This file is indexed.

/usr/lib/python2.7/dist-packages/rekall/obj.py is in python-rekall-core 1.6.0+dfsg-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
# Rekall Memory Forensics
# Copyright (C) 2007,2008 Volatile Systems
# Copyright 2013 Google Inc. All Rights Reserved.
#
# Copyright (C) 2005,2006 4tphi Research
# Author: {npetroni,awalters}@4tphi.net (Nick Petroni and AAron Walters)
# Author: Michael Cohen scudette@gmail.com.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or (at
# your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#

"""
The Rekall Memory Forensics object system.

"""
__author__ = ("Michael Cohen <scudette@gmail.com> based on original code "
              "by AAron Walters and Brendan Dolan-Gavitt with contributions "
              "by Mike Auty")

import atexit
import inspect
import json
import logging
import pdb
import operator
import os
import struct
import StringIO
import copy

import traceback

from rekall import addrspace
from rekall import registry
from rekall import utils
from rekall.ui import renderer


class ProfileLog(object):
    # Point this environment variable into a filename we will use to store
    # profiling results.
    ENVIRONMENT_VAR = "DEBUG_PROFILE"

    class JSONEncoder(json.JSONEncoder):
        def default(self, obj):  # pylint: disable=method-hidden
            if isinstance(obj, set):
                return sorted(obj)

            return json.JSONEncoder.default(self, obj)

        @staticmethod
        def as_set(obj):
            for k in obj:
                if isinstance(obj[k], list):
                    obj[k] = set(obj[k])

            return obj

    def __init__(self):
        self.data = {}
        self.filename = os.environ.get(self.ENVIRONMENT_VAR)
        if self.filename:
            # Ensure we update the object access log when we exit.
            atexit.register(self._DumpData)

    def _MergeData(self, data):
        for profile, structs in data.items():
            if profile not in self.data:
                self.data[profile] = data[profile]
            else:
                for c_struct, fields in structs.items():
                    if c_struct not in self.data[profile]:
                        self.data[profile][c_struct] = fields
                    else:
                        self.data[profile][c_struct].update(fields)

    def _DumpData(self):
        try:
            with utils.FileLock(open(self.filename, "rb")) as fd:
                self._MergeData(json.loads(
                    fd.read(), object_hook=self.JSONEncoder.as_set))

                with open(self.filename, "wb") as fd:
                    fd.write(json.dumps(self.data, cls=self.JSONEncoder))

        except (IOError, ValueError):
            pass

        logging.info("Updating object access database %s", self.filename)
        with open(self.filename, "wb") as fd:
            fd.write(json.dumps(self.data, cls=self.JSONEncoder))

    def LogFieldAccess(self, profile, obj_type, field_name):
        # Do nothing unless the environment is set.
        if self.is_active():
            profile = self.data.setdefault(profile, {})
            fields = profile.setdefault(obj_type, set())
            if field_name:
                fields.add(field_name)

    def LogConstant(self, profile, name):
        self.LogFieldAccess(profile, "Constants", name)

    @staticmethod
    def is_active():
        return bool(os.environ.get(ProfileLog.ENVIRONMENT_VAR))


# This is used to store Struct member access when the DEBUG_PROFILE environment
# variable is set.
ACCESS_LOG = ProfileLog()


class Curry(object):
    def __init__(self, curry_target, *args, **kwargs):
        self._target = curry_target
        self._kwargs = kwargs
        self._args = args
        self._default_arguments = kwargs.pop("default_arguments", [])
        self.__doc__ = self._target.__doc__
        self.__wrapped__ = self._target

    def __call__(self, *args, **kwargs):
        # Merge the kwargs with the new kwargs
        new_kwargs = self._kwargs.copy()
        new_kwargs.update(kwargs)
        return self._target(*(self._args + args), **new_kwargs)

    def get_default_arguments(self):
        """Return a list of default args for the target."""
        if self._default_arguments is not None:
            return self._default_arguments

        args, _, _, defaults = inspect.getargspec(self._target)
        if defaults:
            return args[-len(defaults):]

        return []

    def __getattr__(self, attr):
        return getattr(self._target, attr)


class NoneObject(object):
    """A magical object which is like None but swallows bad
    dereferences, __getattr__, iterators etc to return itself.

    Instantiate with the reason for the error.
    """
    __metaclass__ = registry.UniqueObjectIdMetaclass

    def __init__(self, reason="None Object", *args, **kwargs):
        # Often None objects are instantiated on purpose so its not really that
        # important to see their reason.
        if kwargs.get("log"):
            logging.log(logging.WARN, reason)
        self.reason = unicode(reason)
        self.strict = kwargs.get("strict")
        self.args = args
        if self.strict:
            self.bt = ''.join(traceback.format_stack()[:-2])

    def __str__(self):
        return unicode(self).encode('utf-8')

    def __unicode__(self):
        # If we are strict we blow up here
        if self.strict:
            if "%" in self.reason:
                reason = self.reason % self.args
            else:
                reason = self.reason.format(*self.args)
            logging.error("%s\n%s", reason, self.bt)

        return "-"

    def FormatReason(self):
        if "%" in self.reason:
            return self.reason % self.args
        else:
            return self.reason.format(*self.args)

    def __repr__(self):
        return "<%s>" % self.FormatReason()

    def __setitem__(self, item, other):
        return

    def __format__(self, formatstring):
        """We suppress output for all format operators."""
        formatstring = formatstring.replace("d", "s")
        formatstring = formatstring.replace("x", "s")
        formatstring = formatstring.replace("#", "")
        return ("{0:%s}" % formatstring).format("-")

    def write(self, _):
        """Write procedure only ever returns False"""
        return False

    # Behave like an empty set
    def __iter__(self):
        return iter([])

    def __len__(self):
        return 0

    def __getattr__(self, attr):
        # By returning self for any unknown attribute and ensuring the self is
        # callable, we cover both properties and methods Override NotImplemented
        # functions in object with self
        return self

    def __bool__(self):
        return False

    def __nonzero__(self):
        return False

    # Comparisons.
    def __eq__(self, other):
        return other is None

    def __ne__(self, other):
        return other is not None

    def __gt__(self, _):
        return False

    __lt__ = __gt__
    __le__ = __gt__
    __ge__ = __gt__

    # Make us subscriptable obj[j]
    def __getitem__(self, item):
        return self

    def __call__(self, *arg, **kwargs):
        return self

    def __int__(self):
        return -1

    __add__ = __call__
    __sub__ = __call__
    __mul__ = __call__
    __floordiv__ = __call__
    __mod__ = __call__
    __div__ = __call__
    __divmod__ = __call__
    __pow__ = __call__
    __lshift__ = __call__
    __rshift__ = __call__
    __and__ = __call__
    __xor__ = __call__
    __or__ = __call__

    __radd__ = __call__
    __rsub__ = __call__
    __rmul__ = __call__
    __rfloordiv__ = __call__
    __rmod__ = __call__
    __rdivmod__ = __call__
    __rpow__ = __call__
    __rlshift__ = __call__
    __rrshift__ = __call__
    __rand__ = __call__
    __rxor__ = __call__
    __ror__ = __call__

    # Override these methods too.
    dereference_as = __call__
    __getitem__ = __call__


class Error(Exception):
    """All object related exceptions come from this one."""


class ProfileError(Error):
    """Errors in setting the profile."""


class BaseObject(object):
    __metaclass__ = registry.UniqueObjectIdMetaclass

    obj_parent = NoneObject("No parent")
    obj_name = NoneObject("No name")
    obj_producers = None

    # BaseObject implementations may take arbitrary **kwargs. The usual
    # programming pattern is to define the keywords each class takes explicitely
    # as as a generic **kwargs parameter. Then call the baseclass and pass the
    # kwargs down. Any **kwargs which arrive here are not handled, and represent
    # an error in the vtype specifications.
    def __init__(self, type_name=None, offset=0, vm=None, profile=None,
                 parent=None, name='', context=None, session=None, **kwargs):
        """Constructor for Base object.

