This file is indexed.

/usr/lib/python2.7/dist-packages/optlang-1.3.0.egg-info/PKG-INFO is in python-optlang 1.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
Metadata-Version: 1.1
Name: optlang
Version: 1.3.0
Summary: Formulate optimization problems using sympy expressions and solve them using interfaces to third-party optimization software (e.g. GLPK).
Home-page: https://github.com/biosustain/optlang
Author: Nikolaus Sonnenschein
Author-email: niko.sonnenschein@gmail.com
License: Apache License Version 2.0
Description-Content-Type: UNKNOWN
Description: optlang
        =======
        
        *Sympy based mathematical programming language*
        
        |PyPI| |License| |Travis| |Appveyor| |Coverage Status| |Documentation Status| |Gitter| |JOSS| |DOI|
        
        Optlang is a Python package for solving mathematical optimization
        problems, i.e. maximizing or minimizing an objective function over a set
        of variables subject to a number of constraints. Optlang provides a
        common interface to a series of optimization tools, so different solver
        backends can be changed in a transparent way.
        Optlang's object-oriented API takes advantage of the symbolic math library
        `sympy <http://sympy.org/en/index.html>`__ to allow objective functions
        and constraints to be easily formulated from symbolic expressions of
        variables (see examples).
        
        Show us some love by staring this repo if you find optlang useful!
        
        Also, please use the GitHub `issue tracker <https://github.com/biosustain/optlang/issues>`_
        to let us know about bugs or feature requests, or our `gitter channel <https://gitter.im/biosustain/optlang>`_ if you have problems or questions regarding optlang.
        
        Installation
        ~~~~~~~~~~~~
        
        Install using pip
        
        ::
        
            pip install optlang
        
        This will also install `swiglpk <https://github.com/biosustain/swiglpk>`_, an interface to the open source (mixed integer) LP solver `GLPK <https://www.gnu.org/software/glpk/>`_.
        Quadratic programming (and MIQP) is supported through additional optional solvers (see below).
        
        Dependencies
        ~~~~~~~~~~~~
        
        The following dependencies are needed.
        
        -  `sympy >= 1.0.0 <http://sympy.org/en/index.html>`__
        -  `six >= 1.9.0 <https://pypi.python.org/pypi/six>`__
        -  `swiglpk >= 1.4.3 <https://pypi.python.org/pypi/swiglpk>`__
        
        The following are optional dependencies that allow other solvers to be used.
        
        -  `cplex <https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/>`__ (LP, MILP, QP, MIQP)
        -  `gurobipy <http://www.gurobi.com>`__ (LP, MILP (QP and MIQP support will be added in the future))
        -  `scipy <http://www.scipy.org>`__ (LP)
        
        
        
        Example
        ~~~~~~~
        
        Formulating and solving the problem is straightforward (example taken
        from `GLPK documentation <http://www.gnu.org/software/glpk>`__):
        
        .. code-block:: python
        
            from __future__ import print_function
            from optlang import Model, Variable, Constraint, Objective
        
            # All the (symbolic) variables are declared, with a name and optionally a lower and/or upper bound.
            x1 = Variable('x1', lb=0)
            x2 = Variable('x2', lb=0)
            x3 = Variable('x3', lb=0)
        
            # A constraint is constructed from an expression of variables and a lower and/or upper bound (lb and ub).
            c1 = Constraint(x1 + x2 + x3, ub=100)
            c2 = Constraint(10 * x1 + 4 * x2 + 5 * x3, ub=600)
            c3 = Constraint(2 * x1 + 2 * x2 + 6 * x3, ub=300)
        
            # An objective can be formulated
            obj = Objective(10 * x1 + 6 * x2 + 4 * x3, direction='max')
        
            # Variables, constraints and objective are combined in a Model object, which can subsequently be optimized.
            model = Model(name='Simple model')
            model.objective = obj
            model.add([c1, c2, c3])
        
            status = model.optimize()
        
            print("status:", model.status)
            print("objective value:", model.objective.value)
            print("----------")
            for var_name, var in model.variables.iteritems():
                print(var_name, "=", var.primal)
        
