This file is indexed.

/usr/lib/python2.7/dist-packages/sh.py is in python-sh 1.11-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
"""
http://amoffat.github.io/sh/
"""
#===============================================================================
# Copyright (C) 2011-2015 by Andrew Moffat
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#===============================================================================


__version__ = "1.11"
__project_url__ = "https://github.com/amoffat/sh"



import platform

if "windows" in platform.system().lower():
    raise ImportError("sh %s is currently only supported on linux and osx. \
please install pbs 0.110 (http://pypi.python.org/pypi/pbs) for windows \
support." % __version__)


import sys
IS_PY3 = sys.version_info[0] == 3

import traceback
import os
import re
from glob import glob as original_glob
import time
from types import ModuleType
from functools import partial
import inspect
from contextlib import contextmanager

from locale import getpreferredencoding
DEFAULT_ENCODING = getpreferredencoding() or "UTF-8"


if IS_PY3:
    from io import StringIO
    from io import BytesIO as cStringIO
    from queue import Queue, Empty

    # for some reason, python 3.1 removed the builtin "callable", wtf
    if not hasattr(__builtins__, "callable"):
        def callable(ob):
            return hasattr(ob, "__call__")
else:
    from StringIO import StringIO
    from cStringIO import OutputType as cStringIO
    from Queue import Queue, Empty

IS_OSX = platform.system() == "Darwin"
THIS_DIR = os.path.dirname(os.path.realpath(__file__))
SH_LOGGER_NAME = "sh"


import errno
import warnings

import pty
import termios
import signal
import gc
import select
import threading
import tty
import fcntl
import struct
import resource
from collections import deque
import logging
import weakref


# TODO remove with contexts in next version
def with_context_warning():
    warnings.warn("""
with contexts are deprecated because they are not thread safe.  they will be \
removed in the next version.  use subcommands instead \
http://amoffat.github.io/sh/#sub-commands. see \
https://github.com/amoffat/sh/issues/195
""".strip(), stacklevel=3)



if IS_PY3:
    raw_input = input
    unicode = str
    basestring = str


_unicode_methods = set(dir(unicode()))


def encode_to_py3bytes_or_py2str(s):
    """ takes anything and attempts to return a py2 string or py3 bytes.  this
    is typically used when creating command + arguments to be executed via
    os.exec* """

    fallback_encoding = "utf8"

    if IS_PY3:
        # if we're already bytes, do nothing
        if isinstance(s, bytes):
            pass
        else:
            s = str(s)
            try:
                s = bytes(s, DEFAULT_ENCODING)
            except UnicodeEncodeError:
                s = bytes(s, fallback_encoding)
    else:
        # attempt to convert the thing to unicode from the system's encoding
        try:
            s = unicode(s, DEFAULT_ENCODING)
        # if the thing is already unicode, or it's a number, it can't be
        # coerced to unicode with an encoding argument, but if we leave out
        # the encoding argument, it will convert it to a string, then to unicode
        except TypeError:
            s = unicode(s)

        # now that we have guaranteed unicode, encode to our system encoding,
        # but attempt to fall back to something
        try:
            s = s.encode(DEFAULT_ENCODING)
        except:
            s = s.encode(fallback_encoding)
    return s


class ErrorReturnCode(Exception):
    """ base class for all exceptions as a result of a command's exit status
    being deemed an error.  this base class is dynamically subclassed into
    derived classes with the format: ErrorReturnCode_NNN where NNN is the exit
    code number.  the reason for this is it reduces boiler plate code when
    testing error return codes:
    
        try:
            some_cmd()
        except ErrorReturnCode_12:
            print("couldn't do X")
            
    vs:
        try:
            some_cmd()
        except ErrorReturnCode as e:
            if e.exit_code == 12:
                print("couldn't do X")
    
    it's not much of a savings, but i believe it makes the code easier to read """

    truncate_cap = 750

    def __init__(self, full_cmd, stdout, stderr):
        self.full_cmd = full_cmd
        self.stdout = stdout
        self.stderr = stderr


        if self.stdout is None:
            exc_stdout = "<redirected>"
        else:
            exc_stdout = self.stdout[:self.truncate_cap]
            out_delta = len(self.stdout) - len(exc_stdout)
            if out_delta:
                exc_stdout += ("... (%d more, please see e.stdout)" % out_delta).encode()

