This file is indexed.

/usr/lib/python2.7/dist-packages/pymoc/moc.py is in python-pymoc 0.5.0-2ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
# Copyright (C) 2013-2014 Science and Technology Facilities Council.
# Copyright (C) 2015-2016 East Asian Observatory.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

from __future__ import absolute_import

from math import pi
from os.path import isfile

MAX_ORDER = 29

MOC_TYPES = ('IMAGE', 'CATALOG')


class MOC(object):
    """Class representing Multi-Order Coverage maps.

    Apart from the properties listed below, the MOC also includes
    the following attributes:

    * id
    * name
    * origin
    """

    def __init__(self, order=None, cells=None,
                 filename=None, filetype=None,
                 name=None, mocid=None, origin=None, moctype=None):
        """Construct new MOC object.

        By default the new MOC will be empty, but if an order and a
        collection of cells are specified, then these will be added
        to the new MOC.  If a filename is specified then data
        from the given file will be read into the new object,
        and if it is a FITS file, the metadata will also be read,
        although this can be overridden by values given explicitly
        as constructor arguments.

        Additional metadata can be added to the MOC using the
        ``name``, ``mocid``, ``origin`` and ``moctype`` arguments,
        or added at a later time using the corresponding
        attributes and properties.  The metadata values can be read from
        and written to FITS files, but are not included when a MOC
        is written to the other formats (JSON or ASCII).

        >>> from pymoc import MOC
        >>> m = MOC()
        >>> m.cells
        0

        >>> m = MOC(10, (1234, 4321))
        >>> m.cells
        2

        >>> m = MOC(name='example', moctype='IMAGE')
        >>> m.name
        'example'
        >>> m.type
        'IMAGE'
        """

        self._orders = tuple(set() for i in range(0, MAX_ORDER + 1))
        self._normalized = True

        # Initialize metadata properties but wait until after reading
        # metadata from a file before overriding with specified values.
        self.id = None
        self.name = None
        self.origin = None
        self.type = None

        if filename is not None:
            # Read the file, including metadata if present.
            self.read(filename, filetype, include_meta=True)

        # Set any metadata explicity specified, overriding that
        # read from the file.
        if mocid is not None:
            self.id = mocid
        if name is not None:
            self.name = name
        if origin is not None:
            self.origin = origin
        if moctype is not None:
            self.type = moctype

        # Add any cells specified in the arguments.
        if order is not None and cells is not None:
            self.add(order, cells)
        elif order is not None or cells is not None:
            raise ValueError('Only one of order and cells specified')

    def __iter__(self):
        """Iterator for MOC objects.

        This yields an (order, cell collection) pair for each order at
        which there are cells.  The results will be returned in
        ascending order of the order number.

        >>> m = MOC(0, (1, 2))
        >>> m.add(1, (0,))
        >>> for (order, cells) in m:
        ...     print(str(order) + ' ' + str(sorted(cells)))
        0 [1, 2]
        1 [0]
        """

        for order in range(0, MAX_ORDER + 1):
            if self._orders[order]:
                yield (order, frozenset(self._orders[order]))

    def __len__(self):
        """Length operator for MOC objects.

        Returns the number of orders at which the MOC has cells.

        >>> m = MOC(0, (1, 2))
        >>> len(m)
        1
        """

        n = 0

        for order in range(0, MAX_ORDER + 1):
            if self._orders[order]:
                n += 1

        return n

    def __getitem__(self, order):
        """Subscripting operator for MOC objects.

        This retrieves a collection of cells at the given order
        of the MOC.

        >>> m = MOC(5, (6, 7))
        >>> sorted(m[5])
        [6, 7]
        """

        order = self._validate_order(order)

        return frozenset(self._orders[order])

    def __eq__(self, other):
        """Equality test operator.

        >>> MOC(1, (4, 5, 6, 7)) == MOC(0, (1,))
        True
        >>> MOC(2, (0, 1)) == MOC(0, (0,))
        False
        >>> MOC(1, (5, 6)) != MOC(1, (1, 2))
        True
        >>> MOC(2, (8, 9, 10, 11)) != MOC(1, (2,))
        False
        """

        if not isinstance(other, MOC):
            return NotImplemented

        self.normalize()
        other.normalize()

        for order in range(0, MAX_ORDER + 1):
            if self._orders[order] != other._orders[order]:
                return False

        return True

    def __ne__(self, other):
        """Inequality test operator.

