This file is indexed.

/usr/lib/python2.7/dist-packages/quantities/quantity.py is in python-quantities 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
"""
"""
from __future__ import absolute_import

import copy
from functools import wraps
import sys

import numpy as np

from . import markup
from .dimensionality import Dimensionality, p_dict
from .registry import unit_registry
from .decorators import with_doc

if sys.version.startswith('3'):
    unicode = str

def validate_unit_quantity(value):
    try:
        assert isinstance(value, Quantity)
        assert value.shape in ((), (1, ))
        assert value.magnitude == 1
    except AssertionError:
        raise ValueError(
                'units must be a scalar Quantity with unit magnitude, got %s'\
                %value
            )
    return value

def validate_dimensionality(value):
    if isinstance(value, (str, unicode)):
        try:
            return unit_registry[value].dimensionality
        except (KeyError, UnicodeDecodeError):
            return unit_registry[str(value)].dimensionality
    elif isinstance(value, Quantity):
        validate_unit_quantity(value)
        return value.dimensionality
    elif isinstance(value, Dimensionality):
        return value.copy()
    else:
        raise TypeError(
            'units must be a quantity, string, or dimensionality, got %s'\
            %type(value)
        )

def get_conversion_factor(from_u, to_u):
    validate_unit_quantity(from_u)
    validate_unit_quantity(to_u)
    from_u = from_u._reference
    to_u = to_u._reference
    assert from_u.dimensionality == to_u.dimensionality
    return from_u.magnitude / to_u.magnitude

def scale_other_units(f):
    @wraps(f)
    def g(self, other, *args):
        other = np.asanyarray(other)
        if not isinstance(other, Quantity):
            other = other.view(type=Quantity)
        if other._dimensionality != self._dimensionality:
            other = other.rescale(self.units)
        return f(self, other, *args)
    return g

def protected_multiplication(f):
    @wraps(f)
    def g(self, other, *args):
        if getattr(other, 'dimensionality', None):
            try:
                assert not isinstance(self.base, Quantity)
            except AssertionError:
                raise ValueError('can not modify units of a view of a Quantity')
        return f(self, other, *args)
    return g

def check_uniform(f):
    @wraps(f)
    def g(self, other, *args):
        if getattr(other, 'dimensionality', None):
            raise ValueError("exponent must be dimensionless")
        other = np.asarray(other)
        try:
            assert other.min() == other.max()
        except AssertionError:
            raise ValueError('Quantities must be raised to a uniform power')
        return f(self, other, *args)
    return g

def protected_power(f):
    @wraps(f)
    def g(self, other, *args):
        if other != 1:
            try:
                assert not isinstance(self.base, Quantity)
            except AssertionError:
                raise ValueError('can not modify units of a view of a Quantity')
        return f(self, other, *args)
    return g

def wrap_comparison(f):
    @wraps(f)
    def g(self, other):
        if isinstance(other, Quantity):
            if other._dimensionality != self._dimensionality:
                other = other.rescale(self._dimensionality)
            other = other.magnitude
        return f(self, other)
    return g


class Quantity(np.ndarray):

    # TODO: what is an appropriate value?
    __array_priority__ = 21

    def __new__(cls, data, units='', dtype=None, copy=True):
        if isinstance(data, cls):
            if units:
                data = data.rescale(units)
            if isinstance(data, unit_registry['UnitQuantity']):
                return 1*data
            return np.array(data, dtype=dtype, copy=copy, subok=True)

        ret = np.array(data, dtype=dtype, copy=copy).view(cls)
        ret._dimensionality.update(validate_dimensionality(units))
        return ret

    @property
    def dimensionality(self):
        return self._dimensionality.copy()

    @property
    def _reference(self):
        """The reference quantity used to perform conversions"""
        rq = 1*unit_registry['dimensionless']
        for u, d in self.dimensionality.items():
            rq = rq * u._reference**d
        return rq * self.magnitude

    @property
    def magnitude(self):
        return self.view(type=np.ndarray)

    @property
    def simplified(self):
        rq = 1*unit_registry['dimensionless']
        for u, d in self.dimensionality.items():
            rq = rq * u.simplified**d
        return rq * self.magnitude