        Args:
          type_name: The name of the type of this object. This different
             from the class name, since the same class may implement many types
             (e.g. Struct implements every instance in the vtype definition).

          offset: The offset within the address space to this object exists.

          vm: The address space this object uses to read itself from.

          profile: The profile this object may use to dereference other
           types.

          parent: The object which created this object.

          name: The name of this object.

          context: An opaque dict which is passed to all objects created from
            this object. This dict may contain context specific information
            which each derived instance can use.

          kwargs: Arbitrary args this object may accept - these can be passed in
             the vtype language definition.
        """
        if kwargs:
            session.logging.error("Unknown keyword args %s for %s",
                                  kwargs, self.__class__.__name__)

        if session is None:
            raise RuntimeError("Session must be provided")

        if profile is None:
            profile = session.profile

        self.obj_type = type_name or self.__class__.__name__

        # 64 bit addresses are always sign extended, so we need to clear the top
        # bits.
        self.obj_offset = Pointer.integer_to_address(int(offset or 0))
        self.obj_vm = vm
        self.obj_parent = parent
        self.obj_name = name
        self.obj_profile = profile
        self.obj_context = context or {}

        if not session:
            raise ValueError("Session must be provided.")

        self.obj_session = session
        self.obj_producers = set()

    @utils.safe_property
    def obj_size(self):
        return 0

    @utils.safe_property
    def obj_end(self):
        return self.obj_offset + self.obj_size

    def GetData(self):
        """Returns the raw data of this object."""
        return self.obj_vm.read(self.obj_offset, self.obj_size)

    @utils.safe_property
    def parents(self):
        """Returns all the parents of this object."""
        obj = self
        while obj.obj_parent:
            obj = obj.obj_parent
            yield obj

    def proxied(self):
        return None

    def write(self, value):
        """Function for writing the object back to disk"""
        pass

    def __nonzero__(self):
        """This method is called when we test the truth value of an Object.

        In rekall we consider an object to have True truth value only when it is
        a valid object. Its possible for example to have a Pointer object which
        is not valid - this will have a truth value of False.

        You should be testing for validity like this:
        if X:
           # object is valid

        Do not test for validity like this:

        if int(X) == 0:

        or

        if X is None:
          .....

        the later form is not going to work when X is a NoneObject.
        """
        return self.is_valid()

    def __eq__(self, other):
        return self.v() == other or (
            # Same object type
            (self.__class__ == other.__class__) and

            # Same physical memory backing the two objects. Note that often two
            # objects may exist in different address spaces, but be mapped to
            # the same physical memory. In Rekall we assume these two objects
            # are actually equivalent since they share the same physical memory.
            (self.obj_vm.base == other.obj_vm.base) and
            (self.obj_vm.vtop(self.obj_offset) ==
             other.obj_vm.vtop(other.obj_offset)))

    def __hash__(self):
        # This needs to be the same as the object we proxy so that we can mix
        # with native types in sets and dicts. For example:
        # pids = set([1,2,3])
        # if task.UniqueProcessId in pids: ....
        return hash(self.v())

    @utils.safe_property
    def indices(self):
        """Returns (usually 1) representation(s) of self usable as dict keys.

        Using full base objects for indexing can be slow, especially with
        Structs. This method returns a representation of the object that is
        a suitable key - either the value of a primitive type, or the memory
        address of the more complex ones.
        """
        return (self.v(),)

    @classmethod
    def getproperties(cls):
        """Return all members that are intended to represent some data."""
        for name in dir(cls):
            candidate = getattr(cls, name)
            if isinstance(candidate, property):
                yield name, candidate

    def m(self, memname):
        return NoneObject("No member {0}", memname)

    def is_valid(self):
        return True

    def deref(self, vm=None):
        """An alias for dereference - less to type."""
        return self.dereference(vm=vm)

    def dereference(self, vm=None):
        _ = vm
        return NoneObject("Can't dereference {0}", self.obj_name)

    def reference(self):
        """Produces a pointer to this object.

        This is the same as the C & operator and is the opposite of deref().
        """
        return self.obj_profile.Pointer(value=self.obj_offset, vm=self.obj_vm,
                                        target=self.obj_type)

    def cast(self, type_name=None, vm=None, **kwargs):
        # Allow the caller to also change the offset, overriding the current
        # object.
        offset = kwargs.pop("offset", self.obj_offset)
        profile_obj = kwargs.pop("profile", self.obj_profile)

        return profile_obj.Object(
            type_name=type_name or self.obj_type, offset=offset,
            vm=vm or self.obj_vm, parent=self.obj_parent,
            context=self.obj_context, **kwargs)

    def v(self, vm=None):
        """ Do the actual reading and decoding of this member

        When vm is specified, we are asked to evaluate this object is another
        address space than the one it was created on. Derived classes should
        allow for this.
        """
        _ = vm
        return NoneObject("No value for {0}", self.obj_name)

    def __str__(self):
        return utils.SmartStr(unicode(self))

    def __unicode__(self):
        fd = StringIO.StringIO()
        ui_renderer = renderer.BaseRenderer.classes["TextRenderer"](
            session=self.obj_session, fd=fd)
        with ui_renderer.start():
            ui_renderer.format("{}", self)

        return utils.SmartUnicode(fd.getvalue())

    def __repr__(self):
        # Is this a prototype? (See profile.GetPrototype for explanation.)
        if self.obj_offset == 0 and self.obj_name == "Prototype":
            return "%s Prototype" % self.__class__.__name__

        return "[{0} {1}] @ 0x{2:08X}".format(
            self.__class__.__name__, self.obj_name,
            self.obj_offset)

    def __dir__(self):
        """Hide any members with _."""
        result = self.__dict__.keys() + dir(self.__class__)

        return result

    def __format__(self, formatspec):
        if not formatspec:
            formatspec = "s"

        if formatspec[-1] in "xdXD":
            return format(int(self), formatspec)

        return object.__format__(self, formatspec)


def CreateMixIn(mixin):
    def make_method(name):
        def method(self, *args, **kw):
            proxied = self.proxied()
            try:
                # Try to coerce the other in case its also a proxied
                # class
                args = list(args)
                args[0] = args[0].proxied()
            except (AttributeError, IndexError):
                pass

            try:
                method = getattr(operator, name)
                args = [proxied] + args
            except AttributeError:
                method = getattr(proxied, name)

            return method(*args, **kw)

        return method

    for name in mixin._specials:  # pylint: disable=protected-access
        setattr(mixin, name, make_method(name))


class NumericProxyMixIn(object):
    """ This MixIn implements the numeric protocol """
    _specials = [
        # Number protocols
        '__add__', '__sub__', '__mul__',
        '__floordiv__', '__mod__', '__divmod__',
        '__pow__', '__lshift__', '__rshift__',
        '__and__', '__xor__', '__or__', '__div__',
        '__truediv__', '__radd__', '__rsub__',
        '__rmul__', '__rdiv__', '__rtruediv__',
        '__rfloordiv__', '__rmod__', '__rdivmod__',
        '__rpow__', '__rlshift__',
        '__rrshift__', '__rand__', '__rxor__', '__ror__',
        '__neg__', '__pos__',
        '__abs__', '__invert__', '__int__', '__long__',
        '__float__', '__oct__', '__hex__',

        # Comparisons
        '__lt__', '__le__', '__eq__', '__ge__', '__gt__', '__index__',
    ]

    def __ne__(self, other):
        return not self == other


class StringProxyMixIn(object):
    """This MixIn implements proxying for strings."""
    _specials = [
        # Comparisons
        '__lt__', '__le__', '__eq__', '__ge__', '__gt__', '__index__',
    ]

    def __ne__(self, other):
        return not self == other


CreateMixIn(NumericProxyMixIn)
CreateMixIn(StringProxyMixIn)


class NativeType(NumericProxyMixIn, BaseObject):
    def __init__(self, value=None, format_string=None, session=None,
                 profile=None, **kwargs):
        # If a value is specified, we dont technically need a profile at all.
        if value is not None and profile is None:
            profile = NoneObject()

        super(NativeType, self).__init__(
            session=session, profile=profile, **kwargs)
        self.format_string = format_string
        if callable(value):
            value = value(self.obj_parent)

        self.value = value

    def write(self, data):
        """Writes the data back into the address space"""
        output = struct.pack(self.format_string, int(data))
        return self.obj_vm.write(self.obj_offset, output)

    def proxied(self):
        return self.v()

    def __radd__(self, other):
        return long(other) + self.v()

    def __rsub__(self, other):
        return long(other) - self.v()

    @utils.safe_property
    def obj_size(self):
        return struct.calcsize(self.format_string)

    def v(self, vm=None):
        if self.value is not None:
            return self.value

        data = self.obj_vm.read(self.obj_offset, self.obj_size)
        if not data:
            return NoneObject("Unable to read {0} bytes from {1}",
                              self.obj_size, self.obj_offset)

        # Cache this for next time.
        (self.value,) = struct.unpack(self.format_string, data)

        return self.value

    def cdecl(self):
        return self.obj_name

    def __repr__(self):
        try:
            return " [{0}:{1}]: 0x{2:08X}".format(self.obj_type, self.obj_name,
                                                  self.v())
        except ValueError:
            return " [{0}:{1}]: {2}".format(self.obj_type, self.obj_name,
                                            repr(self.v()))


class Bool(NativeType):
    pass


class BitField(NativeType):
    """ A class splitting an integer into a bunch of bit. """

    def __init__(self, start_bit=0, end_bit=32, target=None,
                 native_type=None, **kwargs):
        super(BitField, self).__init__(**kwargs)

        # TODO: Fully deprecate this parameter.
        if native_type:
            target = native_type

        self._proxy = self.obj_profile.Object(
            target or "address", offset=self.obj_offset, vm=self.obj_vm,
            context=self.obj_context)

        self.target = target
        self.start_bit = start_bit
        self.end_bit = end_bit
        self.mask = ((1 << end_bit) - 1) ^ ((1 << start_bit) - 1)

    @utils.safe_property
    def obj_size(self):
        return self._proxy.obj_size

    def v(self, vm=None):
        i = self._proxy.v()
        return (i & ((1 << self.end_bit) - 1)) >> self.start_bit

    def write(self, data):
        # To write we need to read the proxy, set the bits and then write the
        # proxy again.
        return 0

    def __repr__(self):
        return " [{0}({1}-{2}):{3}]: 0x{4:08X}".format(
            self.obj_type, self.start_bit, self.end_bit, self.obj_name,
            self.v())

    def __nonzero__(self):
        return bool(self._proxy.v() & self.mask)


class Pointer(NativeType):
    """A pointer reads an 'address' object from the address space."""

    def __init__(self, target=None, target_args=None, value=None, **kwargs):
        """Constructor.

