This file is indexed.

/usr/lib/python2.7/dist-packages/parallel/parallelppdev.py is in python-parallel 0.2.2-2.

This file is owned by root:root, with mode 0o755.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
#! /usr/bin/python
# parallel port access using the ppdev driver

import sys
import struct
import fcntl
import os

#----
# Generated by h2py 0.1.1 from <linux/ppdev.h>,
# then cleaned up a bit by Michael P. Ashton and then a gain by chris ;-)
# Changes for Python2.2 support (c) September 2004 Alex.Perry@qm.com


def sizeof(type): return struct.calcsize(type)
def _IOC(dir, type, nr, size):  return int((dir << _IOC_DIRSHIFT ) | (type << _IOC_TYPESHIFT ) |\
                                       (nr << _IOC_NRSHIFT ) | (size << _IOC_SIZESHIFT))
def _IO(type, nr):      return _IOC(_IOC_NONE,  type, nr, 0)
def _IOR(type,nr,size): return _IOC(_IOC_READ,  type, nr, sizeof(size))
def _IOW(type,nr,size): return _IOC(_IOC_WRITE, type, nr, sizeof(size))

_IOC_SIZEBITS   = 14
_IOC_SIZEMASK   = (1 << _IOC_SIZEBITS ) - 1
_IOC_NRSHIFT    = 0
_IOC_NRBITS     = 8
_IOC_TYPESHIFT  = _IOC_NRSHIFT + _IOC_NRBITS
_IOC_TYPEBITS   = 8
_IOC_SIZESHIFT  = _IOC_TYPESHIFT + _IOC_TYPEBITS
IOCSIZE_MASK    = _IOC_SIZEMASK << _IOC_SIZESHIFT
IOCSIZE_SHIFT   = _IOC_SIZESHIFT

# Python 2.2 uses a signed int for the ioctl() call, so ...
if ( sys.version_info[0] < 3 ) or ( sys.version_info[1] < 3 ):
 _IOC_WRITE      =  1
 _IOC_READ       = -2
 _IOC_INOUT      = -1
else:
 _IOC_WRITE      =  1
 _IOC_READ       =  2
 _IOC_INOUT      =  3

_IOC_DIRSHIFT   = _IOC_SIZESHIFT + _IOC_SIZEBITS
IOC_INOUT       = _IOC_INOUT << _IOC_DIRSHIFT
IOC_IN          = _IOC_WRITE << _IOC_DIRSHIFT
IOC_OUT         = _IOC_READ << _IOC_DIRSHIFT

_IOC_NONE       = 0
PP_IOCTL        = ord('p')
PPCLAIM         = _IO(PP_IOCTL,  0x8b)
PPCLRIRQ        = _IOR(PP_IOCTL, 0x93, 'i')