        if self.stderr is None:
            exc_stderr = "<redirected>"
        else:
            exc_stderr = self.stderr[:self.truncate_cap]
            err_delta = len(self.stderr) - len(exc_stderr)
            if err_delta:
                exc_stderr += ("... (%d more, please see e.stderr)" % err_delta).encode()

        msg = "\n\n  RAN: %r\n\n  STDOUT:\n%s\n\n  STDERR:\n%s" % \
            (full_cmd, exc_stdout.decode(DEFAULT_ENCODING, "replace"),
             exc_stderr.decode(DEFAULT_ENCODING, "replace"))
        super(ErrorReturnCode, self).__init__(msg)


class SignalException(ErrorReturnCode): pass
class TimeoutException(Exception):
    """ the exception thrown when a command is killed because a specified
    timeout (via _timeout) was hit """
    def __init__(self, exit_code):
        self.exit_code = exit_code
        super(Exception, self).__init__()

SIGNALS_THAT_SHOULD_THROW_EXCEPTION = (
    signal.SIGABRT,
    signal.SIGBUS,
    signal.SIGFPE,
    signal.SIGILL,
    signal.SIGINT,
    signal.SIGKILL,
    signal.SIGPIPE,
    signal.SIGQUIT,
    signal.SIGSEGV,
    signal.SIGTERM,
    signal.SIGSYS,
)


# we subclass AttributeError because:
# https://github.com/ipython/ipython/issues/2577
# https://github.com/amoffat/sh/issues/97#issuecomment-10610629
class CommandNotFound(AttributeError): pass




rc_exc_regex = re.compile("(ErrorReturnCode|SignalException)_((\d+)|SIG\w+)")
rc_exc_cache = {}


def get_exc_from_name(name):
    """ takes an exception name, like:

        ErrorReturnCode_1
        SignalException_9
        SignalException_SIGHUP

    and returns the corresponding exception.  this is primarily used for
    importing exceptions from sh into user code, for instance, to capture those
    exceptions """

    exc = None
    try:
        return rc_exc_cache[name]
    except KeyError:
        m = rc_exc_regex.match(name)
        if m:
            base = m.group(1)
            rc_or_sig_name = m.group(2)

            if base == "SignalException":
                try:
                    rc = -int(rc_or_sig_name)
                except ValueError:
                    rc = -getattr(signal, rc_or_sig_name)
            else:
                rc = int(rc_or_sig_name)

            exc = get_rc_exc(rc)
    return exc


def get_rc_exc(rc_or_sig_name):
    """ takes a exit code, signal number, or signal name, and produces an
    exception that corresponds to that return code.  positive return codes yield
    ErrorReturnCode exception, negative return codes yield SignalException

    we also cache the generated exception so that only one signal of that type
    exists, preserving identity """

    try:
        rc = int(rc_or_sig_name)
    except ValueError:
        rc = -getattr(signal, rc_or_sig_name)

    try:
        return rc_exc_cache[rc]
    except KeyError:
        pass

    if rc > 0:
        name = "ErrorReturnCode_%d" % rc
        base = ErrorReturnCode
    else:
        name = "SignalException_%d" % abs(rc)
        base = SignalException

    exc = type(name, (base,), {"exit_code": rc})
    rc_exc_cache[rc] = exc
    return exc




def which(program):
    def is_exe(fpath):
        return (os.path.exists(fpath) and
                os.access(fpath, os.X_OK) and
                os.path.isfile(os.path.realpath(fpath)))

    fpath, fname = os.path.split(program)
    if fpath:
        if is_exe(program):
            return program
    else:
        if "PATH" not in os.environ:
            return None
        for path in os.environ["PATH"].split(os.pathsep):
            exe_file = os.path.join(path, program)
            if is_exe(exe_file):
                return exe_file

    return None

def resolve_program(program):
    path = which(program)
    if not path:
        # our actual command might have a dash in it, but we can't call
        # that from python (we have to use underscores), so we'll check
        # if a dash version of our underscore command exists and use that
        # if it does
        if "_" in program:
            path = which(program.replace("_", "-"))
        if not path:
            return None
    return path