        Args:
           target: The name of the target object (A string). We use the profile
             to instantiate it.
           target_args: The target will receive these as kwargs.
        """
        super(Pointer, self).__init__(value=value, **kwargs)

        if value is not None:
            self.obj_offset = NoneObject("No address specified")

        # We parse the address using the profile since address is a different
        # size on different platforms.
        self._proxy = self.obj_profile.Object(
            "address", offset=self.obj_offset, value=value,
            vm=self.obj_vm, context=self.obj_context)

        # We just hold on to these so we can construct the objects later.
        self.target = target
        self.target_args = target_args or {}
        self.target_size = 0
        self.kwargs = kwargs

    @utils.safe_property
    def obj_size(self):
        return self._proxy.obj_size

    def v(self, vm=None):
        # 64 bit addresses are always sign extended so we need to clear the top
        # bits.
        return Pointer.integer_to_address(self._proxy.v())

    def m(self, attr):
        return self.deref().m(attr)

    def write(self, data):
        return self._proxy.write(data)

    def __eq__(self, other):
        try:
            # Must use __int__() because int(other) when other is a string will
            # convert it to an integer.
            return Pointer.integer_to_address(other.__int__()) == self.v()
        except (ValueError, AttributeError):
            return False

    def is_valid(self):
        """Returns if what we are pointing to is valid """
        # Null pointers are invalid.
        return self.v() != 0

    def __getitem__(self, item):
        """Indexing a pointer indexes its target.

        Note this is different than C which treats pointers as arrays:

        struct foobar *p1;
        struct foobar *p2[];

        In C:
        p[1] -> struct foobar
        p[2] -> struct foobar *

        In Rekall:
        p[1] -> Not allowed since structs do not have [].
        p[2] -> struct foobar.
        """
        res = self.dereference()
        return res[item]

    def dereference(self, vm=None):
        offset = self.v()

        # Casts into the correct AS:
        vm = vm or self.obj_vm

        if offset:
            kwargs = copy.deepcopy(self.target_args)
            kwargs.update(dict(offset=offset, session=self.obj_session,
                               vm=vm, profile=self.obj_profile,
                               parent=self.obj_parent, name=self.obj_name))

            if isinstance(self.target, basestring):
                result = self.obj_profile.Object(
                    type_name=self.target,
                    context=self.obj_context, **kwargs)

            elif callable(self.target):
                result = self.target(**kwargs)
            else:
                # Target not valid, return void.
                result = Void(**kwargs)

            if result.is_valid():
                return result

        return NoneObject("Pointer {0} @ {1} invalid",
                          self.obj_name, self.v())

    def __dir__(self):
        return dir(self.dereference())

    def cdecl(self):
        return "Pointer {0}".format(self.v())

    def __nonzero__(self):
        """This method is used in comparison operations.

        This ideas here is to make it possible to easily write a condition such
        as:

        while ptr:
           ...
           ptr += 1

        Pointers are considered non-zero if they are invalid (i.e. what they
        point to is not mapped in. This is very subtle and might be the wrong
        choice. Note that if the kernel actually maps the zero page in (which
        can happen in some situations), then a null pointer is actually valid.
        """
        return bool(self.is_valid())

    def __add__(self, other):
        """Return a new pointer advanced by this many positions.

        Note that as usual for pointer arithmetic, the pointer moves by steps of
        the size of the target.
        """
        # Find out our target size for pointer arithmetics.
        self.target_size = (self.target_size or
                            self.obj_profile.Object(self.target).obj_size)

        offset = self.obj_offset + int(other) * self.target_size
        if not self.obj_vm.is_valid_address(offset):
            return NoneObject("Invalid offset")

        return self.__class__(
            target=self.target, target_args=self.target_args,
            offset=offset, vm=self.obj_vm,
            parent=self.obj_parent, session=self.obj_session,
            context=self.obj_context, profile=self.obj_profile)

    def __sub__(self, other):
        if isinstance(other, Pointer):
            if not isinstance(other, self.__class__):
                raise TypeError("Can not subtract non related pointers.")

            # Find out our target size for pointer arithmetics.
            self.target_size = (self.target_size or
                                self.obj_profile.Object(self.target).obj_size)

            return (int(self) - int(other)) / self.target_size

        return self.__add__(-other)

    def __iadd__(self, other):
        # Increment our own offset.
        self.target_size = (self.target_size or self.target().obj_size)
        self.obj_offset += self.target_size * other

    def __repr__(self):
        target = self.v()
        target_name = self.obj_session.address_resolver.format_address(
            target)
        if target_name:
            target_name = " (%s)" % target_name[0]
        else:
            target_name = ""

        return "<%s %s to [%#010x%s] (%s)>" % (
            self.target, self.__class__.__name__, target,
            target_name, self.obj_name or '')

    def __unicode__(self):
        return u"Pointer to %s" % self.deref()

    @utils.safe_property
    def indices(self):
        return self.dereference().indices

    def __getattr__(self, attr):
        # We just dereference ourself
        result = self.dereference()

        return getattr(result, attr)

    def __iter__(self):
        """Delegate the iterator to the target."""
        return iter(self.dereference())

    def dereference_as(self, target=None, target_args=None, vm=None,
                       profile=None, parent=None):
        """Dereference ourselves into another type, or address space.

        This method allows callers to explicitly override the setting in the
        profile for this pointer.

        Args:
          target: The target to override.
          target_args: The args to instantiate this target with.
          vm: The address space to dereference the pointer in.
          profile: If a new profile should be used to instantiate the target.
        """
        vm = vm or self.obj_vm

        if profile is None:
            profile = self.obj_profile

        return profile.Object(
            type_name=target or self.target, offset=self.v(), vm=vm,
            parent=parent or self.obj_parent, context=self.obj_context,
            **(target_args or {}))

    @staticmethod
    def integer_to_address(value):
        """Addresses only use 48 bits."""
        return 0xffffffffffff & int(value)


class Pointer32(Pointer):
    """A 32 bit pointer (Even in 64 bit arch).

    These kinds of pointers are used most commonly in the Registry code which
    always treats the hives as 32 bit address spaces.
    """
    def __init__(self, **kwargs):
        super(Pointer32, self).__init__(**kwargs)
        self._proxy = self._proxy.cast("unsigned int")


class Void(Pointer):
    def __init__(self, **kwargs):
        kwargs['type_name'] = 'unsigned long'
        super(Void, self).__init__(**kwargs)

    def v(self, vm=None):
        return self.obj_offset

    def dereference(self, vm=None):
        return NoneObject("Void reference")

    @utils.safe_property
    def obj_size(self):
        self.obj_session.logging.warning(
            "Void objects have no size! Are you doing pointer arithmetic on a "
            "pointer to void?")
        return 1

    def cdecl(self):
        return "0x{0:08X}".format(self.v())

    def __repr__(self):
        return "Void[{0} {1}] (0x{2:08x})".format(
            self.__class__.__name__, self.obj_name or '', self.v())

    def __nonzero__(self):
        return bool(self.dereference())


class Array(BaseObject):
    """ An array of objects of the same size """

    target_size = 0

    def __init__(self, count=0, target=None, target_args=None,
                 target_size=None, max_count=100000, size=0,
                 **kwargs):
        """Instantiate an array of like items.