PPDATADIR       = _IOW(PP_IOCTL, 0x90, 'i')
PPEXCL          = _IO(PP_IOCTL,  0x8f)
PPFCONTROL      = _IOW(PP_IOCTL, 0x8e, 'BB')
PPGETFLAGS      = _IOR(PP_IOCTL, 0x9a, 'i')
PPGETMODE       = _IOR(PP_IOCTL, 0x98, 'i')
PPGETMODES      = _IOR(PP_IOCTL, 0x97, 'I')
PPGETPHASE      = _IOR(PP_IOCTL, 0x99, 'i')
PPGETTIME       = _IOR(PP_IOCTL, 0x95, 'll')
PPNEGOT         = _IOW(PP_IOCTL, 0x91, 'i')
PPRCONTROL      = _IOR(PP_IOCTL, 0x83, 'B')
PPRDATA         = _IOR(PP_IOCTL, 0x85, 'B')
#'OBSOLETE__IOR' undefined in 'PPRECONTROL'
PPRELEASE       = _IO(PP_IOCTL,  0x8c)
#'OBSOLETE__IOR' undefined in 'PPRFIFO'
PPRSTATUS       = _IOR(PP_IOCTL, 0x81, 'B')
PPSETFLAGS      = _IOW(PP_IOCTL, 0x9b, 'i')
PPSETMODE       = _IOW(PP_IOCTL, 0x80, 'i')
PPSETPHASE      = _IOW(PP_IOCTL, 0x94, 'i')
PPSETTIME       = _IOW(PP_IOCTL, 0x96, 'll')
PPWCONTROL      = _IOW(PP_IOCTL, 0x84, 'B')
PPWCTLONIRQ     = _IOW(PP_IOCTL, 0x92, 'B')
PPWDATA         = _IOW(PP_IOCTL, 0x86, 'B')
#'OBSOLETE__IOW' undefined in 'PPWECONTROL'
#'OBSOLETE__IOW' undefined in 'PPWFIFO'
#'OBSOLETE__IOW' undefined in 'PPWSTATUS'
PPYIELD         = _IO(PP_IOCTL, 0x8d)
PP_FASTREAD     = 1 << 3
PP_FASTWRITE    = 1 << 2
PP_W91284PIC    = 1 << 4
PP_FLAGMASK     = PP_FASTWRITE | PP_FASTREAD | PP_W91284PIC
PP_MAJOR        = 99
_ASMI386_IOCTL_H= None
_IOC_DIRBITS    = 2
_IOC_DIRMASK    = (1 << _IOC_DIRBITS) - 1
_IOC_NRMASK     = (1 << _IOC_NRBITS) - 1
_IOC_TYPEMASK   = (1 << _IOC_TYPEBITS ) - 1

def _IOC_DIR(nr):       return (nr >> _IOC_DIRSHIFT)  & _IOC_DIRMASK
def _IOC_NR(nr):        return (nr >> _IOC_NRSHIFT)   & _IOC_NRMASK
def _IOC_SIZE(nr):      return (nr >> _IOC_SIZESHIFT) & _IOC_SIZEMASK
def _IOC_TYPE(nr):      return (nr >> _IOC_TYPESHIFT) & _IOC_TYPEMASK
def _IOWR(type, nr, size): return _IOC(_IOC_READ | _IOC_WRITE, type, nr , sizeof(size))

__ELF__         = 1
__i386          = 1
__i386__        = 1
__linux         = 1
__linux__       = 1
__unix          = 1
__unix__        = 1
i386            = 1
linux           = 1
unix            = 1

#-------- Constants from <linux/parport.h>

PARPORT_CONTROL_STROBE  = 0x1
PARPORT_CONTROL_AUTOFD  = 0x2
PARPORT_CONTROL_INIT    = 0x4
PARPORT_CONTROL_SELECT  = 0x8
PARPORT_STATUS_ERROR    = 8
PARPORT_STATUS_SELECT   = 0x10
PARPORT_STATUS_PAPEROUT = 0x20
PARPORT_STATUS_ACK      = 0x40
PARPORT_STATUS_BUSY     = 0x80

IEEE1284_MODE_NIBBLE    = 0
IEEE1284_MODE_BYTE      = 1
IEEE1284_MODE_COMPAT    = 1<<8
IEEE1284_MODE_BECP      = 1<<9
IEEE1284_MODE_ECP       = 1<<4
IEEE1284_MODE_ECPRLE    = IEEE1284_MODE_ECP | (1<<5)
IEEE1284_MODE_ECPSWE    = 1<<10
IEEE1284_MODE_EPP       = 1<<6
IEEE1284_MODE_EPPSL     = 1<<11
IEEE1284_MODE_EPPSWE    = 1<<12
IEEE1284_DEVICEID       = 1<<2
IEEE1284_EXT_LINK       = 1<<14

IEEE1284_ADDR           = 1<<13
IEEE1284_DATA           = 0

PARPORT_EPP_FAST        = 1
PARPORT_W91284PIC       = 2
#----

class Parallel:
    """Class for controlling the pins on a parallel port

    This class provides bit-level access to the pins on a PC parallel
    port.  It is primarily designed for programs which must control
    special circuitry - most often non-IEEE-1284-compliant devices
    other than printers - using 'bit-banging' techniques.

