This file is indexed.

/usr/lib/python2.7/dist-packages/pyentropy/utils.py is in python-pyentropy 0.4.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#    This file is part of pyEntropy
#
#    pyEntropy is free software: you can redistribute it and/or modify
#    it under the terms of the GNU General Public License as published by
#    the Free Software Foundation, either version 2 of the License, or
#    (at your option) any later version.
#
#    pyEntropy is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#    GNU General Public License for more details.
#
#    You should have received a copy of the GNU General Public License
#    along with pyEntropy. If not, see <http://www.gnu.org/licenses/>.
#
#    Copyright 2009, 2010 Robin Ince
"""Utility functions for working with discrete probability
distributions. These functions are exposed in the top-level pyentropy
namespace.

"""
from __future__ import division
import numpy as np
from tempfile import NamedTemporaryFile
import os
import subprocess
from numpy.ma.core import _MaskedUnaryOperation, _DomainGreater
import numpy.core.umath as umath

malog2 = _MaskedUnaryOperation(umath.log2, 1.0, _DomainGreater(0.0))

def ent(p):
    mp = np.ma.array(p,copy=False,mask=(p<=np.finfo(np.float).eps))
    return -(mp*malog2(mp)).sum(axis=0)


def prob(x, m, method='naive'):
    """Sample probability of integer sequence.

    :Parameters:
      x : int array
        integer input sequence
      m : int
        alphabet size of input sequence (max(x)<m)
      method: {'naive', 'kt', 'beta:x','shrink'}
        Sampling method to use. 

    :Returns:
      Pr : float array
        array representing probability distribution
        Pr[i] = P(x=i)

    """
    if not np.issubdtype(x.dtype, np.integer): 
        raise ValueError, "Input must be of integer type"
    if x.max() > m-1:
        raise ValueError, "Input contains values that are too large"
    
    C = np.bincount(x)
    if C.size < m:   # resize if any responses missed
        C.resize((m,))
    return _probcount(C, x.size, method)


def _probcount(C, N, method='naive'):
    """Estimate probability from a vector of bin counts
    
    :Parameters:
      C : int array
        integer vector of bin counts
      N : int
        number of trials
      method: {'naive', 'kt', 'beta:x','shrink'}
        Sampling method to use. 

    """
    N = float(N)
    if method.lower() == 'naive':
        # normal estimate
        P = C/N
    elif method.lower() == 'kt':
        # KT (constant addition) estimate
        P = (C + 0.5) / (N + (C.size/2.0))
    elif method.lower() == 'shrink':
        # James-Stein shrinkage
        # http://www.strimmerlab.org/software/entropy/index.html
        Pnaive = C/N
        target = 1./C.size
        lam = _get_lambda_shrink(N, Pnaive, target)
        P = (lam * target) + ((1 - lam) * Pnaive)
    elif method.split(':')[0].lower() == 'beta':
        beta = float(method.split(':')[1])
        # general add-constant beta estimate
        P = (C + beta) / (N + (beta*C.size))
    else:
        raise ValueError, 'Unknown sampling method: '+str(est)
    return P


def _get_lambda_shrink(N, u, target):
    """Lambda shrinkage estimator"""
    # *unbiased* estimator of variance of u
    varu = u*(1-u)/(N-1)
    # misspecification
    msp = ((u-target)**2).sum()

    # estimate shrinkage intensity
    if msp == 0:
        lam = 1.
    else:
        lam = (varu/msp).sum()
        
    # truncate
    if lam > 1:
        lam = 1 
    elif lam < 0:
        lam = 0

    return lam


def pt_bayescount(Pr, Nt):
    """Compute the support for analytic bias correction using the 
    Bayesian approach of Panzeri and Treves (1996)
    
    :Parameters:
      Pr : 1D aray
        Probability vector
      Nt : int
        Number of trials

    :Returns:
      R : int
        Bayesian estimate of support
    
    """
    