        Args:
          count: How many items belong to the array (not strictly enforced -
            i.e. it is possible to read past the end). By default the array is
            unbound.

          max_count: The maximum size of the array. This is a safety mechanism
            if count is calculated. max_count should be set to an upper bound on
            the size of the array.

          target: The name of the element to be instantiated on each point. The
            size of the object returned by this should be the same for all
            members of the array (i.e. all elements should be the same size).

          size: The total size of the Array. If this is nonzero we calculate the
          count so that just the right number of items fit in this specified
          size.
        """
        super(Array, self).__init__(**kwargs)

        # Allow the count to be callable.
        if callable(count):
            count = count(self.obj_parent)

        if callable(target_size):
            target_size = target_size(self.obj_parent)

        self.count = count
        self.max_count = max_count

        if not target:
            raise AttributeError("Array must use a target parameter")

        self.target = target
        self.target_args = target_args or {}

        self.target_size = target_size
        if self.target_size is None:
            self.target_size = self.obj_profile.Object(
                self.target, offset=self.obj_offset, vm=self.obj_vm,
                profile=self.obj_profile, parent=self,
                **self.target_args).obj_size

        if size > 0:
            self.count = size / self.target_size

    @utils.safe_property
    def obj_size(self):
        """The size of the entire array."""
        return self.target_size * self.count

    def __iter__(self):
        # If the array is invalid we do not iterate.
        if not self.obj_vm.is_valid_address(self.obj_offset):
            return

        for position in utils.xrange(0, self.count):
            # Since we often calculate array counts it is possible to
            # calculate huge arrays. This will then spin here
            # uncontrollably. We use max_count as a safety to break out
            # early - but we need to ensure that users see we hit this
            # artificial limit.
            if position > self.max_count:
                if self.obj_session.GetParameter("debug"):
                    pdb.set_trace()

                self.obj_session.logging.warn(
                    "%s Array iteration truncated by max_count!", self.obj_name)
                break

            # We don't want to stop on a NoneObject.  Its
            # entirely possible that this array contains a bunch of
            # pointers and some of them may not be valid (or paged
            # in). This should not stop us though we just return the
            # invalid pointers to our callers.  It's up to the callers
            # to do what they want with the array.
            yield self[position]

    def __repr__(self):
        return "<{3} {0} x {1} @ 0x{2:08X}>".format(
            self.count, self.target, self.obj_offset, self.__class__.__name__)

    def __unicode__(self):
        result = [repr(self)]
        for i, x in enumerate(self):
            result.append(u"0x%04X %r" % (i, x))

            if len(result) > 10:
                result.append(u"... More entries hidden")
                break

        return u"\n".join(result)

    def __eq__(self, other):
        if not other or self.count != len(other):
            return False

        for i in xrange(self.count):
            if not self[i] == other[i]:
                return False

        return True

    def __getitem__(self, pos):
        # Check for slice object
        if isinstance(pos, slice):
            start, stop, step = pos.indices(self.count)
            return [self[i] for i in xrange(start, stop, step)]

        pos = int(pos)
        offset = self.target_size * pos + self.obj_offset
        context = dict(index=pos)
        context.update(self.obj_context)

        return self.obj_profile.Object(
            self.target, offset=offset, vm=self.obj_vm,
            parent=self, profile=self.obj_profile,
            name="{0}[{1}] ".format(self.obj_name, pos),
            context=context, **self.target_args)

    def __setitem__(self, item, value):
        if isinstance(item, int):
            self[item].write(value)
        else:
            super(Array, self).__setitem__(item, value)

    def __len__(self):
        return self.count


class PointerArray(Array):
    """This is an optimized Array implementation for arrays of Pointers.

    The idea is to decode all pointers at once.
    """

    def __init__(self, **kwargs):
        super(PointerArray, self).__init__(target="Pointer", **kwargs)

        if self.target_size == 8:
            self.format_string = "<" + "Q" * self.count
        else:
            self.format_string = "<" + "I" * self.count

        # Read all the data
        data = self.obj_vm.read(self.obj_offset, self.target_size * self.count)
        self._data = struct.unpack(self.format_string, data)

    def __iter__(self):
        for i in xrange(len(self._data)):
            yield self[i]

    def __getitem__(self, pos):
        return self.obj_profile.Pointer(value=self._data[pos], vm=self.obj_vm)


class ListArray(Array):
    """An array of structs which do not all have the same size."""

    def __init__(self, maximum_size=None, maximum_offset=None, **kwargs):
        """Constructor.

        This array may be initialized using one of the following parameters:

        maximum_size: The maximum size of the array in bytes.
        maximum_offset: If we reach this offset iteration is terminated.
        count: The total count of items in this list.

        max_count: The maximum size of the array. This is a safety mechanism if
          count is calculated. max_count should be set to an upper bound on the
          size of the array.
        """
        super(ListArray, self).__init__(**kwargs)
        if callable(maximum_size):
            maximum_size = int(maximum_size(self.obj_parent))

        if callable(maximum_offset):
            maximum_offset = int(maximum_offset(self.obj_parent))

        # Check the values for sanity.
        if self.count == 0 and maximum_size is None and maximum_offset is None:
            raise TypeError(
                "One of count, maximum_offset, maximum_size must be specified.")

        if maximum_size is not None:
            maximum_offset = self.obj_offset + maximum_size

        self.maximum_offset = maximum_offset

    def __len__(self):
        """It is generally too expensive to rely on the count of this array."""
        raise NotImplementedError

    @utils.safe_property
    def obj_size(self):
        """It is generally too expensive to rely on the size of this array."""
        raise NotImplementedError

    def __iter__(self):
        offset = self.obj_offset
        count = 0
        while 1:
            # Exit conditions.
            if self.maximum_offset and offset > self.maximum_offset:
                break

            if self.count and count >= self.count:
                break

            if count >= self.max_count:
                self.obj_session.logging.warn(
                    "%s ListArray iteration truncated by max_count!",
                    self.obj_name)
                break

            item = self.obj_profile.Object(
                self.target, offset=offset, vm=self.obj_vm, parent=self,
                profile=self.obj_profile, context=self.obj_context,
                name="{0}[{1}] ".format(self.obj_name, count),
                **self.target_args)

            item_size = item.obj_size
            if item_size <= 0:
                break

            offset += item_size
            count += 1

            yield item

    def __getitem__(self, pos):
        for index, item in enumerate(self):
            if index == int(pos):
                return item

        return NoneObject("Pos seems to be outside the array maximum_size.")


class BaseAddressComparisonMixIn(object):
    """A mixin providing comparison operators for its base offset."""

    def __comparator__(self, other, method):
        # 64 bit addresses are always sign extended so we need to clear the top
        # bits.
        try:
            other_address = Pointer.integer_to_address(other.__int__())
        except AttributeError:
            other_address = None

        return method(Pointer.integer_to_address(self.__int__()), other_address)

    def __eq__(self, other):
        return self.__comparator__(other, operator.__eq__)

    def __lt__(self, other):
        return self.__comparator__(other, operator.__lt__)

    def __gt__(self, other):
        return self.__comparator__(other, operator.__gt__)

    def __le__(self, other):
        return self.__comparator__(other, operator.__le__)

    def __ge__(self, other):
        return self.__comparator__(other, operator.__ge__)

    def __ne__(self, other):
        return self.__comparator__(other, operator.__ne__)


class Struct(BaseAddressComparisonMixIn, BaseObject):
    """ A Struct is an object which represents a c struct

    Structs have members at various fixed relative offsets from our own base
    offset.
    """

    def __init__(self, members=None, struct_size=0, callable_members=None,
                 **kwargs):
        """ This must be instantiated with a dict of members. The keys
        are the offsets, the values are Curried Object classes that
        will be instantiated when accessed.

        Args:
           members: A dict of callables to use for retrieving each member. (Key
             is member name, value is a callable). Normally these are populated
             by the profile system

           struct_size: The size of this struct if known (Can be None).
        """
        super(Struct, self).__init__(**kwargs)
        ACCESS_LOG.LogFieldAccess(self.obj_profile.name, self.obj_type, None)

        self.members = members or {}
        self.callable_members = callable_members or {}
        self.struct_size = struct_size
        self._cache = {}

    def __hash__(self):
        return hash(self.indices)

    @utils.safe_property
    def indices(self):
        return ("%s(%#x, vm=%s@%s)" % (
            self.obj_type,
            self.obj_offset,
            self.obj_vm.vtop(self.obj_offset),
            self.obj_vm.base,
        ),)

    def __long__(self):
        return self.obj_offset

    def __int__(self):
        """Return our offset as an integer.

        This allows us to interchange Struct and offsets.
        """
        return self.obj_offset

    def preamble_size(self):
        """The number of bytes before the object which are part of the object.

        Some objects are preceeded with data before obj_offset which is still
        considered part of the object. Note that in that case the size of the
        object includes the preamble_size - hence

        object_end = obj_offset + obj_size - obj.preamble_size()
        """
        return 0

    @utils.safe_property
    def obj_size(self):
        if callable(self.struct_size):
            # We must always return an integer, even if NoneObject is returned
            # from the callable.
            return self.struct_size(self) or 0

        return self.struct_size

    def __repr__(self):
        if self.obj_offset == 0 and self.obj_name == "Prototype":
            return "%s Prototype" % self.__class__.__name__

        return "[{0} {1}] @ 0x{2:08X}".format(
            self.obj_type, self.obj_name or '', self.obj_offset)

    def __unicode__(self):
        result = self.__repr__() + "\n"
        width_name = 0

        fields = []
        # Print all the fields sorted by offset within the struct.
        for k in set(self.members).union(self.callable_members):
            width_name = max(width_name, len(k))
            obj = getattr(self, k)
            if obj == None:
                obj = self.m(k)

            fields.append(
                (getattr(obj, "obj_offset", self.obj_offset) -
                 self.obj_offset, k, utils.SmartUnicode(repr(obj))))

        fields.sort()

        return result + u"\n".join(
            [u"  0x%02X %s%s %s" % (offset, k, " " * (width_name - len(k)), v)
             for offset, k, v in fields]) + "\n"

    def v(self, vm=None):
        """ When a struct is evaluated we just return our offset.
        """
        return self.obj_offset

    def m(self, attr, allow_callable_attributes=False):
        """Fetch the member named by attr.