        Implemented via __eq__.
        """

        return not self.__eq__(other)

    def __iadd__(self, other):
        """In-place addition operator.

        Updates the MOC to represent the union of itself and the other MOC.

        >>> p = MOC(4, (5, 6))
        >>> p += MOC(4, (7, 8))
        >>> repr(p)
        '<MOC: [(4, [5, 6, 7, 8])]>'
        """

        if not isinstance(other, MOC):
            return NotImplemented

        for (order, cells) in other:
            self.add(order, cells)

        return self

    def __add__(self, other):
        """Addition operator.

        Returns a MOC which is the union of two MOCs.

        >>> MOC(4, (5, 6)) + MOC(4, (7, 8))
        <MOC: [(4, [5, 6, 7, 8])]>
        """

        if not isinstance(other, MOC):
            return NotImplemented

        sum = self.copy()

        sum += other

        return sum

    def __sub__(self, other):
        """Subtraction operator.

        Returns a MOC which is the copy of the first MOC with the
        intersection with the second MOC removed.

        >>> MOC(0, (0,)) - MOC(2, (15,))
        <MOC: [(1, [0, 1, 2]), (2, [12, 13, 14])]>
        """

        if not isinstance(other, MOC):
            return NotImplemented

        diff = self.copy()
        diff -= other

        return diff

    def __isub__(self, other):
        """In-place subtraction operator.

        Removes areas which overlap with the given MOC.
        """

        if not isinstance(other, MOC):
            return NotImplemented

        for (order, cells) in other:
            self.remove(order, cells)

        return self

    def __repr__(self):
        """Generate printable representation.

        Since the constructor only accepts cells at one order and we may be
        generating a representation for a MOC with cells at multiple orders
        we can't try to give an expression which would construct the object.
        Instead show a description in angle brackets.
        """

        return '<MOC: {0!r}>'.format(
            [(o, sorted(cs)) for (o, cs) in enumerate(self._orders) if cs])

    @property
    def order(self):
        """The highest order at which the MOC has cells.

        >>> m = MOC(4, (3, 2, 1))
        >>> m.order
        4
        """

        for order in range(MAX_ORDER, 0, -1):
            if self._orders[order]:
                return order

        return 0

    @property
    def type(self):
        """The type of MOC (IMAGE or CATALOG).

        >>> m = MOC(moctype='IMAGE')
        >>> m.type
        'IMAGE'

        >>> m.type = 'CATALOG'
        >>> m.type
        'CATALOG'
        """

        return self._type

    @type.setter
    def type(self, value):
        """Set the type of the MOC.

        The value should be either "IMAGE" or "CATALOG".
        """

        self._type = None
        if value is None:
            return

        value = value.upper()
        if value in MOC_TYPES:
            self._type = value
        else:
            raise ValueError('MOC type must be one of ' + ', '.join(MOC_TYPES))

    @property
    def normalized(self):
        """Whether the MOC has been normalized or not.

        >>> m = MOC()
        >>> m.add(1, (0,))
        >>> m.add(2, (1,))
        >>> m.normalized
        False

        >>> m.normalize()
        >>> m.normalized
        True
        """

        return self._normalized

    @property
    def area(self):
        """The area enclosed by the MOC, in steradians.

        >>> m = MOC(0, (0, 1, 2))
        >>> round(m.area, 2)
        3.14
        """

        self.normalize()
        area = 0.0

        for (order, cells) in self:
            area += (len(cells) * pi) / (3 * 4 ** order)

        return area

    @property
    def area_sq_deg(self):
        """The area enclosed by the MOC, in square degrees.

        >>> from math import sqrt
        >>> m = MOC(0, (0,))
        >>> round(sqrt(m.area_sq_deg), 2)
        58.63
        """

        return self.area * ((180 / pi) ** 2)

    @property
    def cells(self):
        """The number of cells in the MOC.