# we add this thin wrapper to glob.glob because of a specific edge case where
# glob does not expand to anything.  for example, if you try to do
# glob.glob("*.py") and there are no *.py files in the directory, glob.glob
# returns an empty list.  this empty list gets passed to the command, and
# then the command fails with a misleading error message.  this thin wrapper
# ensures that if there is no expansion, we pass in the original argument,
# so that when the command fails, the error message is clearer
def glob(arg):
    return original_glob(arg) or arg



class Logger(object):
    """ provides a memory-inexpensive logger.  a gotcha about python's builtin
    logger is that logger objects are never garbage collected.  if you create a
    thousand loggers with unique names, they'll sit there in memory until your
    script is done.  with sh, it's easy to create loggers with unique names if
    we want our loggers to include our command arguments.  for example, these
    are all unique loggers:
        
            ls -l
            ls -l /tmp
            ls /tmp

    so instead of creating unique loggers, and without sacrificing logging
    output, we use this class, which maintains as part of its state, the logging
    "context", which will be the very unique name.  this allows us to get a
    logger with a very general name, eg: "command", and have a unique name
    appended to it via the context, eg: "ls -l /tmp" """
    def __init__(self, name, context=None):
        self.name = name
        if context:
            context = context.replace("%", "%%")
        self.context = context 
        self.log = logging.getLogger("%s.%s" % (SH_LOGGER_NAME, name))

    def _format_msg(self, msg, *args):
        if self.context:
            msg = "%s: %s" % (self.context, msg)
        return msg % args

    def get_child(self, name, context):
        new_name = self.name + "." + name
        new_context = self.context + "." + context
        l = Logger(new_name, new_context)
        return l

    def info(self, msg, *args):
        self.log.info(self._format_msg(msg, *args))

    def debug(self, msg, *args):
        self.log.debug(self._format_msg(msg, *args))

    def error(self, msg, *args):
        self.log.error(self._format_msg(msg, *args))

    def exception(self, msg, *args):
        self.log.exception(self._format_msg(msg, *args))


def friendly_truncate(s, max_len):
    if len(s) > max_len:
        s = "%s...(%d more)" % (s[:max_len], len(s) - max_len)
    return s


class RunningCommand(object):
    """ this represents an executing Command object.  it is returned as the
    result of __call__() being executed on a Command instance.  this creates a
    reference to a OProc instance, which is a low-level wrapper around the
    process that was exec'd

    this is the class that gets manipulated the most by user code, and so it
    implements various convenience methods and logical mechanisms for the
    underlying process.  for example, if a user tries to access a
    backgrounded-process's stdout/err, the RunningCommand object is smart enough
    to know to wait() on the process to finish first.  and when the process
    finishes, RunningCommand is smart enough to translate exit codes to
    exceptions. """

    def __init__(self, cmd, call_args, stdin, stdout, stderr):
        # self.ran is used for auditing what actually ran.  for example, in
        # exceptions, or if you just want to know what was ran after the
        # command ran
        if IS_PY3:
            self.ran = " ".join([arg.decode(DEFAULT_ENCODING, "ignore") for arg in cmd])
        else:
            self.ran = " ".join(cmd)


        friendly_cmd = friendly_truncate(self.ran, 20)
        friendly_call_args = friendly_truncate(str(call_args), 20)

        # we're setting up the logger string here, instead of __repr__ because
        # we reserve __repr__ to behave as if it was evaluating the child
        # process's output
        logger_str = "<Command %r call_args %s>" % (friendly_cmd,
                friendly_call_args)

        self.log = Logger("command", logger_str)
        self.call_args = call_args
        self.cmd = cmd

        self.process = None
        self._process_completed = False
        should_wait = True
        spawn_process = True


        # with contexts shouldn't run at all yet, they prepend
        # to every command in the context
        if call_args["with"]:
            spawn_process = False
            Command._prepend_stack.append(self)


        if call_args["piped"] or call_args["iter"] or call_args["iter_noblock"]:
            should_wait = False

        # we're running in the background, return self and let us lazily
        # evaluate
        if call_args["bg"]:
            should_wait = False

        # redirection
        if call_args["err_to_out"]:
            stderr = OProc.STDOUT


        # set up which stream should write to the pipe
        # TODO, make pipe None by default and limit the size of the Queue
        # in oproc.OProc
        pipe = OProc.STDOUT
        if call_args["iter"] == "out" or call_args["iter"] is True:
            pipe = OProc.STDOUT
        elif call_args["iter"] == "err":
            pipe = OProc.STDERR

        if call_args["iter_noblock"] == "out" or call_args["iter_noblock"] is True:
            pipe = OProc.STDOUT
        elif call_args["iter_noblock"] == "err":
            pipe = OProc.STDERR