        NOTE: When the member does not exist in this struct, we return a
        NoneObject instance. This allows one to write code such as:

        struct.m("Field1") or struct.m("Field2") struct.m("Field2")

        To access a field which has been renamed in different OS versions.

        By default this method does not allow callable methods specified in
        overlays. This is to enable overriding of normal struct members by
        callable properties (otherwise infinite recursion might occur). If you
        really want to call overlays, specify allow_callable_attributes as True.
        """
        # Enable to log struct access.
        # ACCESS_LOG.LogFieldAccess(self.obj_profile.name, self.obj_type, attr)
        result = self._cache.get(attr)
        if result is not None:
            return result

        # Allow subfields to be gotten via this function.
        if "." in attr:
            result = self
            for sub_attr in attr.split("."):
                if allow_callable_attributes:
                    result = getattr(result, sub_attr, None)
                    if result is None:
                        result = NoneObject("Attribute %s not found in %s",
                                            sub_attr, self.obj_type)
                else:
                    result = result.m(sub_attr)
            self._cache[attr] = result
            return result

        element = self.members.get(attr)
        if element is not None:
            # Allow the element to be a callable rather than a list - this is
            # useful for aliasing member names
            if callable(element):
                return element(self)

            offset, cls = element
        else:
            return NoneObject(u"Struct {0} has no member {1}",
                              self.obj_name, attr)

        if callable(offset):
            # If offset is specified as a callable its an absolute
            # offset
            offset = int(offset(self))
        else:
            # Otherwise its relative to the start of our struct
            offset = int(offset) + int(self.obj_offset)

        try:
            result = cls(offset=offset, vm=self.obj_vm, parent=self, name=attr,
                         profile=self.obj_profile, context=self.obj_context)
        except Error as e:
            result = NoneObject(str(e))

        self._cache[attr] = result
        return result

    def multi_m(self, *args, **opts):
        """Retrieve a set of fields in order.

        If a field is not found, then try the next field in the list until one
        field works. This approach allows us to propose a set of possible fields
        for an attribute to support renaming of struct fields in different
        versions.
        """
        allow_callable_attributes = opts.pop("allow_callable_attributes", True)
        for field in args:
            result = self.m(
                field, allow_callable_attributes=allow_callable_attributes)
            if result != None:
                return result

        return NoneObject("No fields were found.")

    def __getattr__(self, attr):
        result = self.m(attr)
        if result == None:
            raise AttributeError(attr)

        return result

    def SetMember(self, attr, value):
        """Write a value to a member."""
        member = self.m(attr)
        # Try to make the member write the new value.
        member.write(value)
        if not hasattr(member, 'write') or not member.write(value):
            raise ValueError("Error writing value to member " + attr)

    def walk_list(self, list_member, include_current=True, deref_as=None):
        """Walk a single linked list in this struct.

        The current object can be optionally yielded as the first element.

        Args:
          list_member: The member name which points to the next item in the
          list.
        """
        if include_current:
            yield self

        seen = set()
        seen.add(self.obj_offset)

        item = self
        while True:
            if deref_as:
                item = getattr(item, list_member).dereference_as(deref_as)
            else:
                item = getattr(item, list_member).deref()

            # Sometimes in usermode page 0 is mapped, hence bool(item) == True
            # even if item == 0 since bool(item) refers to the pointer's
            # validity.
            if not item or item == 0 or item.obj_offset in seen:
                break

            seen.add(item.obj_offset)
            yield item

# Profiles are the interface for creating/interpreting
# objects

class ProfileSectionLoader(object):
    """A loader for a section in the profile JSON file.

    The profile json serialization contains a number of sections, each has a
    well known name (e.g. $CONSTANTS, $FUNCTIONS, $STRUCT). When a profile class
    is initialized, it uses a variety of loaders to handle each section in the
    profile. This allows more complex sections to be introduced and extended.
    """
    __metaclass__ = registry.MetaclassRegistry
    __abstract = True
    order = 100

    def LoadIntoProfile(self, session, profile, data):
        """Loads the data into the profile."""
        _ = session, data
        return profile


# Some standard profile Loaders.
class MetadataProfileSectionLoader(ProfileSectionLoader):
    name = "$METADATA"
    order = 1

    def LoadIntoProfile(self, session, profile, metadata):
        if profile is not None:
            return profile

        profile_type = metadata.get("Type", "Profile")

        # Support a symlink profile - this is a profile which is a short,
        # human meaningful name for another profile.
        if profile_type == "Symlink":
            return session.LoadProfile(metadata.get("Target"))

        possible_implementations = [metadata.get("ProfileClass", profile_type)]

        # For windows profile we can use a generic PE profile
        # implementation.
        if "GUID_AGE" in metadata:
            possible_implementations.append("BasicPEProfile")

        if "PDBFile" in metadata:
            possible_class_name = metadata["PDBFile"].capitalize().split(".")[0]
            possible_implementations.insert(0, possible_class_name)

        for impl in possible_implementations:
            profile_cls = Profile.ImplementationByClass(impl)
            if profile_cls:
                break

        if profile_cls is None:
            session.logging.warn("No profile implementation class %s" %
                                 metadata["ProfileClass"])

            raise ProfileError(
                "No profile implementation class %s" %
                metadata["ProfileClass"])

        result = profile_cls(session=session, metadata=metadata)

        return result


class ConstantProfileSectionLoader(ProfileSectionLoader):
    name = "$CONSTANTS"

    def LoadIntoProfile(self, session, profile, constants):
        profile.add_constants(constants_are_addresses=True, constants=constants)
        return profile


class ConstantTypeProfileSectionLoader(ProfileSectionLoader):
    name = "$CONSTANT_TYPES"

    def LoadIntoProfile(self, session, profile, constant_types):
        profile.constant_types.update(constant_types)
        return profile


class FunctionsProfileSectionLoader(ConstantProfileSectionLoader):
    name = "$FUNCTIONS"


class EnumProfileSectionLoader(ProfileSectionLoader):
    name = "$ENUMS"

    def LoadIntoProfile(self, session, profile, enums):
        profile.add_enums(**enums)
        return profile


class ReverseEnumProfileSectionLoader(ProfileSectionLoader):
    name = "$REVENUMS"

    def LoadIntoProfile(self, session, profile, reverse_enums):
        profile.add_reverse_enums(**reverse_enums)
        return profile


class StructProfileLoader(ProfileSectionLoader):
    name = "$STRUCTS"

    def LoadIntoProfile(self, session, profile, types):
        profile.add_types(types)
        return profile


class MergeProfileLoader(ProfileSectionLoader):
    """This section specifies a list of profiles to be merged into this one."""
    name = "$MERGE"

    def LoadIntoProfile(self, session, profile, merge_list):
        for merge_target in merge_list:
            merge_profile = session.LoadProfile(merge_target)
            if merge_profile.data:
                profile.LoadProfileFromData(
                    merge_profile.data, session=session, profile=profile)

        return profile

class DummyAS(object):
    name = 'dummy'
    volatile = False

    def __init__(self, session):
        self.session = session

    def is_valid_address(self, _offset):
        return True

    def read(self, _, length):
        return "\x00" * length


class Profile(object):
    """A collection of types relating to a single compilation unit.

    Profiles are usually not instantiated directly. Rather, the profiles are
    loaded from the profile repository using the session.LoadProfile() method.
    """
    # This is the list of overlays to be applied to the vtypes when compiling
    # into types.
    overlays = None

    # These are the vtypes - they are just a dictionary describing the types
    # using the "vtype" language. This dictionary will be compiled into
    # executable code and placed into self.types.
    vtypes = None

    # This hold the executable code compiled from the vtypes above.
    types = None

    # This is the base class for all profiles.
    __metaclass__ = registry.MetaclassRegistry

    # This is a dict of constants
    constants = None

    # This is a record of all the modification classes that were applied to this
    # profile.
    applied_modifications = None

    # An empty type descriptor.
    EMPTY_DESCRIPTOR = [0, {}]

    # The metadata for this profile. This should be specified by derived
    # classes. It is OK To put a (mutable) dict in here. It will not be
    # directly modified by anything.
    METADATA = {}

    # The constructor will build this dict of metadata by copying the values
    # from METADATA here.
    _metadata = None

    @classmethod
    def LoadProfileFromData(cls, data, session=None, name=None, profile=None):
        """Creates a profile directly from a JSON object.