        This gives the total number of cells at all orders,
        with cells from every order counted equally.

        >>> m = MOC(0, (1, 2))
        >>> m.cells
        2
        """

        n = 0

        for (order, cells) in self:
            n += len(cells)

        return n

    def add(self, order, cells, no_validation=False):
        """Add cells at a given order to the MOC.

        The cells are inserted into the MOC at the specified order.  This
        leaves the MOC in an un-normalized state.  The cells are given
        as a collection of integers (or types which can be converted
        to integers).

        >>> m = MOC()
        >>> m.add(4, (20, 21))
        >>> m.cells
        2

        >>> m.add(5, (88, 89))
        >>> m.cells
        4

        The `no_validation` option can be given to skip validation of the
        cell numbers.  They must already be integers in the correct range.
        """

        self._normalized = False

        order = self._validate_order(order)

        if no_validation:
            # Simply add the given cells to the set with no validation.
            self._orders[order].update(cells)

        else:
            # Collect validated cell numbers in a set for addition.
            cell_set = set()

            for cell in cells:
                cell = self._validate_cell(order, cell)
                cell_set.add(cell)

            self._orders[order].update(cell_set)

    def remove(self, order, cells):
        """Remove cells at a given order from the MOC.
        """

        self._normalized = False

        order = self._validate_order(order)

        for cell in cells:
            cell = self._validate_cell(order, cell)

            self._compare_operation(order, cell, True, 'remove')

    def clear(self):
        """Clears all cells from a MOC.

        >>> m = MOC(4, (5, 6))
        >>> m.clear()
        >>> m.cells
        0
        """

        for order in range(0, MAX_ORDER + 1):
            self._orders[order].clear()

        self._normalized = True

    def copy(self):
        """Return a copy of a MOC.

        >>> p = MOC(4, (5, 6))
        >>> q = p.copy()
        >>> repr(q)
        '<MOC: [(4, [5, 6])]>'
        """

        copy = MOC(name=self.name, mocid=self.id,
                   origin=self.origin, moctype=self.type)

        copy += self

        return copy

    def contains(self, order, cell, include_smaller=False):
        """Test whether the MOC contains the given cell.

        If the include_smaller argument is true then the MOC is considered
        to include a cell if it includes part of that cell (at a higher
        order).

        >>> m = MOC(1, (5,))
        >>> m.contains(0, 0)
        False
        >>> m.contains(0, 1, True)
        True
        >>> m.contains(0, 1, False)
        False
        >>> m.contains(1, 4)
        False
        >>> m.contains(1, 5)
        True
        >>> m.contains(2, 19)
        False
        >>> m.contains(2, 21)
        True
        """

        order = self._validate_order(order)
        cell = self._validate_cell(order, cell)

        return self._compare_operation(order, cell, include_smaller, 'check')

    def _compare_operation(self, order, cell, include_smaller, operation):
        """General internal method for comparison-based operations.

        This is a private method, and does not update the normalized
        flag.
        """

        # Check for a larger cell (lower order) which contains the
        # given cell.
        for order_i in range(0, order):
            shift = 2 * (order - order_i)
            cell_i = cell >> shift

            if cell_i in self._orders[order_i]:
                if operation == 'check':
                    return True
                elif operation == 'remove':
                    # Remove the cell and break it into its 4 constituent
                    # cells.  Those which actually match the area we are
                    # trying to remove will be removed at the next stage.
                    self._orders[order_i].remove(cell_i)
                    self.add(order_i + 1,
                             range(cell_i << 2, (cell_i + 1) << 2))
                elif operation == 'inter':
                    return [(order, (cell,))]

        # Check for the specific cell itself, but only after looking at larger
        # cells because for the "remove" operation we may have broken up
        # one of the large cells so that it subsequently matches.
        if cell in self._orders[order]:
            if operation == 'check':
                return True
            elif operation == 'remove':
                self._orders[order].remove(cell)
            elif operation == 'inter':
                return [(order, (cell,))]

        result = []

        if include_smaller:
            # Check for a smaller cell (higher order) which is part
            # of the given cell.
            for order_i in range(order + 1, MAX_ORDER + 1):
                shift = 2 * (order_i - order)

                cells = []

                for cell_i in self._orders[order_i]:
                    if (cell_i >> shift) == cell:
                        if operation == 'check':
                            return True
                        elif operation == 'remove' or operation == 'inter':
                            cells.append(cell_i)

                if operation == 'remove':
                    for cell_i in cells:
                        self._orders[order_i].remove(cell_i)
                elif operation == 'inter':
                    if cells:
                        result.append((order_i, cells))

        if operation == 'check':
            return False
        elif operation == 'inter':
            return result

    def intersection(self, other):
        """Returns a MOC representing the intersection with another MOC.