    # dimension of space
    dim = Pr.size

    # non zero probs only
    PrNZ = Pr[Pr>np.finfo(np.float).eps]
    Rnaive = PrNZ.size
    
    R = Rnaive
    if Rnaive < dim:
        Rexpected = Rnaive - ((1.0-PrNZ)**Nt).sum()
        deltaR_prev = dim
        deltaR = np.abs(Rnaive - Rexpected)
        xtr = 0.0
        while (deltaR < deltaR_prev) and ((Rnaive+xtr)<dim):
            xtr = xtr+1.0
            Rexpected = 0.0
            # occupied bins
            gamma = xtr*(1.0 - ((Nt/(Nt+Rnaive))**(1.0/Nt)))
            Pbayes = ((1.0-gamma) / (Nt+Rnaive)) * (PrNZ*Nt+1.0)
            Rexpected = (1.0 - (1.0-Pbayes)**Nt).sum()
            # non-occupied bins
            Pbayes = gamma / xtr
            Rexpected = Rexpected + xtr*(1.0 - (1.0 - Pbayes)**Nt)
            deltaR_prev = deltaR
            deltaR = np.abs(Rnaive - Rexpected)
        Rnaive = Rnaive + xtr - 1.0
        if deltaR < deltaR_prev:
            Rnaive += 1.0
    return Rnaive


def nsb_entropy(P, N, dim):
    """Calculate NSB entropy of a probability distribution using
    external nsb-entropy program.

    Required `nsb-entropy` installed on system path.

    :Parameters:
      P : 1D array
        Probability distribution vector
      N : int
        Total number of trials
      dim : int 
        Full dimension of space
    
    """
    
    freqs = np.round(P*N)
    tf = NamedTemporaryFile(mode='w',suffix='.txt')

    # write file header
    tf.file.write("# type: scalar\n")
    tf.file.write(str(dim) + "\n")
    tf.file.write("# rows: 1\n")
    tf.file.write("# columns: " + str(freqs.sum().astype(int)) + "\n")

    # write data
    for i in xrange(freqs.size):
        tf.file.write(freqs[i]*(str(i)+" "))
    tf.file.write("\n")
    tf.file.close()

    # run nsb-entropy application
    subprocess.call(["nsb-entropy","-dpar","-iuni","-cY","-s1","-e1",tf.name[:-4]], 
                    stdout=open(os.devnull),stderr=open(os.devnull))

    # read results
    dir, fname = os.path.split(tf.name)
    out_fname = os.path.splitext(fname)[0]+"_uni_num"+str(dim)+"_mf1f0_1_entr.txt"
    out_fname = os.path.join(dir,out_fname)
    fd = open(out_fname,mode='r')
    results = fd.readlines()
    fd.close()
    os.remove(out_fname)

    H = float(results[15].split(' ')[0])
    dH = float(results[20].split(' ')[0])

    return [H, dH]


def dec2base(x, b, digits):
    """Convert decimal value to a row of values representing it in a 
    given base.
    
    :Parameters:
      x : (t,) or (t,1) int array
        Array of decimilised values
      b : int
        Base for convergence (finite alphabet size)
      digits : int
        Length of output word for each trial

    :Returns:
     y : (t, digits)

    """
    if not np.issubdtype(x.dtype, np.integer):
        raise ValueError, "Input x must be integer"
    if len(x.shape)==1:
        # 1D vector
        x = np.reshape(x,(x.size,1))
    xs = x.shape
    if xs[1] != 1:
        raise ValueError, "Input x must be a 1D array or column vector!"

    power = np.ones((xs[0],1)) * (b ** np.c_[digits-1:-0.5:-1,].T)
    x = np.tile(x,(1,digits))
    y = np.floor( np.remainder(x, b*power) / power )
    return y.astype(int)

def base2dec(x, b):
    """Convert base-b words to decimal values.

    :Parameters:
      x : (t, n) int array
        Array of t length-n base-b words
      b : int
        Base (size of finite alphabet)

    :Returns:
      d_x: (t,)
        Array of decimalised values
    
    Note, this is the same as decimalise except input x is ordered 
    differently (here x[t,n] - ie columns are trials).
    