        Args:
          data: A data structure of an encoded profile. Described:
          http://www.rekall-forensic.com/docs/development.html#_profile_serializations
          session: A Session object.
          name: The name of the profile.
          profile: An optional initial profile to apply the new sections to. If
            None we create a new profile instance according to the $METADATA
            section.

        Returns:
          a Profile() instance.

        Raises:
          IOError if we can not load the profile.

        """
        if "$METADATA" not in data:
            data["$METADATA"] = {}

        # Data is a dict with sections as keys.
        handlers = []
        for section in data:
            try:
                handlers.append(
                    ProfileSectionLoader.classes_by_name[section][0])
            except KeyError:
                # This is not fatal in order to allow new sections to be safely
                # introduced to older binaries.
                session.logging.warn(
                    "Unable to parse profile section %s", section)

        # Sort the handlers in order:
        handlers.sort(key=lambda x: x.order)

        # Delegate profile creation to the loaders.
        for handler in handlers:
            profile = handler().LoadIntoProfile(
                session, profile, data[handler.name])

        if profile and name:
            profile.name = name
            profile.data = data

        return profile

    # The common classes that are provided by the object framework.  Plugins can
    # extend the framework by registering additional classes here - these
    # classes will be available everywhere profiles are used.
    COMMON_CLASSES = {'BitField': BitField,
                      'Pointer': Pointer,
                      'Pointer32': Pointer32,
                      'Void': Void,
                      'void': Void,
                      'Array': Array,
                      'PointerArray': PointerArray,
                      'ListArray': ListArray,
                      'NativeType': NativeType,
                      'Struct': Struct}

    @classmethod
    def Initialize(cls, profile):
        """Install required types, classes and constants.

        This method should be extended by derived classes. It is a class method
        to allow other profiles to call this method and install the various
        components into their own profiles.
        """
        # Basic types used in all profiles.
        profile.add_classes(cls.COMMON_CLASSES)

        profile._initialized = True  # pylint: disable=protected-access

    def __init__(self, name=None, session=None, metadata=None, **kwargs):
        if kwargs:
            session.logging.error("Unknown keyword args %s", kwargs)

        if name is None:
            name = self.__class__.__name__

        self._metadata = self.METADATA.copy()
        for basecls in reversed(self.__class__.__mro__):
            self._metadata.update(getattr(basecls, "METADATA", {}))

        self._metadata.update(metadata or {})

        self.name = unicode(name)
        self.session = session
        if session is None:
            raise RuntimeError("Session must be specified.")

        self.overlays = []
        self.vtypes = {}
        self.constants = {}

        # A map from symbol names to the types at that symbol. Key: Symbol name,
        # Value: (target, target_args).
        self.constant_types = {}
        self.constant_addresses = utils.SortedCollection(key=lambda x: x[0])
        self.enums = {}
        self.reverse_enums = {}
        self.applied_modifications = set()
        self.object_classes = {}

        # The original JSON data this profile is loaded from.
        self.data = None

        # Keep track of all the known types so we can command line complete.
        self.known_types = set()

        # This is the local cache of compiled expressions.
        self.flush_cache()

        # Call Initialize on demand.
        self._initialized = False

    def EnsureInitialized(self):
        if not self._initialized:
            self.Initialize(self)

    def flush_cache(self):
        self.types = {}

    def copy(self):
        """Makes a copy of this profile."""
        self.EnsureInitialized()

        # pylint: disable=protected-access
        result = self.__class__(name=self.name, session=self.session)
        result.vtypes = self.vtypes.copy()
        result.overlays = self.overlays[:]
        result.enums = self.enums.copy()
        result.reverse_enums = self.reverse_enums.copy()
        result.constants = self.constants.copy()
        result.constant_types = self.constant_types.copy()
        result.constant_addresses = self.constant_addresses.copy()

        # Object classes are shallow dicts.
        result.object_classes = self.object_classes.copy()
        result._initialized = self._initialized
        result.known_types = self.known_types.copy()
        result._metadata = self._metadata.copy()
        # pylint: enable=protected-access

        return result

    def merge(self, other):
        """Merges another profile into this one.

        The result is that we are able to parse all the types that the other
        profile has.
        """
        other.EnsureInitialized()

        self.vtypes.update(other.vtypes)
        self.overlays += other.overlays
        self.constants.update(other.constants)
        self.object_classes.update(other.object_classes)
        self.flush_cache()
        self.enums.update(other.enums)
        self.name = u"%s + %s" % (self.name, other.name)

        # Merge in the other's profile metadata which is not in this profile.
        metadata = other._metadata.copy()  # pylint: disable=protected-access
        metadata.update(self._metadata)
        self._metadata = metadata

    def merge_symbols(self, other, *args):
        for arg in args:
            if arg in other.vtypes:
                self.vtypes[arg] = other.vtypes[arg]

            if arg in other.overlays:
                self.overlays[arg] = other.overlays[arg]

            if arg in other.object_classes:
                self.object_classes[arg] = other.object_classes[arg]

        self.flush_cache()

    def metadata(self, name, default=None):
        """Obtain metadata about this profile."""
        self.EnsureInitialized()
        return self._metadata.get(name, default)

    def set_metadata(self, name, value):
        self._metadata[name] = value

    def metadatas(self, *args):
        """Obtain metadata about this profile."""
        self.EnsureInitialized()
        return tuple([self._metadata.get(x) for x in args])

    def has_type(self, type_name):
        # Make sure we are initialized on demand.
        self.EnsureInitialized()
        return type_name in self.vtypes

    def has_class(self, class_name):
        # Make sure we are initialized on demand.
        self.EnsureInitialized()
        return class_name in self.object_classes

    def add_classes(self, classes_dict=None, **kwargs):
        """Add the classes in the dict to our object classes mapping."""
        self.flush_cache()

        if classes_dict:
            self.object_classes.update(classes_dict)

        self.object_classes.update(kwargs)
        self.known_types.update(kwargs)

    def add_constant_type(self, constant, target, target_args):
        self.flush_cache()
        self.constant_types[constant] = (target, target_args)

    def add_constants(self, constants=None, constants_are_addresses=False, **_):
        """Add the kwargs as constants for this profile."""
        self.flush_cache()

        for k, v in constants.iteritems():
            k = intern(str(k))
            self.constants[k] = v
            if constants_are_addresses:
                try:
                    # We need to interpret the value as a pointer.
                    address = Pointer.integer_to_address(v)
                    existing_value = self.constant_addresses.get(address)
                    if existing_value is None:
                        self.constant_addresses[address] = k
                    elif isinstance(existing_value, list):
                        if k not in existing_value:
                            existing_value.append(k)
                    elif existing_value != k:
                        self.constant_addresses[address] = [
                            existing_value, k]
                except ValueError:
                    pass

    def add_reverse_enums(self, **kwargs):
        """Add the kwargs as a reverse enum for this profile."""
        for k, v in kwargs.iteritems():
            self.reverse_enums[intern(str(k))] = intern(str(v))

    def add_enums(self, **kwargs):
        """Add the kwargs as an enum for this profile."""
        # Alas JSON converts integer keys to strings.
        for k, v in kwargs.iteritems():
            self.enums[intern(str(k))] = enum_definition = {}
            for enum, name in v.items():
                enum_definition[intern(str(enum))] = name

    def add_types(self, abstract_types):
        self.flush_cache()

        abstract_types = utils.InternObject(abstract_types)
        self.known_types.update(abstract_types)

        # we merge the abstract_types with self.vtypes and then recompile
        # the whole thing again. This is essential because
        # definitions may have changed as a result of this call, and
        # we store curried objects (which might keep their previous
        # definitions).
        for k, v in abstract_types.items():
            if isinstance(v, list):
                self.vtypes[k] = v

            else:
                original = self.vtypes.get(k, self.EMPTY_DESCRIPTOR)
                original[1].update(v[1])
                if v[0]:
                    original[0] = v[0]

                self.vtypes[k] = original

    def compile_type(self, type_name):
        """Compile the specific type and ensure it exists in the type cache.