        # there's currently only one case where we wouldn't spawn a child
        # process, and that's if we're using a with-context with our command
        if spawn_process:
            self.log.info("starting process")
            self.process = OProc(self.log, cmd, stdin, stdout, stderr,
                    self.call_args, pipe)

            if should_wait:
                self.wait()


    def wait(self):
        if not self._process_completed:
            self._process_completed = True

            exit_code = self.process.wait()
            if self.process.timed_out:
                # if we timed out, our exit code represents a signal, which is
                # negative, so let's make it positive to store in our
                # TimeoutException
                raise TimeoutException(-exit_code)
            else:
                self.handle_command_exit_code(exit_code)

            # https://github.com/amoffat/sh/issues/185
            if self.call_args["done"]:
                self.call_args["done"](self)

        return self


    def handle_command_exit_code(self, code):
        """ here we determine if we had an exception, or an error code that we
        weren't expecting to see.  if we did, we create and raise an exception
        """
        if (code not in self.call_args["ok_code"] and (code > 0 or -code in
            SIGNALS_THAT_SHOULD_THROW_EXCEPTION)):
            exc = get_rc_exc(code)
            raise exc(self.ran, self.process.stdout, self.process.stderr)



    @property
    def stdout(self):
        self.wait()
        return self.process.stdout

    @property
    def stderr(self):
        self.wait()
        return self.process.stderr

    @property
    def exit_code(self):
        self.wait()
        return self.process.exit_code

    @property
    def pid(self):
        return self.process.pid

    def __len__(self):
        return len(str(self))

    def __enter__(self):
        """ we don't actually do anything here because anything that should have
        been done would have been done in the Command.__call__ call.
        essentially all that has to happen is the comand be pushed on the
        prepend stack. """
        with_context_warning()

    def __iter__(self):
        return self

    def next(self):
        """ allow us to iterate over the output of our command """

        # we do this because if get blocks, we can't catch a KeyboardInterrupt
        # so the slight timeout allows for that.
        while True:
            try:
                chunk = self.process._pipe_queue.get(True, 0.001)
            except Empty:
                if self.call_args["iter_noblock"]:
                    return errno.EWOULDBLOCK
            else:
                if chunk is None:
                    self.wait()
                    raise StopIteration()
                try:
                    return chunk.decode(self.call_args["encoding"],
                        self.call_args["decode_errors"])
                except UnicodeDecodeError:
                    return chunk

    # python 3
    __next__ = next

    def __exit__(self, typ, value, traceback):
        if self.call_args["with"] and Command._prepend_stack:
            Command._prepend_stack.pop()

    def __str__(self):
        """ in python3, should return unicode.  in python2, should return a
        string of bytes """
        if IS_PY3:
            return self.__unicode__()
        else:
            return unicode(self).encode(self.call_args["encoding"])

    def __unicode__(self):
        """ a magic method defined for python2.  calling unicode() on a
        RunningCommand object will call this """
        if self.process and self.stdout:
            return self.stdout.decode(self.call_args["encoding"],
                self.call_args["decode_errors"])
        elif IS_PY3:
            return ""
        else:
            return unicode("")

    def __eq__(self, other):
        return unicode(self) == unicode(other)
    __hash__ = None  # Avoid DeprecationWarning in Python < 3

    def __contains__(self, item):
        return item in str(self)

    def __getattr__(self, p):
        # let these three attributes pass through to the OProc object
        if p in ("signal", "terminate", "kill"):
            if self.process:
                return getattr(self.process, p)
            else:
                raise AttributeError

        # see if strings have what we're looking for.  we're looking at the
        # method names explicitly because we don't want to evaluate self unless
        # we absolutely have to, the reason being, in python2, hasattr swallows
        # exceptions, and if we try to run hasattr on a command that failed and
        # is being run with _iter=True, the command will be evaluated, throw an
        # exception, but hasattr will discard it
        if p in _unicode_methods:
            return getattr(unicode(self), p)

        raise AttributeError

    def __repr__(self):
        """ in python3, should return unicode.  in python2, should return a
        string of bytes """
        try:
            return str(self)
        except UnicodeDecodeError:
            if self.process:
                if self.stdout:
                    return repr(self.stdout)
            return repr("")

    def __long__(self):
        return long(str(self).strip())

    def __float__(self):
        return float(str(self).strip())

    def __int__(self):
        return int(str(self).strip())



def output_redirect_is_filename(out):
    return out \
        and not callable(out) \
        and not hasattr(out, "write") \
        and not isinstance(out, (cStringIO, StringIO))






class Command(object):
    """ represents an un-run system program, like "ls" or "cd".  because it
    represents the program itself (and not a running instance of it), it should
    hold very little state.  in fact, the only state it does hold is baked
    arguments.
    