        >>> p = MOC(2, (3, 4, 5))
        >>> q = MOC(2, (4, 5, 6))
        >>> p.intersection(q)
        <MOC: [(2, [4, 5])]>
        """

        inter = MOC()

        for (order, cells) in other:
            for cell in cells:
                for i in self._compare_operation(order, cell, True, 'inter'):
                    inter.add(*i)

        return inter

    def normalize(self, max_order=MAX_ORDER):
        """Ensure that the MOC is "well-formed".

        This structures the MOC as is required for the FITS and JSON
        representation.  This method is invoked automatically when writing
        to these formats.

        The number of cells in the MOC will be minimized, so that
        no area of the sky is covered multiple times by cells at
        different orders, and if all four neighboring cells are
        present at an order (other than order 0), they are merged
        into their parent cell at the next lower order.

        >>> m = MOC(1, (0, 1, 2, 3))
        >>> m.cells
        4

        >>> m.normalize()
        >>> m.cells
        1
        """

        max_order = self._validate_order(max_order)

        # If the MOC is already normalized and we are not being asked
        # to reduce the order, then do nothing.
        if self.normalized and max_order >= self.order:
            return

        # Group the pixels by iterating down from the order.  At each
        # order, where all 4 adjacent pixels are present (or we are above
        # the maximum order) they are replaced with a single pixel in the
        # next lower order.  Otherwise the pixel should appear in the MOC
        # unless it is already represented at a lower order.
        for order in range(self.order, 0, -1):
            pixels = self._orders[order]

            next_pixels = self._orders[order - 1]

            new_pixels = set()

            while pixels:
                pixel = pixels.pop()

                # Look to lower orders to ensure this pixel isn't
                # already covered.
                check_pixel = pixel
                already_contained = True
                for check_order in range(order - 1, -1, -1):
                    check_pixel >>= 2
                    if check_pixel in self._orders[check_order]:
                        break
                else:
                    already_contained = False

                # Check whether this order is above the maximum, or
                # if we have all 4 adjacent pixels.  Also do this if
                # the pixel was already contained at a lower level
                # so that we can avoid checking the adjacent pixels.
                if (already_contained or (order > max_order) or
                        (((pixel ^ 1) in pixels) and
                         ((pixel ^ 2) in pixels) and
                         ((pixel ^ 3) in pixels))):

                    pixels.discard(pixel ^ 1)
                    pixels.discard(pixel ^ 2)
                    pixels.discard(pixel ^ 3)

                    if not already_contained:
                        # Group these pixels by placing the equivalent pixel
                        # for the next order down in the set.
                        next_pixels.add(pixel >> 2)

                else:
                    new_pixels.add(pixel)

            if new_pixels:
                self._orders[order].update(new_pixels)

        self._normalized = True

    def flattened(self, order=None, include_smaller=True):
        """Return a flattened pixel collection at a single order."""

        if order is None:
            order = self.order
        else:
            order = self._validate_order(order)

        # Start with the cells which are already at this order.
        flat = set(self[order])

        # Look at lower orders and expand them into this set.
        # Based on the "map" algorithm from Appendix A of the
        # MOC recommendation.
        for order_i in range(0, order):
            shift = 2 * (order - order_i)

            for cell in self[order_i]:
                flat.update(range(cell << shift, (cell + 1) << shift))

        # Look at higher orders unless we have been told to exclude
        # them.
        if include_smaller:
            for order_i in range(order + 1, MAX_ORDER + 1):
                shift = 2 * (order_i - order)

                for cell in self[order_i]:
                    flat.add(cell >> shift)

        return flat

    def read(self, filename, filetype=None, include_meta=False, **kwargs):
        """Read data from the given file into the MOC object.