        The type_name here is a reference to the vtypes which are loaded into
        the profile.
        """
        # Make sure we are initialized on demand.
        self.EnsureInitialized()
        if type_name in self.types:
            return

        original_type_descriptor = type_descriptor = copy.deepcopy(
            self.vtypes.get(type_name, self.EMPTY_DESCRIPTOR))

        for overlay in self.overlays:
            type_overlay = copy.deepcopy(overlay.get(type_name))
            type_descriptor = self._apply_type_overlay(
                type_descriptor, type_overlay)

        # An overlay which specifies a string as a definition is simply an alias
        # for another struct. We just copy the old struct in place of the
        # aliased one.
        if isinstance(type_descriptor, str):
            self.compile_type(type_descriptor)
            self.types[type_name] = self.types[type_descriptor]
            type_descriptor = self.vtypes[type_descriptor]

        if type_descriptor == self.EMPTY_DESCRIPTOR:
            # Mark that this is a pure object - not described by a
            # vtype. E.g. it is purely a class.
            self.types[type_name] = None

        else:
            # Now type_overlay will have all the overlays applied on it.
            members = {}
            callable_members = {}

            size, field_description = type_descriptor

            for k, v in field_description.items():
                k = str(k)

                # If the overlay specifies a callable, we place it in the
                # callable_members dict, and revert back to the vtype
                # definition.
                if callable(v):
                    callable_members[intern(k)] = v

                    # If the callable is masking an existing field, revert back
                    # to it.
                    original_v = original_type_descriptor[1].get(k)
                    if original_v:
                        members[intern(k)] = (
                            original_v[0], self.list_to_type(k, original_v[1]))

                elif v[0] == None:
                    self.session.logging.warning(
                        "%s has no offset in object %s. Check that vtypes "
                        "has a concrete definition for it.",
                        k, type_name)
                else:
                    members[intern(str(k))] = (
                        v[0], self.list_to_type(k, v[1]))

            # Allow the class plugins to override the class constructor here
            cls = self.object_classes.get(type_name, Struct)

            self.types[intern(str(type_name))] = self._make_struct_callable(
                cls, type_name, members, size, callable_members)

    def _make_struct_callable(self, cls, type_name, members, size,
                              callable_members):
        """Compile the structs class into a callable.

        For write support we would like to add a __setattr__ on the struct
        classes. However, in python, once there is a __setattr__ method
        defined on an object, _EVERY_ setattr() operation on the object will
        go through this method - this is a performance killer. Since in this
        case we only want to trap accesses to the member fields, we can create
        a class with @property methods to get and set the attributes. We then
        overlay this class over the original struct class.

        The resulting callable will instantiate the derived class (with the
        additional properties) over the provided offset.

        Note that due to the JIT compiler, this method is called only once when
        each Struct object is first accessed, so it is not really
        expensive. OTOH the callables we produce here are called many many times
        (Each time the object is instantiated, or a field is accessed) and need
        to be as fast as possible.
        """
        # Note that lambdas below must get external parameters through default
        # args:
        # http://stackoverflow.com/questions/938429/scope-of-python-lambda-functions-and-their-parameters/938493#938493

        properties = dict(callable_members=callable_members.keys())
        for name in set(members).union(callable_members):

            # Do not mask hand written methods with autogenerated properties.
            if hasattr(cls, name):
                continue

            cb = callable_members.get(name)
            value = members.get(name)

            getter = None
            setter = None

            # This happens if the overlay specifies a callable. In that case we
            # install a special property which calls it. However, the callable
            # may still refer to self.m() to get the bare vtype item.
            if cb:
                # Only implement getter for callable fields since setters do
                # not really make sense.
                def CbGetter(self, cb=cb):
                    try:
                        return cb(self)
                    except Exception as e:
                        return NoneObject("Failed to run callback %s" % e)

                getter = CbGetter

            elif value:
                # Specify both getters and setter for the field.
                getter = lambda self, name=name: self.m(name)
                setter = lambda self, v=value, n=name: self.SetMember(n, v)

            properties[name] = utils.safe_property(getter, setter, None, name)

        # Extend the provided class by attaching the properties to it. We can
        # not just monkeypatch here because cls will be shared between all
        # structs which do not define an explicit extension class. By creating a
        # new temporary class this uses the usual inheritance behaviour to
        # override the methods in cls depending on the members dict, without
        # altering the cls class permanently (This is a kind of metaclass
        # programming).
        derived_cls = type(str(type_name), (cls,), properties)

        return Curry(derived_cls,
                     type_name=type_name, members=members,
                     callable_members=callable_members, struct_size=size)

    def legacy_field_descriptor(self, typeList):
        """Converts the list expression into a target, target_args notation.

        Legacy vtypes use lists to specify the objects. This function is used to
        convert from the legacy format to the more accurate modern
        format. Hopefully the legacy format can be deprecated at some point.

        Args:
           typeList: A list of types. e.g. ['pointer64', ['_HMAP_TABLE']]

        Returns:
           A target, target_args tuple. Target is the class name which should be
           instantiated, while target_args is a dict of args to be passed to
           this class.
           e.g. 'Pointer',  {target="_HMAP_TABLE"}
        """
        # This is of the form [ '_HMAP_TABLE' ] - First element is the target
        # name, with no args.
        if len(typeList) == 1:
            target = typeList[0]
            target_args = {}

        # This is of the form [ 'pointer' , [ 'foobar' ]]
        # Target is the first item, args is the second item.
        elif typeList[0] == 'pointer' or typeList[0] == 'pointer64':
            target = "Pointer"
            target_args = self.legacy_field_descriptor(typeList[1])

        # This is an array: [ 'array', count, ['foobar'] ]
        elif typeList[0] == 'array':
            target = "Array"
            target_args = self.legacy_field_descriptor(typeList[2])
            target_args['count'] = typeList[1]

        elif len(typeList) > 2:
            self.session.logging.error("Invalid typeList %s" % (typeList,))

        else:
            target = typeList[0]
            target_args = typeList[1]

        return dict(target=target, target_args=target_args)

    def list_to_type(self, name, typeList):
        """Parses a specification list and returns a VType object.

        This function is a bit complex because we support lots of
        different list types for backwards compatibility.

        This is the core function which effectively parses the VType language.
        """
        # Convert legacy typeList expressions to the modern format.
        target_spec = self.legacy_field_descriptor(typeList)

        # The modern format uses a target, target_args notation.
        target = target_spec['target']
        target_args = target_spec['target_args']

        # This is currently the recommended way to specify a type:
        # e.g. [ 'Pointer', {target="int"}]
        if isinstance(target_args, dict):
            return Curry(self.Object, type_name=target, name=name,
                         **target_args)

        # This is of the deprecated form ['class_name', ['arg1', 'arg2']].
        # Since the object framework moved to purely keyword args these are
        # meaningless. Issue a deprecation warning.
        elif isinstance(target_args, list):
            self.session.logging.warning(
                "Deprecated vtype expression %s for member %s, assuming int",
                typeList, name)

        else:
            # If we get here we have no idea what this list is
            self.session.logging.warning(
                "Unable to find a type for %s, assuming int", typeList)

        return Curry(self.Object, type_name='int', name=name)

    def GetPrototype(self, type_name):
        """Return a prototype of objects of type 'type_name'.

        A prototype is a dummy object that looks like a type, but uses data
        from the profile to provide a list of members and type information.
        """
        self.compile_type(type_name)
        return self.Object(type_name=type_name, name="Prototype",
                           vm=DummyAS(self.session))

    def get_obj_offset(self, name, member):
        """ Returns a member's offset within the struct.

        Note that this can be wrong if the offset is a callable.
        """
        ACCESS_LOG.LogFieldAccess(self.name, name, member)

        tmp = self.GetPrototype(name)
        return tmp.members.get(member, NoneObject("No member"))[0]

    def get_obj_size(self, name):
        """Returns the size of a struct"""
        tmp = self.GetPrototype(name)
        return tmp.obj_size

    def obj_has_member(self, name, member):
        """Returns whether an object has a certain member"""
        ACCESS_LOG.LogFieldAccess(self.name, name, member)

        tmp = self.GetPrototype(name)
        return hasattr(tmp, member)

    def add_overlay(self, overlay):
        """Add an overlay to the current overlay stack."""
        self.flush_cache()
        self.overlays.append(copy.deepcopy(overlay))
        self.known_types.update(overlay)

    def _apply_type_overlay(self, type_member, overlay):
        """Update the overlay with the missing information from type.

        If overlay has None in any slot it gets applied from vtype.

        Args:
         type_member: A descriptor for a single type struct. This is always of
           the following form:

           [StructSize, {
             field_name_1: [.... Field descriptor ...],
             field_name_2: [.... Field descriptor ...],
            }]

         overlay: An overlay descriptor for the same type described by
           type_member or a callable which will be used to instantiate the
           required type.
        """
        # A None in the overlay allows the vtype to bubble up.
        if overlay is None:
            return type_member

        if type_member is None:
            return overlay

        # this allows the overlay to just specify a class directly to be
        # instantiated for a particular type.
        if callable(overlay):
            return overlay

        # A base string means its an alias of another type.
        if isinstance(overlay, basestring):
            return overlay

        # Check the overlay and type descriptor for sanity.
        if len(overlay) != 2 or not isinstance(overlay[1], dict):
            raise RuntimeError("Overlay error: Invalid overlay %s" % overlay)

        if len(type_member) != 2 or not isinstance(type_member[1], dict):
            raise RuntimeError("VType error: Invalid type descriptor %s" %
                               type_member)

        # Allow the overlay to override the struct size.
        if overlay[0] is None:
            overlay[0] = type_member[0]

        # The field overlay describes each field in the struct.
        field_overlay = overlay[1]

        # Now go over all the fields in the type_member and copy them into the
        # overlay.
        for k, v in type_member[1].items():
            if k not in field_overlay:
                field_overlay[k] = v
            else:
                field_overlay[k] = self._apply_field_overlay(
                    v, field_overlay[k])

        return overlay

    def _apply_field_overlay(self, field_member, field_overlay):
        """Update the field overlay with the missing information from type.

