relationship[c] = []
        if p not in many_to_many_relationship[c]:
            many_to_many_relationship[c].append(p)


# Some relationship shortcuts are accesible througth properties
property_relationship = {
    'Block': ['Unit', 'RecordingChannel']
    }

# these relationships are used by IOs which do not natively support non-tree
# structures like NEO to avoid object duplications when saving/retrieving
# objects from the data source. We can call em "secondary" connections
implicit_relationship = {
    'RecordingChannel': ['AnalogSignal', 'IrregularlySampledSignal'],
    'RecordingChannelGroup': ['AnalogSignalArray'],
    'Unit': ['SpikeTrain', 'Spike']
    }

classes_necessary_attributes = {
    'Block': [],

    'Segment': [],

    'Event': [('time', pq.Quantity, 0),
              ('label', str)],

    'EventArray': [('times', pq.Quantity, 1),
                   ('labels', np.ndarray, 1, np.dtype('S'))],

    'Epoch': [('time', pq.Quantity, 0),
              ('duration', pq.Quantity, 0),
              ('label', str)],

    'EpochArray': [('times', pq.Quantity, 1),
                   ('durations', pq.Quantity, 1),
                   ('labels', np.ndarray, 1, np.dtype('S'))],

    'Unit': [],

    'SpikeTrain': [('times', pq.Quantity, 1),
                   ('t_start', pq.Quantity, 0),
                   ('t_stop', pq.Quantity, 0)],
    'Spike': [('time', pq.Quantity, 0)],

    'AnalogSignal': [('signal', pq.Quantity, 1),
                     ('sampling_rate', pq.Quantity, 0),
                     ('t_start', pq.Quantity, 0)],

    'AnalogSignalArray': [('signal', pq.Quantity, 2),
                          ('sampling_rate', pq.Quantity, 0),
                          ('t_start', pq.Quantity, 0)],

    'IrregularlySampledSignal': [('times', pq.Quantity, 1),
                                 ('signal', pq.Quantity, 1)],

    'RecordingChannelGroup': [],

    'RecordingChannel': [('index', int)],
    }

classes_recommended_attributes = {
    'Block': [('file_datetime', datetime),
              ('rec_datetime', datetime),
              ('index', int), ],

    'Segment': [('file_datetime', datetime),
                ('rec_datetime', datetime),
                ('index', int)],

    'Event': [],

    'EventArray': [],

    'Epoch': [],

    'EpochArray': [],

    'Unit': [],

    'SpikeTrain': [('waveforms', pq.Quantity, 3),
                   ('left_sweep', pq.Quantity, 0),
                   ('sampling_rate', pq.Quantity, 0)],

    'Spike': [('waveform', pq.Quantity, 2),
              ('left_sweep', pq.Quantity, 0),
              ('sampling_rate', pq.Quantity, 0)],

    'AnalogSignal': [('channel_index', int)],

    'Unit': [('channel_indexes', np.ndarray, 1, np.dtype('i'))],

    'AnalogSignalArray': [('channel_indexes', np.ndarray, 1, np.dtype('i'))],

    'IrregularlySampledSignal': [],

    'RecordingChannelGroup': [('channel_indexes', np.ndarray,
                               1, np.dtype('i')),
                              ('channel_names', np.ndarray,
                               1, np.dtype('S'))],

    'RecordingChannel': [('coordinate', pq.Quantity, 1)],
    }

# this list classes inheriting quantities with arguments that will become
# the quantity array
classes_inheriting_quantities = {
    'SpikeTrain': 'times',
    'AnalogSignal': 'signal',
    'AnalogSignalArray': 'signal',
    'IrregularlySampledSignal':  'signal',
    }


# all classes can have name, description, file_origin
for k in classes_recommended_attributes.keys():
    classes_recommended_attributes[k] += [('name', str),
                                          ('description', str),
                                          ('file_origin', str)]