    The current implementation makes ioctl() calls to the Linux ppdev
    driver, using the Python fcntl library.  It might be rewritten in
    C for extra speed.  This particular implementation is written for
    Linux; all of the upper-level calls can be ported to Windows as
    well.

    On Linux, the ppdev device driver, from the Linux 2.4 parallel
    port subsystem, is used to control the parallel port hardware.
    This driver must be made available from a kernel compile.  The
    option is called "Support user-space parallel-port drivers".  When
    using the module, be sure to unload the lp module first: usually
    the lp module claims exclusive access to the parallel port, and if
    it is loaded, this class will fail to open the parallel port file,
    and throw an exception.

    The primary source of information about the Linux 2.4 parallel
    port subsystem is Tim Waugh's documentation, the source for which
    is available in the kernel tree.  This document (called,
    appropriately enough, "The Linux 2.4 Parallel Port Subsystem"),
    thoroughly describes the parallel port drivers and how to use
    them.

    This class provides a method for each of the ioctls supported by
    the ppdev module.  The ioctl methods are named, in uppercase, the
    same as the ioctls they invoke.  The documentation for these
    methods was taken directly from the documentation for their
    corresponding ioctl, and modified only where necessary.

    Unless you have special reason to use the Linux ioctls, you should
    use instead the upper-level functions, which are named in
    lowerCase fashion and should be portable between Linux and
    Windows.  This way, any code you write for this class will (or
    should) also work with the Windows version of this class.
    
    """
    def __init__(self, port = 0):
        if type(port) == type(""):
            self.device = port
        else:
            self.device = "/dev/parport%d" % port
        self._fd = None
        self._fd = os.open(self.device, os.O_RDWR)
        try:
            self.PPEXCL()
            self.PPCLAIM()
            self.setDataDir(1)
            self.setData(0)
        except IOError:
            os.close(self._fd)
            self._fd = None
            raise

    def __del__(self):
        if self._fd is not None:
            self.PPRELEASE()
            os.close(self._fd)

    def timevalToFloat(self, timeval):
        t=struct.unpack('ll', timeval)
        return t[0] + (t[1]/1000000.0)

    def floatToTimeval(self, time):
        sec = int(time)
        usec = int(time*1000000.0)
        return struct.pack('ll', sec, usec)

    def PPCLAIM(self):
        """
        Claims access to the port. As a user-land device driver
        writer, you will need to do this before you are able to
        actually change the state of the parallel port in any
        way. Note that some operations only affect the ppdev driver
        and not the port, such as PPSETMODE; they can be performed
        while access to the port is not claimed.
        """
        fcntl.ioctl(self._fd, PPCLAIM)

    def PPEXCL(self):
        """
        Instructs the kernel driver to forbid any sharing of the port
        with other drivers, i.e. it requests exclusivity. The PPEXCL
        command is only valid when the port is not already claimed for
        use, and it may mean that the next PPCLAIM ioctl will fail:
        some other driver may already have registered itself on that
        port.

        Most device drivers don't need exclusive access to the
        port. It's only provided in case it is really needed, for
        example for devices where access to the port is required for
        extensive periods of time (many seconds).

        Note that the PPEXCL ioctl doesn't actually claim the port
        there and then---action is deferred until the PPCLAIM ioctl is
        performed.
        """
        fcntl.ioctl(self._fd, PPEXCL)

    def PPRELEASE(self):
        """
        Releases the port. Releasing the port undoes the effect of
        claiming the port. It allows other device drivers to talk to
        their devices (assuming that there are any).
        """
        fcntl.ioctl(self._fd, PPRELEASE)

    def PPYIELD(self):
        """
        Yields the port to another driver. This ioctl is a kind of
        short-hand for releasing the port and immediately reclaiming
        it. It gives other drivers a chance to talk to their devices,
        but afterwards claims the port back. An example of using this
        would be in a user-land printer driver: once a few characters
        have been written we could give the port to another device
        driver for a while, but if we still have characters to send to
        the printer we would want the port back as soon as possible.