        If the overlay has None in any slot it gets applied from vtype.

        Args:
          field_member: A field descriptor. This can be of the modern form:

              [Offset, [TargetName, dict(arg1=value1, arg2=value2)]]

              The second part is termed the field descriptor. If the overlay
              specifies a field descriptor it will completely replace the
              vtype's descriptor.

              Alternatively we also support the legacy form:
              [TargetName, [values]]


              Note that if the Target name differs we deem the entire field to
              be overlayed and replace the entire definition with the overlayed
              one.

          field_overlay: Can be a field descriptor as above, or a callable - in
             which case this field member will be called when the field is
             accessed.
        """
        # A None in the overlay allows the vtype to bubble up.
        if field_overlay is None:
            return field_member

        if callable(field_overlay):
            return field_overlay

        if callable(field_member):
            return field_member

        # Check the overlay and type descriptor for sanity.
        if len(field_overlay) != 2 or not isinstance(field_overlay[1], list):
            raise RuntimeError(
                "Overlay error: Invalid overlay %s" % field_overlay)

        if len(field_member) != 2 or not isinstance(field_member[1], list):
            raise RuntimeError("VType error: Invalid field type descriptor %s" %
                               field_member)

        offset, field_description = field_member
        if field_overlay[0] is None:
            field_overlay[0] = offset

        if field_overlay[1] is None:
            field_overlay[1] = field_description

        return field_overlay

    def get_constant(self, constant, is_address=False):
        """Retrieve a constant from the profile.

        Args:
           constant: The name of the constant to retrieve.

           is_address: If true the constant is converted to an address.
        """
        ACCESS_LOG.LogConstant(self.name, constant)
        self.EnsureInitialized()

        result = self.constants.get(constant)
        if callable(result):
            result = result()

        if result is None:
            result = NoneObject(
                "Constant %s does not exist in profile." % constant)

        elif is_address:
            result = Pointer.integer_to_address(result)

        return result

    def get_constant_object(self, constant, target=None, target_args=None,
                            vm=None, **kwargs):
        """A help function for retrieving pointers from the symbol table."""
        self.EnsureInitialized()

        if vm is None:
            vm = self.session.GetParameter("default_address_space")

        if target is None:
            if constant not in self.constant_types:
                raise TypeError("Unknown constant type for %s" % constant)

            # target_args are optional in the profile specification.
            try:
                target, target_args = self.constant_types[constant]
            except ValueError:
                target = self.constant_types[constant][0]

        kwargs.update(target_args or {})
        offset = self.get_constant(constant, is_address=True)
        if not offset:
            return offset

        result = self.Object(target, profile=self, offset=offset, vm=vm,
                             **kwargs)
        return result

    def get_constant_by_address(self, address):
        self.EnsureInitialized()

        address = Pointer.integer_to_address(address)

        lowest_eq, name = self.get_nearest_constant_by_address(address)
        if lowest_eq != address:
            return NoneObject("Constant not found")

        return name

    def get_nearest_constant_by_address(self, address, below=True):
        """Returns the closest constant below or equal to the address."""
        self.EnsureInitialized()

        address = Pointer.integer_to_address(address)

        if below:
            offset, names = self.constant_addresses.get_value_smaller_than(
                address)
        else:
            offset, names = self.constant_addresses.get_value_larger_than(
                address)

        if offset is None:
            return -1, NoneObject("Constant not found")

        if not isinstance(names, list):
            names = [names]

        return offset, names

    def get_enum(self, enum_name, field=None):
        result = self.enums.get(enum_name)
        if result and field != None:
            result = result.get(field)
        return result

    def get_reverse_enum(self, enum_name, field=None):
        result = self.reverse_enums.get(enum_name)
        if result and field != None:
            result = result.get(field)
        return result

    def __dir__(self):
        """Support tab completion."""
        return sorted(self.__dict__.keys() + list(self.known_types) +
                      dir(self.__class__))

    def __getattr__(self, attr):
        """Make it easier to instantiate individual members.

        This method makes it possible to use the form:

        self.profile._EPROCESS(vm=self.kernel_address_space, offset=X)

        Which is easier to type and works well with attribute completion
        (provided by __dir__).
        """
        self.compile_type(attr)

        if self.types[attr] is None and attr not in self.object_classes:
            raise AttributeError("No such vtype: %s" % attr)

        return Curry(self.Object, attr)

    def Object(self, type_name=None, offset=None, vm=None, name=None,
               parent=None, context=None, **kwargs):
        """ A function which instantiates the object named in type_name (as
        a string) from the type in profile passing optional args of
        kwargs.

        Args:
          type_name: The name of the Struct to instantiate (e.g. _EPROCESS).

          vm: The address space to instantiate the object onto. If not provided
            we use a dummy null padded address space.

          offset: The location in the address space where the object is
            instantiated.

          name: An optional name for the object.

          context: An opaque dict which is passed to all objects created from
            this object.

          parent: The object can maintain a reference to its parent object.
        """
        name = name or type_name

        # Ensure we are called correctly.
        if name.__class__ not in (unicode, str):
            raise ValueError("Type name must be a string")

        if offset is None:
            offset = 0
            if vm is None:
                vm = addrspace.BaseAddressSpace.classes["DummyAddressSpace"](
                    size=self.get_obj_size(name) or 0, session=self.session)

        else:
            offset = int(offset)
            if vm is None:
                vm = self.session.GetParameter("default_address_space")

        kwargs['profile'] = self
        kwargs.setdefault("session", self.session)

        # Compile the type on demand.
        self.compile_type(type_name)

        # If the cache contains a None, this member is not represented by a
        # vtype (it might be a pure object class or a constant).
        cls = self.types[type_name]
        if cls is not None:
            result = cls(offset=offset, vm=vm, name=name,
                         parent=parent, context=context,
                         **kwargs)

            return result

        elif type_name in self.object_classes:
            result = self.object_classes[type_name](
                type_name=type_name,
                offset=offset,
                vm=vm,
                name=name,
                parent=parent,
                context=context,
                **kwargs)

            if isinstance(result, Struct):
                # This should not normally happen.
                self.session.logging.error(
                    "Instantiating a Struct class %s without an overlay. "
                    "Please ensure an overlay is defined.", type_name)

            return result

        else:
            # If we get here we have no idea what the type is supposed to be?
            return NoneObject("Cant find object %s in profile %s?",
                              type_name, self)

    def __unicode__(self):
        return u"<%s profile %s (%s)>" % (
            self.metadata("arch"), self.name, self.__class__.__name__)

    def __repr__(self):
        return unicode(self)

    def integer_to_address(self, virtual_address):
        return virtual_address & self.constants.get(
            "MaxPointer", 0xffffffffffff)


class TestProfile(Profile):
    def _SetupProfileFromData(self, data):
        """Let the test manipulate the data json object directly."""
        self.data = data

    def copy(self):
        result = super(TestProfile, self).copy()
        result.data = self.data

        return result


class ProfileModification(object):
    """A profile modification adds new types to an existing profile.

    A ProfileModification must be invoked explicitely. We have these as plugins
    so its easier to find a modification by name. A typical invokation looks
    like:

    class myPlugin(plugin.Command):
      def __init__(self, **kwargs):
         super(myPlugin, self).__init__(**kwargs)

         # Update the profile with the "VolRegistrySupport" implementation.
         self.profile = obj.ProfileModification.classes[
             'VolRegistrySupport'](self.profile)

    Note that this plugin must explicitely apply the correct modification. This
    allows the plugin to choose from a number of different implementations. For
    example, in the above say we have one implementation (i.e. overlays, object
    classes etc) called VolRegistrySupport and another called
    ScudetteRegistrySupport, we can choose between them.

    Now suppose that ScudetteRegistrySupport introduces an advanced class with
    extra methods:

    class _CM_KEY_INDEX(obj.Struct):
       .....
       def SpecialMethod(...):
          ....

    The plugin relies on using this specific implementation (i.e. if we loaded
    the other profile modification, this myPlugin will fail because it will
    attempt to call an undefined method!  Essentially by explicitely loading the
    modification, the plugin declares that it relies on the
    ScudetteRegistrySupport implementation, but does not preclude having another
    implementation.
    """
    def __new__(cls, profile):
        # Return a copy of the profile.
        result = profile.copy()

        # Apply the modification.
        cls.modify(result)

        return result

    @classmethod
    def modify(cls, profile):
        """This class should modify the profile appropritately.

        The profile will be a copy of the original profile and will be returned
        to the class caller.

        Args:
           A profile to be modified.
        """


class Address(BaseObject):
    """A BaseObject representing an address."""