    when a Command object is called, the result that is returned is a
    RunningCommand object, which represents the Command put into an execution
    state. """
    _prepend_stack = []

    _call_args = {
        # currently unsupported
        #"fg": False, # run command in foreground

        # run a command in the background.  commands run in the background
        # ignore SIGHUP and do not automatically exit when the parent process
        # ends
        "bg": False,

        "with": False, # prepend the command to every command after it
        "in": None,
        "out": None, # redirect STDOUT
        "err": None, # redirect STDERR
        "err_to_out": None, # redirect STDERR to STDOUT

        # stdin buffer size
        # 1 for line, 0 for unbuffered, any other number for that amount
        "in_bufsize": 0,
        # stdout buffer size, same values as above
        "out_bufsize": 1,
        "err_bufsize": 1,

        # this is how big the output buffers will be for stdout and stderr.
        # this is essentially how much output they will store from the process.
        # we use a deque, so if it overflows past this amount, the first items
        # get pushed off as each new item gets added.
        #
        # NOTICE
        # this is not a *BYTE* size, this is a *CHUNK* size...meaning, that if
        # you're buffering out/err at 1024 bytes, the internal buffer size will
        # be "internal_bufsize" CHUNKS of 1024 bytes
        "internal_bufsize": 3 * 1024 ** 2,

        "env": None,
        "piped": None,
        "iter": None,
        "iter_noblock": None,
        "ok_code": 0,
        "cwd": None,

        # the separator delimiting between a long-argument's name and its value
        # for example, --arg=derp, '=' is the long_sep
        "long_sep": "=",

        # this is for programs that expect their input to be from a terminal.
        # ssh is one of those programs
        "tty_in": False,
        "tty_out": True,

        "encoding": DEFAULT_ENCODING,
        "decode_errors": "strict",

        # how long the process should run before it is auto-killed
        "timeout": 0,
        "timeout_signal": signal.SIGKILL,

        # TODO write some docs on "long-running processes"
        # these control whether or not stdout/err will get aggregated together
        # as the process runs.  this has memory usage implications, so sometimes
        # with long-running processes with a lot of data, it makes sense to
        # set these to true
        "no_out": False,
        "no_err": False,
        "no_pipe": False,

        # if any redirection is used for stdout or stderr, internal buffering
        # of that data is not stored.  this forces it to be stored, as if
        # the output is being T'd to both the redirected destination and our
        # internal buffers
        "tee": None,

        # will be called when a process terminates without exception.  this
        # option also puts the command in the background, since it doesn't make
        # sense to have an un-backgrounded command with a done callback
        "done": None,

        # a tuple (rows, columns) of the desired size of both the stdout and
        # stdin ttys, if ttys are being used
        "tty_size": (20, 80),
    }

    # these are arguments that cannot be called together, because they wouldn't
    # make any sense
    _incompatible_call_args = (
        #("fg", "bg", "Command can't be run in the foreground and background"),
        ("err", "err_to_out", "Stderr is already being redirected"),
        ("piped", "iter", "You cannot iterate when this command is being piped"),
        ("piped", "no_pipe", "Using a pipe doesn't make sense if you've \
disabled the pipe"),
        ("no_out", "iter", "You cannot iterate over output if there is no \
output"),
    )


    # this method exists because of the need to have some way of letting
    # manual object instantiation not perform the underscore-to-dash command
    # conversion that resolve_program uses.
    #
    # there are 2 ways to create a Command object.  using sh.Command(<program>)
    # or by using sh.<program>.  the method fed into sh.Command must be taken
    # literally, and so no underscore-dash conversion is performed.  the one
    # for sh.<program> must do the underscore-dash converesion, because we
    # can't type dashes in method names
    @classmethod
    def _create(cls, program, **default_kwargs):
        path = resolve_program(program)
        if not path:
            raise CommandNotFound(program)

        cmd = cls(path)
        if default_kwargs:
            cmd = cmd.bake(**default_kwargs)

        return cmd


    def __init__(self, path):
        found = which(path)
        if not found:
            raise CommandNotFound(path)

        self._path = encode_to_py3bytes_or_py2str(found) 

        self._partial = False
        self._partial_baked_args = []
        self._partial_call_args = {}