    @property
    def units(self):
        return Quantity(1.0, (self.dimensionality))
    @units.setter
    def units(self, units):
        try:
            assert not isinstance(self.base, Quantity)
        except AssertionError:
            raise ValueError('can not modify units of a view of a Quantity')
        try:
            assert self.flags.writeable
        except AssertionError:
            raise ValueError('array is not writeable')
        to_dims = validate_dimensionality(units)
        if self._dimensionality == to_dims:
            return
        to_u = Quantity(1.0, to_dims)
        from_u = Quantity(1.0, self._dimensionality)
        try:
            cf = get_conversion_factor(from_u, to_u)
        except AssertionError:
            raise ValueError(
                'Unable to convert between units of "%s" and "%s"'
                %(from_u._dimensionality, to_u._dimensionality)
            )
        mag = self.magnitude
        mag *= cf
        self._dimensionality = to_u.dimensionality

    def rescale(self, units):
        """
        Return a copy of the quantity converted to the specified units
        """
        to_dims = validate_dimensionality(units)
        if self.dimensionality == to_dims:
            return self.astype(self.dtype)
        to_u = Quantity(1.0, to_dims)
        from_u = Quantity(1.0, self.dimensionality)
        try:
            cf = get_conversion_factor(from_u, to_u)
        except AssertionError:
            raise ValueError(
                'Unable to convert between units of "%s" and "%s"'
                %(from_u._dimensionality, to_u._dimensionality)
            )
        return Quantity(cf*self.magnitude, to_u)

    @with_doc(np.ndarray.astype)
    def astype(self, dtype=None):
        '''Scalars are returned as scalar Quantity arrays.'''
        ret = super(Quantity, self.view(Quantity)).astype(dtype)
        # scalar quantities get converted to plain numbers, so we fix it
        # might be related to numpy ticket # 826
        if not isinstance(ret, type(self)):
            if self.__array_priority__ >= Quantity.__array_priority__:
                ret = type(self)(ret, self._dimensionality)
            else:
                ret = Quantity(ret, self._dimensionality)

        return ret

    def __array_finalize__(self, obj):
        self._dimensionality = getattr(obj, 'dimensionality', Dimensionality())

    def __array_prepare__(self, obj, context=None):
        if self.__array_priority__ >= Quantity.__array_priority__:
            res = obj if isinstance(obj, type(self)) else obj.view(type(self))
        else:
            # don't want a UnitQuantity
            res = obj.view(Quantity)
        if context is None:
            return res

        uf, objs, huh = context
        if uf.__name__.startswith('is'):
            return obj
        #print self, obj, res, uf, objs
        try:
            res._dimensionality = p_dict[uf](*objs)
        except KeyError:
            raise ValueError(
                """ufunc %r not supported by quantities
                please file a bug report at https://github.com/python-quantities
                """
                )
        return res

    def __array_wrap__(self, obj, context=None):
        if not isinstance(obj, Quantity):
            # backwards compatibility with numpy-1.3
            obj = self.__array_prepare__(obj, context)
        return obj

    @with_doc(np.ndarray.__add__)
    @scale_other_units
    def __add__(self, other):
        return super(Quantity, self).__add__(other)

    @with_doc(np.ndarray.__radd__)
    @scale_other_units
    def __radd__(self, other):
        return np.add(other, self)
        return super(Quantity, self).__radd__(other)

    @with_doc(np.ndarray.__iadd__)
    @scale_other_units
    def __iadd__(self, other):
        return super(Quantity, self).__iadd__(other)

    @with_doc(np.ndarray.__sub__)
    @scale_other_units
    def __sub__(self, other):
        return super(Quantity, self).__sub__(other)

    @with_doc(np.ndarray.__rsub__)
    @scale_other_units
    def __rsub__(self, other):
        return np.subtract(other, self)
        return super(Quantity, self).__rsub__(other)

    @with_doc(np.ndarray.__isub__)
    @scale_other_units
    def __isub__(self, other):
        return super(Quantity, self).__isub__(other)

    @with_doc(np.ndarray.__mod__)
    @scale_other_units
    def __mod__(self, other):
        return super(Quantity, self).__mod__(other)

    @with_doc(np.ndarray.__imod__)
    @scale_other_units
    def __imod__(self, other):
        return super(Quantity, self).__imod__(other)

    @with_doc(np.ndarray.__imul__)
    @protected_multiplication
    def __imul__(self, other):
        return super(Quantity, self).__imul__(other)

    @with_doc(np.ndarray.__rmul__)
    def __rmul__(self, other):
        return np.multiply(other, self)
        return super(Quantity, self).__rmul__(other)

    @with_doc(np.ndarray.__itruediv__)
    @protected_multiplication
    def __itruediv__(self, other):
        return super(Quantity, self).__itruediv__(other)

    @with_doc(np.ndarray.__rtruediv__)
    def __rtruediv__(self, other):
        return np.true_divide(other, self)
        return super(Quantity, self).__rtruediv__(other)

    if sys.version_info[0] < 3:
        @with_doc(np.ndarray.__idiv__)
        @protected_multiplication
        def __idiv__(self, other):
            return super(Quantity, self).__itruediv__(other)