        The cell lists read from the file are added to the current
        object.  Therefore if the object already contains some
        cells, it will be updated to represent the union of the
        current coverge and that from the file.

        The file type can be specified as "fits", "json" or "ascii",
        with "text" allowed as an alias for "ascii".  If the type
        is not specified, then an attempt will be made to guess
        from the file name, or the contents of the file.

        Note that writing to FITS and JSON will cause the MOC
        to be normalized automatically.

        Any additional keyword arguments (kwargs) are passed on to
        the corresponding pymoc.io read functions (read_moc_fits,
        read_moc_json or read_moc_ascii).
        """

        if filetype is not None:
            filetype = filetype.lower()
        else:
            filetype = self._guess_file_type(filename)

        if filetype == 'fits':
            from .io.fits import read_moc_fits
            read_moc_fits(self, filename, include_meta, **kwargs)

        elif filetype == 'json':
            from .io.json import read_moc_json
            read_moc_json(self, filename, **kwargs)

        elif filetype == 'ascii' or filetype == 'text':
            from .io.ascii import read_moc_ascii
            read_moc_ascii(self, filename, **kwargs)

        else:
            raise ValueError('Unknown MOC file type {0}'.format(filetype))

    def write(self, filename, filetype=None, **kwargs):
        """Write the coverage data in the MOC object to a file.

        The filetype can be given or left to be inferred as for the
        read method.

        Any additional keyword arguments (kwargs) are passed on to
        the corresponding pymoc.io write functions (write_moc_fits,
        write_moc_json or write_moc_ascii).  This can be used, for
        example, to set clobber=True when writing FITS files.
        """

        if filetype is not None:
            filetype = filetype.lower()
        else:
            filetype = self._guess_file_type(filename)

        if filetype == 'fits':
            from .io.fits import write_moc_fits
            write_moc_fits(self, filename, **kwargs)

        elif filetype == 'json':
            from .io.json import write_moc_json
            write_moc_json(self, filename, **kwargs)

        elif filetype == 'ascii' or filetype == 'text':
            from .io.ascii import write_moc_ascii
            write_moc_ascii(self, filename, **kwargs)

        else:
            raise ValueError('Unknown MOC file type {0}'.format(filetype))

    def _guess_file_type(self, filename):
        """Attempt to guess the type of a MOC file.

        Returns "fits", "json" or "ascii" if successful and raised
        a ValueError otherwise.
        """

        # First attempt to guess from the file name.
        namelc = filename.lower()

        if namelc.endswith('.fits') or namelc.endswith('.fit'):
            return 'fits'
        elif namelc.endswith('.json'):
            return 'json'
        elif namelc.endswith('.txt') or namelc.endswith('.ascii'):
            return 'ascii'

        # Otherwise, if the file exists, look at the first character.
        if isfile(filename):
            with open(filename, 'r') as f:
                c = f.read(1)

            if c == 'S':
                return 'fits'
            elif c == '{':
                return 'json'
            elif c.isdigit():
                return 'ascii'

        raise ValueError('Unable to determine format of {0}'.format(filename))

    def _order_num_cells(self, order):
        """Determine the number of possible cells for an order."""

        return 12 * 4 ** order

    def _validate_order(self, order):
        """Check that the given order is valid."""

        try:
            order = int(order)
        except ValueError as e:
            raise TypeError('MOC order must be convertable to int')

        if not 0 <= order <= MAX_ORDER:
            raise ValueError(
                'MOC order must be in range 0-{0}'.format(MAX_ORDER))

        return order

    def _validate_cell(self, order, cell):
        """Check that the given cell is valid.

        The order is assumed already to have been validated.
        """

        max_cells = self._order_num_cells(order)

        try:
            cell = int(cell)
        except ValueError as e:
            raise TypeError('MOC cell must be convertable to int')

        if not 0 <= cell < max_cells:
            raise ValueError(
                'MOC cell order {0} must be in range 0-{1}'.format(
                    order, max_cells - 1))

        return cell