    """
    xs = x.shape
    z = b**np.arange((xs[1]-1),-0.5,-1)
    d_x = np.dot(x, z)
    return d_x.astype(int)


def decimalise(x, n, b):
    """Convert base-b words to decimal values

    :Parameters:
      x : (n, t) int array
        Array of t length-n base-b words
      b : int
        Base (size of finite alphabet)

    :Returns:
      d_x: (t,)
        Array of decimalised values

    """
    if x.shape[0] != n or x.max() > b-1:
        raise ValueError, "Input vector x doesnt match parameters"
    powers = b**np.arange(n-1,-0.5,-1)
    d_x = np.dot(x.T,powers).astype(int)
    return d_x


def quantise(input, m, uniform='sampling', minmax=None,
             centers=True):
    """ Quantise 1D input vector into m levels (unsigned)

    :Parameters:
      uniform : {'sampling','bins'}
        Determine whether quantisation is uniform for sampling (equally 
        occupied bins) or the bins have uniform widths
      minmax : tuple (min,max)
        Specify the range for uniform='bins' quantisation, rather than using
        min/max of input
      centers : {True, False}
        Return vector of bin centers instead of bin bounds

    """
    bin_centers = np.zeros(m)
    if uniform == 'sampling':
        #bin_numel = np.round(input.size/m) - 1
        bin_numel = np.floor(input.size/m)
        r = input.size - (bin_numel*m) 

        stemp = input.copy()
        stemp.sort(axis=0)
        # original method
        #bin_bounds = stemp[bin_numel:-bin_numel+1:bin_numel]
        # more uniform method
        idx = np.arange(bin_numel, bin_numel*m, bin_numel, dtype=np.int)
        idx[0:r] = idx[0:r] + np.arange(1,r+1,dtype=np.int)
        idx[r:] = idx[r:] + r
        bin_bounds = stemp[idx]

        if centers:
            # calculate center for each bin
            bin_centers[0] =  (bin_bounds[0]+stemp[0]) / 2.0        
            for i in range(1,m-1):
                bin_centers[i] = (bin_bounds[i]+bin_bounds[i-1])/2.0
            bin_centers[m-1] = (stemp[-1]+bin_bounds[-1]) / 2.0
    elif uniform == 'bins':
        if minmax is not None:
            min, max = minmax
        else:
            min, max = input.min(), input.max()
        drange = float(max) - float(min)
        bin_width = drange / float(m)
        bin_bounds = np.arange(1,m,dtype=float)
        bin_bounds *= bin_width
        bin_bounds += min
        if centers:
            bin_centers = r_[bin_bounds - (bin_width/2.0), bin_bounds[-1]+(bin_width/2.0)]
    else:
        raise ValueError, "Unknown value of 'uniform'"

    q_value = np.digitize(input, bin_bounds)

    if centers:
        # bin centers
        return q_value, bin_bounds, bin_centers
    else:
        return q_value, bin_bounds

def quantise_discrete(input, m):
    """Re-bin an already discretised sequence (eg of integer counts)

    Input should already be non-negative integers

    """
    # astype forces a copy even if already int
    X = input.astype(np.int)
    if (X.min() < 0) or not np.all(np.asarray(X,dtype=np.int)==X):
        raise ValueError, "Expecting non-negative integer input"

    if input.max() < m:
        # nothing to do
        return input

    # rebinning algorithm
    # get bincounts now to determine smallest bins
    # merge smallest bin to smallest neighbouring bin
    # (maintain continuity) until we have the right number
    counts = list(np.bincount(X))
    Nbins = len(counts)
    labels = list(np.r_[0:Nbins])

    def merge_bins(a,b):
        """Merge bin a into bin b"""
        counts[b] = counts[b] + counts[a]
        X[X==labels[a]] = labels[b]
        counts.pop(a)
        labels.pop(a)

    while Nbins > m:
        cidx = np.argsort(counts)
        # smallest one
        si = cidx[0]
        # if its at the edges can only merge one way
        if si == 0:
            merge_bins(si,1)
        elif si == len(counts)-1:
            merge_bins(si, si-1)
        else:
            # merge to the smallest neighbour
            target = [si-1, si+1][np.argmin([counts[si-1], counts[si+1]])]
            merge_bins(si, target)
        Nbins = Nbins - 1

    # relabel
    newlabels = range(len(labels))
    for i in range(len(labels)):
        if newlabels[i] != labels[i]:
            # only reassign if necessary
            X[X==labels[i]] = newlabels[i]

    return X