        @with_doc(np.ndarray.__rdiv__)
        def __rdiv__(self, other):
            return np.divide(other, self)

    @with_doc(np.ndarray.__pow__)
    @check_uniform
    def __pow__(self, other):
        return super(Quantity, self).__pow__(other)

    @with_doc(np.ndarray.__ipow__)
    @check_uniform
    @protected_power
    def __ipow__(self, other):
        return super(Quantity, self).__ipow__(other)

    def __round__(self, decimals=0):
        return np.around(self, decimals)

    @with_doc(np.ndarray.__repr__)
    def __repr__(self):
        return '%s * %s'%(
            repr(self.magnitude), self.dimensionality.string
        )

    @with_doc(np.ndarray.__str__)
    def __str__(self):
        if markup.config.use_unicode:
            dims = self.dimensionality.unicode
        else:
            dims = self.dimensionality.string
        return '%s %s'%(str(self.magnitude), dims)

    @with_doc(np.ndarray.__getitem__)
    def __getitem__(self, key):
        ret = super(Quantity, self).__getitem__(key)
        if isinstance(ret, Quantity):
            return ret
        else:
            return Quantity(ret, self._dimensionality)

    @with_doc(np.ndarray.__setitem__)
    def __setitem__(self, key, value):
        if not isinstance(value, Quantity):
            value = Quantity(value)
        if self._dimensionality != value._dimensionality:
            value = value.rescale(self._dimensionality)
        self.magnitude[key] = value

    @with_doc(np.ndarray.__lt__)
    @wrap_comparison
    def __lt__(self, other):
        return self.magnitude < other

    @with_doc(np.ndarray.__le__)
    @wrap_comparison
    def __le__(self, other):
        return self.magnitude <= other

    @with_doc(np.ndarray.__eq__)
    def __eq__(self, other):
        if isinstance(other, Quantity):
            try:
                other = other.rescale(self._dimensionality).magnitude
            except ValueError:
                return np.zeros(self.shape, '?')
        return self.magnitude == other

    @with_doc(np.ndarray.__ne__)
    def __ne__(self, other):
        if isinstance(other, Quantity):
            try:
                other = other.rescale(self._dimensionality).magnitude
            except ValueError:
                return np.ones(self.shape, '?')
        return self.magnitude != other

    @with_doc(np.ndarray.__ge__)
    @wrap_comparison
    def __ge__(self, other):
        return self.magnitude >= other

    @with_doc(np.ndarray.__gt__)
    @wrap_comparison
    def __gt__(self, other):
        return self.magnitude > other

    #I don't think this implementation is particularly efficient,
    #perhaps there is something better
    @with_doc(np.ndarray.tolist)
    def tolist(self):
        #first get a dummy array from the ndarray method
        work_list = self.magnitude.tolist()
        #now go through and replace all numbers with the appropriate Quantity
        self._tolist(work_list)
        return work_list

    def _tolist(self, work_list):
        for i in range(len(work_list)):
            #if it's a list then iterate through that list
            if isinstance(work_list[i], list):
                self._tolist(work_list[i])
            else:
                #if it's a number then replace it
                # with the appropriate quantity
                work_list[i] = Quantity(work_list[i], self.dimensionality)

    #need to implement other Array conversion methods:
    # item, itemset, tofile, dump, byteswap

    @with_doc(np.ndarray.sum)
    def sum(self, axis=None, dtype=None, out=None):
        return Quantity(
            self.magnitude.sum(axis, dtype, out),
            self.dimensionality,
            copy=False
        )

    @with_doc(np.ndarray.fill)
    def fill(self, value):
        self.magnitude.fill(value)
        try:
            self._dimensionality = value.dimensionality
        except AttributeError:
            pass

    @with_doc(np.ndarray.put)
    def put(self, indicies, values, mode='raise'):
        """
        performs the equivalent of ndarray.put() but enforces units
        values - must be an Quantity with the same units as self
        """
        if not isinstance(values, Quantity):
            values = Quantity(values)
        if values._dimensionality != self._dimensionality:
            values = values.rescale(self.units)
        self.magnitude.put(indicies, values, mode)

    # choose does not function correctly, and it is not clear
    # how it would function, so for now it will not be implemented

    @with_doc(np.ndarray.argsort)
    def argsort(self, axis=-1, kind='quick', order=None):
        return self.magnitude.argsort(axis, kind, order)

    @with_doc(np.ndarray.searchsorted)
    def searchsorted(self,values, side='left'):
        if not isinstance (values, Quantity):
            values = Quantity(values, copy=False)

        if values._dimensionality != self._dimensionality:
            raise ValueError("values does not have the same units as self")

        return self.magnitude.searchsorted(values.magnitude, side)