        It is important not to claim the parallel port for too long,
        as other device drivers will have no time to service their
        devices. If your device does not allow for parallel port
        sharing at all, it is better to claim the parallel port
        exclusively (see PPEXCL).
        """
        fcntl.ioctl(self._fd, PPYIELD)

    def PPNEGOT(self, mode):
        """
        Performs IEEE 1284 negotiation into a particular
        mode. Briefly, negotiation is the method by which the host and
        the peripheral decide on a protocol to use when transferring
        data.

        An IEEE 1284 compliant device will start out in compatibility
        mode, and then the host can negotiate to another mode (such as
        ECP).

        The 'mode' parameter should be one of the following constants
        from PPDEV:

        - IEEE1284_MODE_COMPAT
        - IEEE1284_MODE_NIBBLE
        - IEEE1284_MODE_BYTE
        - IEEE1284_MODE_EPP
        - IEEE1284_MODE_ECP

        The PPNEGOT ioctl actually does two things: it performs the
        on-the-wire negotiation, and it sets the behaviour of
        subsequent read/write calls so that they use that mode (but
        see PPSETMODE).
        """
        fcntl.ioctl(self._fd, PPNEGOT, struct.pack('i', mode))

    def PPSETMODE(self, mode):
        """
        Sets which IEEE 1284 protocol to use for the read and write
        calls.

        The 'mode' parameter should be one of the following constants
        from PPDEV:

        - IEEE1284_MODE_COMPAT
        - IEEE1284_MODE_NIBBLE
        - IEEE1284_MODE_BYTE
        - IEEE1284_MODE_EPP
        - IEEE1284_MODE_ECP
        """
        fcntl.ioctl(self._fd, PPSETMODE, struct.pack('i', mode))

    def PPGETMODE(self):
        """
        Retrieves the IEEE 1284 mode being used for read and
        write.  The return value is one of the following constants
        from PPDEV:

        - IEEE1284_MODE_COMPAT
        - IEEE1284_MODE_NIBBLE
        - IEEE1284_MODE_BYTE
        - IEEE1284_MODE_EPP
        - IEEE1284_MODE_ECP
        """
        ret = struct.pack('i', 0)
        ret = fcntl.ioctl(self._fd, PPGETMODE, ret)
        return struct.unpack('i', ret)[0]

    def PPGETTIME(self):
        """
        Retrieves the time-out value. The read and write calls will
        time out if the peripheral doesn't respond quickly enough. The
        PPGETTIME ioctl retrieves the length of time that the
        peripheral is allowed to have before giving up.

        Returns the timeout value in seconds as a floating-point value.
        """
        ret = struct.pack('ll', 0, 0)
        ret = fcntl.ioctl(self._fd, PPGETTIME, ret)
        return timevalToFloat(ret)

    def PPSETTIME(self, time):
        """
        Sets the time-out (see PPGETTIME for more information).
        'time' is the new time-out in seconds; floating-point values
        are acceptable.
        """
        fcntl.ioctl(self._fd, PPSETTIME, floatToTimeval(time))

    def PPGETMODES(self):
        """
        Retrieves the capabilities of the hardware (i.e. the modes
        field of the parport structure).
        """
        raise NotImplementedError

    def PPSETFLAGS(self):
        """
        Sets flags on the ppdev device which can affect future I/O
        operations. Available flags are:

        - PP_FASTWRITE
        - PP_FASTREAD
        - PP_W91284PIC
        """
        raise NotImplementedError

    def PPWCONTROL(self, lines):
        """
        Sets the control lines.  The 'lines' parameter is a bitwise OR
        of the following constants from PPDEV:

        - PARPORT_CONTROL_STROBE
        - PARPORT_CONTROL_AUTOFD
        - PARPORT_CONTROL_INIT
        - PARPORT_CONTROL_SELECT
        """
        fcntl.ioctl(self._fd, PPWCONTROL, struct.pack('B', lines))

    def PPRCONTROL(self):
        """
        Returns the last value written to the control register, in the
        form of an integer, for which each bit corresponds to a control
        line (although some are unused).