        The example will produce the following output:
        
        ::
        
            status: optimal
            objective value: 733.333333333
            ----------
            x2 = 66.6666666667
            x3 = 0.0
            x1 = 33.3333333333
        
        Using a particular solver
        -------------------------
        If you have more than one solver installed, it's also possible to specify which one to use, by importing directly from the
        respective solver interface, e.g. :code:`from optlang.glpk_interface import Model, Variable, Constraint, Objective`
        
        Documentation
        ~~~~~~~~~~~~~
        
        Documentation for optlang is provided at
        `readthedocs.org <http://optlang.readthedocs.org/en/latest/>`__.
        
        Citation
        ~~~~~~~~
        
        Please cite |JOSS| if you use optlang in a scientific publication. In case you would like to reference a specific version of of optlang you can also include the respective Zenodo DOI (|DOI| points to the latest version).
        
        Contributing
        ~~~~~~~~~~~~
        
        Please read `<CONTRIBUTING.md>`__.
        
        Future outlook
        ~~~~~~~~~~~~~~
        
        -  `Mosek <http://www.mosek.com/>`__ interface (provides academic
           licenses)
        -  `GAMS <http://www.gams.com/>`__ output (support non-linear problem
           formulation)
        -  `DEAP <https://code.google.com/p/deap/>`__ (support for heuristic
           optimization)
        -  Interface to `NEOS <http://www.neos-server.org/neos/>`__ optimization
           server (for testing purposes and solver evaluation)
        -  Automatically handle fractional and absolute value problems when
           dealing with LP/MILP/QP solvers (like GLPK,
           `CPLEX <http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/>`__
           etc.)
        
        The optlang `trello board <https://trello.com/b/aiwfbVKO/optlang>`__
        also provides a good overview of the project's roadmap.
        
        .. |PyPI| image:: https://img.shields.io/pypi/v/optlang.svg?maxAge=2592000
           :target: https://pypi.python.org/pypi/optlang
        .. |License| image:: http://img.shields.io/badge/license-APACHE2-blue.svg
           :target: http://img.shields.io/badge/license-APACHE2-blue.svg
        .. |Travis| image:: https://img.shields.io/travis/biosustain/optlang/master.svg
           :target: https://travis-ci.org/biosustain/optlang
        .. |Coverage Status| image:: https://img.shields.io/codecov/c/github/biosustain/optlang/master.svg
           :target: https://codecov.io/gh/biosustain/optlang/branch/master
        .. |Documentation Status| image:: https://readthedocs.org/projects/optlang/badge/?version=latest
           :target: https://readthedocs.org/projects/optlang/?badge=latest
        .. |JOSS|  image:: http://joss.theoj.org/papers/cd848071a664d696e214a3950c840e15/status.svg
           :target: http://joss.theoj.org/papers/cd848071a664d696e214a3950c840e15
        .. |DOI| image:: https://zenodo.org/badge/5031/biosustain/optlang.svg
           :target: https://zenodo.org/badge/latestdoi/5031/biosustain/optlang
        .. |AppVeyor| image:: https://ci.appveyor.com/api/projects/status/443yp8hf25c6748h/branch/master?svg=true
           :target: https://ci.appveyor.com/project/phantomas1234/optlang/branch/master
        .. |Gitter| image:: https://badges.gitter.im/biosustain/optlang.svg
           :alt: Join the chat at https://gitter.im/biosustain/optlang
           :target: https://gitter.im/biosustain/optlang?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge
        
        
Keywords: optimization,sympy,mathematical programming,heuristic optimization
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Topic :: Scientific/Engineering :: Mathematics
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python :: 3.5
Classifier: License :: OSI Approved :: Apache Software License