    @with_doc(np.ndarray.nonzero)
    def nonzero(self):
        return self.magnitude.nonzero()

    @with_doc(np.ndarray.max)
    def max(self, axis=None, out=None):
        return Quantity(
            self.magnitude.max(),
            self.dimensionality,
            copy=False
        )

    @with_doc(np.ndarray.min)
    def min(self, axis=None, out=None):
        return Quantity(
            self.magnitude.min(),
            self.dimensionality,
            copy=False
        )

    @with_doc(np.ndarray.argmin)
    def argmin(self,axis=None, out=None):
        return self.magnitude.argmin()

    @with_doc(np.ndarray.ptp)
    def ptp(self, axis=None, out=None):
        return Quantity(
            self.magnitude.ptp(),
            self.dimensionality,
            copy=False
        )

    @with_doc(np.ndarray.clip)
    def clip(self, min=None, max=None, out=None):
        if min is None and max is None:
            raise ValueError("at least one of min or max must be set")
        else:
            if min is None: min = Quantity(-np.Inf, self._dimensionality)
            if max is None: max = Quantity(np.Inf, self._dimensionality)

        if self.dimensionality and not \
                (isinstance(min, Quantity) and isinstance(max, Quantity)):
            raise ValueError(
                "both min and max must be Quantities with compatible units"
            )

        clipped = self.magnitude.clip(
            min.rescale(self._dimensionality).magnitude,
            max.rescale(self._dimensionality).magnitude,
            out
        )
        return Quantity(clipped, self.dimensionality, copy=False)

    @with_doc(np.ndarray.round)
    def round(self, decimals=0, out=None):
        return Quantity(
            self.magnitude.round(decimals, out),
            self.dimensionality,
            copy=False
        )

    @with_doc(np.ndarray.trace)
    def trace(self, offset=0, axis1=0, axis2=1, dtype=None, out=None):
        return Quantity(
            self.magnitude.trace(offset, axis1, axis2, dtype, out),
            self.dimensionality,
            copy=False
        )

    @with_doc(np.ndarray.mean)
    def mean(self, axis=None, dtype=None, out=None):
        return Quantity(
            self.magnitude.mean(axis, dtype, out),
            self.dimensionality,
            copy=False)

    @with_doc(np.ndarray.var)
    def var(self, axis=None, dtype=None, out=None, ddof=0):
        return Quantity(
            self.magnitude.var(axis, dtype, out, ddof),
            self._dimensionality**2,
            copy=False
        )

    @with_doc(np.ndarray.std)
    def std(self, axis=None, dtype=None, out=None, ddof=0):
        return Quantity(
            self.magnitude.std(axis, dtype, out, ddof),
            self._dimensionality,
            copy=False
        )

    @with_doc(np.ndarray.prod)
    def prod(self, axis=None, dtype=None, out=None):
        if axis == None:
            power = self.size
        else:
            power = self.shape[axis]

        return Quantity(
            self.magnitude.prod(axis, dtype, out),
            self._dimensionality**power,
            copy=False
        )

    @with_doc(np.ndarray.cumsum)
    def cumsum(self, axis=None, dtype=None, out=None):
        return super(Quantity, self).cumsum(axis, dtype, out)*self.units

    @with_doc(np.ndarray.cumprod)
    def cumprod(self, axis=None, dtype=None, out=None):
        if self._dimensionality:
            # different array elements would have different dimensionality
            raise ValueError(
                "Quantity must be dimensionless, try using simplified"
            )
        else:
            return super(Quantity, self).cumprod(axis, dtype, out)

    # list of unsupported functions: [choose]

    def __getstate__(self):
        """
        Return the internal state of the quantity, for pickling
        purposes.

        """
        cf = 'CF'[self.flags.fnc]
        state = (1,
                 self.shape,
                 self.dtype,
                 self.flags.fnc,
                 self.tostring(cf),
                 self._dimensionality,
                 )
        return state

    def __setstate__(self, state):
        (ver, shp, typ, isf, raw, units) = state
        np.ndarray.__setstate__(self, (shp, typ, isf, raw))
        self._dimensionality = units

    def __reduce__(self):
        """
        Return a tuple for pickling a Quantity.
        """
        return (_reconstruct_quantity,
                (self.__class__, np.ndarray, (0, ), 'b', ),
                self.__getstate__())


def _reconstruct_quantity(subtype, baseclass, baseshape, basetype,):
    """Internal function that builds a new MaskedArray from the
    information stored in a pickle.

    """
    _data = np.ndarray.__new__(baseclass, baseshape, basetype)
    return subtype.__new__(subtype, _data, dtype=basetype,)