        This doesn't actually touch the hardware; the last value
        written is remembered in software. This is because some
        parallel port hardware does not offer read access to the
        control register.

        The control lines bits are defined by the following constants
        from PPDEV:

        - PARPORT_CONTROL_STROBE
        - PARPORT_CONTROL_AUTOFD
        - PARPORT_CONTROL_SELECT
        - PARPORT_CONTROL_INIT
        """
        ret = struct.pack('B',0)
        ret = fcntl.ioctl(self._fd, PPRCONTROL, ret)
        return struct.unpack('B', ret)[0]

    def PPFCONTROL(self, mask, val):
        """
        Frobs the control lines. Since a common operation is to change
        one of the control signals while leaving the others alone, it
        would be quite inefficient for the user-land driver to have to
        use PPRCONTROL, make the change, and then use PPWCONTROL. Of
        course, each driver could remember what state the control
        lines are supposed to be in (they are never changed by
        anything else), but in order to provide PPRCONTROL, ppdev must
        remember the state of the control lines anyway.

        The PPFCONTROL ioctl is for "frobbing" control lines, and is
        like PPWCONTROL but acts on a restricted set of control
        lines. The ioctl parameter is a pointer to a struct
        ppdev_frob_struct:
        
        struct ppdev_frob_struct {
            unsigned char mask;
            unsigned char val;
        };

        The mask and val fields are bitwise ORs of control line names
        (such as in PPWCONTROL). The operation performed by PPFCONTROL
        is:

        new_ctr = (old_ctr & ~mask) | val

        In other words, the signals named in mask are set to the
        values in val.
        """
        fcntl.ioctl(self._fd, PPFCONTROL, struct.pack('BB', mask, val))

    def PPRSTATUS(self):
        """
        Returns an unsigned char containing bits set for each status
        line that is set (for instance, PARPORT_STATUS_BUSY). The
        ioctl parameter should be a pointer to an unsigned char.
        """
        ret = struct.pack('B',0)
        ret = fcntl.ioctl(self._fd, PPRSTATUS, ret)
        return struct.unpack('B', ret)[0]

    def PPDATADIR(self, out):
        """
        Controls the data line drivers. Normally the computer's
        parallel port will drive the data lines, but for byte-wide
        transfers from the peripheral to the host it is useful to turn
        off those drivers and let the peripheral drive the
        signals. (If the drivers on the computer's parallel port are
        left on when this happens, the port might be damaged.)
        This is only needed in conjunction with PPWDATA or PPRDATA.

        The 'out' parameter indicates the desired port direction.  If
        'out' is true or non-zero, the drivers are turned on (forward
        direction); otherwise, the drivers are turned off (reverse
        direction).
        """
        if out:
            msg=struct.pack('i',0)
        else:
            msg=struct.pack('i',1)
        fcntl.ioctl(self._fd, PPDATADIR, msg)

    def PPWDATA(self, byte):
        """
        Sets the data lines (if in forward mode). The ioctl parameter
        is a pointer to an unsigned char.
        """
        fcntl.ioctl(self._fd, PPWDATA,struct.pack('B',byte))

    def PPRDATA(self):
        """
        Reads the data lines (if in reverse mode). The ioctl parameter
        is a pointer to an unsigned char.
        """
        ret=struct.pack('B',0)
        ret=fcntl.ioctl(self._fd, PPRDATA,ret)
        return struct.unpack('B',ret)[0]

    def PPCLRIRQ(self):
        """
        Returns the current interrupt count, and clears it.  The ppdev
        driver keeps a count of interrupts as they are triggered.
        """
        ret=struct.pack('i',0)
        ret=fcntl.ioctl(self._fd, PPCLRIRQ,ret)
        return struct.unpack('i',ret)[0]

    def PPWCTLONIRQ(self, lines):
        """
        Set a trigger response. Afterwards when an interrupt is
        triggered, the interrupt handler will set the control lines as
        requested. The ioctl parameter is a pointer to an unsigned
        char, which is interpreted in the same way as for PPWCONTROL.

        The reason for this ioctl is simply speed. Without this ioctl,
        responding to an interrupt would start in the interrupt
        handler, switch context to the user-land driver via poll or
        select, and then switch context back to the kernel in order to
        handle PPWCONTROL. Doing the whole lot in the interrupt
        handler is a lot faster.
        """
        fcntl.ioctl(self._fd, PPWCTLONIRQ,struct.pack('B',lines))

    #data lines
##    def data(self):
##        """Returns the states of the data bus line drivers (pins 2-9)"""
##        return self._data

    def setDataDir(self,out):
        """Activates or deactivates the data bus line drivers (pins 2-9)"""
        self._dataDir = out
        self.PPDATADIR(out)

    def dataDir(self):
        """Returns true if the data bus line drivers are on (pins 2-9)"""
        return self._dataDir

    #control lines
##    def strobe(self):
##        """Returns the state of the nStrobe output (pin 1)"""
##        return (self.PPRCONTROL()&PARPORT_CONTROL_STROBE)==0

    def setDataStrobe(self, level):
        """Sets the state of the nStrobe output (pin 1)"""
        if level:
            self.PPFCONTROL(PARPORT_CONTROL_STROBE, 0)
        else:
            self.PPFCONTROL(PARPORT_CONTROL_STROBE, PARPORT_CONTROL_STROBE)

##    def autoFd(self):
##        """Returns the state of the nAutoFd output (pin 14)"""
##        return (self.PPRCONTROL()&PARPORT_CONTROL_AUTOFD)==0

    def setAutoFeed(self, level):
        """Sets the state of the nAutoFd output (pin 14)"""
        if level:
            self.PPFCONTROL(PARPORT_CONTROL_AUTOFD, 0)
        else:
            self.PPFCONTROL(PARPORT_CONTROL_AUTOFD, PARPORT_CONTROL_AUTOFD)

##    def init(self):
##        """Returns the state of the nInit output (pin 16)"""
##        return (self.PPRCONTROL()&PARPORT_CONTROL_INIT)!=0

    def setInitOut(self, level):
        """Sets the state of the nInit output (pin 16)"""
        if level:
            self.PPFCONTROL(PARPORT_CONTROL_INIT, PARPORT_CONTROL_INIT)
        else:
            self.PPFCONTROL(PARPORT_CONTROL_INIT, 0)

##    def selectIn(self):
##        """Returns the state of the nSelectIn output (pin 17)"""
##        return (self.PPRCONTROL()&PARPORT_CONTROL_SELECT)==0

    def setSelect(self,level):
        """Sets the state of the nSelectIn output (pin 17)"""
        if level:
            self.PPFCONTROL(PARPORT_CONTROL_SELECT, 0)
        else:
            self.PPFCONTROL(PARPORT_CONTROL_SELECT, PARPORT_CONTROL_SELECT)

    def setData(self,d):
        """Sets the states of the data bus line drivers (pins 2-9)"""
        self._data=d
        return self.PPWDATA(d)
    
    def getData(self):
        """Gets the states of the data bus line (pin 2-9)"""
        return self.PPRDATA()

    # status lines
    def getInError(self):
        """Returns the level on the nFault pin (15)"""
        return (self.PPRSTATUS() & PARPORT_STATUS_ERROR) != 0

    def getInSelected(self):
        """Returns the level on the Select pin (13)"""
        return (self.PPRSTATUS() & PARPORT_STATUS_SELECT) != 0

    def getInPaperOut(self):
        """Returns the level on the paperOut pin (12)"""
        return (self.PPRSTATUS() & PARPORT_STATUS_PAPEROUT) != 0

    def getInAcknowledge(self):
        """Returns the level on the nAck pin (10)"""
        return (self.PPRSTATUS() & PARPORT_STATUS_ACK) != 0

    def getInBusy(self):
        """Returns the level on the Busy pin (11)"""
        return (self.PPRSTATUS() & PARPORT_STATUS_BUSY) == 0