        # bugfix for functools.wraps.  issue #121
        self.__name__ = str(self)


    def __getattribute__(self, name):
        # convenience
        getattr = partial(object.__getattribute__, self)

        if name.startswith("_"):
            return getattr(name)
        if name == "bake":
            return getattr("bake")
        if name.endswith("_"):
            name = name[:-1]

        return getattr("bake")(name)


    @staticmethod
    def _extract_call_args(kwargs, to_override={}):
        kwargs = kwargs.copy()
        call_args = {}
        for parg, default in Command._call_args.items():
            key = "_" + parg

            if key in kwargs:
                call_args[parg] = kwargs[key]
                del kwargs[key]
            elif parg in to_override:
                call_args[parg] = to_override[parg]

        # test for incompatible call args
        s1 = set(call_args.keys())
        for args in Command._incompatible_call_args:
            args = list(args)
            error = args.pop()

            if s1.issuperset(args):
                raise TypeError("Invalid special arguments %r: %s" % (args, error))

        return call_args, kwargs


    def _aggregate_keywords(self, keywords, sep, raw=False):
        processed = []
        for k, v in keywords.items():
            # we're passing a short arg as a kwarg, example:
            # cut(d="\t")
            if len(k) == 1:
                if v is not False:
                    processed.append(encode_to_py3bytes_or_py2str("-" + k))
                    if v is not True:
                        processed.append(encode_to_py3bytes_or_py2str(v))

            # we're doing a long arg
            else:
                if not raw:
                    k = k.replace("_", "-")

                if v is True:
                    processed.append(encode_to_py3bytes_or_py2str("--" + k))
                elif v is False:
                    pass
                else:
                    arg = encode_to_py3bytes_or_py2str("--%s%s%s" % (k, sep, v))
                    processed.append(arg)
        return processed


    def _compile_args(self, args, kwargs, sep):
        processed_args = []

        # aggregate positional args
        for arg in args:
            if isinstance(arg, (list, tuple)):
                if not arg:
                    warnings.warn("Empty list passed as an argument to %r. \
If you're using glob.glob(), please use sh.glob() instead." % self._path, stacklevel=3)
                for sub_arg in arg:
                    processed_args.append(encode_to_py3bytes_or_py2str(sub_arg))
            elif isinstance(arg, dict):
                processed_args += self._aggregate_keywords(arg, sep, raw=True)
            else:
                processed_args.append(encode_to_py3bytes_or_py2str(arg))

        # aggregate the keyword arguments
        processed_args += self._aggregate_keywords(kwargs, sep)

        return processed_args


    # TODO needs documentation
    def bake(self, *args, **kwargs):
        fn = Command(self._path)
        fn._partial = True

        call_args, kwargs = self._extract_call_args(kwargs)

        pruned_call_args = call_args
        for k, v in Command._call_args.items():
            try:
                if pruned_call_args[k] == v:
                    del pruned_call_args[k]
            except KeyError:
                continue

        fn._partial_call_args.update(self._partial_call_args)
        fn._partial_call_args.update(pruned_call_args)
        fn._partial_baked_args.extend(self._partial_baked_args)
        sep = pruned_call_args.get("long_sep", self._call_args["long_sep"])
        fn._partial_baked_args.extend(self._compile_args(args, kwargs, sep))
        return fn

    def __str__(self):
        """ in python3, should return unicode.  in python2, should return a
        string of bytes """
        if IS_PY3:
            return self.__unicode__()
        else:
            return self.__unicode__().encode(DEFAULT_ENCODING)


    def __eq__(self, other):
        try:
            return str(self) == str(other)
        except:
            return False
    __hash__ = None  # Avoid DeprecationWarning in Python < 3


    def __repr__(self):
        """ in python3, should return unicode.  in python2, should return a
        string of bytes """
        return "<Command %r>" % str(self)


    def __unicode__(self):
        """ a magic method defined for python2.  calling unicode() on a
        self will call this """
        baked_args = " ".join(item.decode(DEFAULT_ENCODING) for item in self._partial_baked_args)
        if baked_args:
            baked_args = " " + baked_args
        return self._path.decode(DEFAULT_ENCODING) + baked_args

    def __enter__(self):
        with_context_warning()
        self(_with=True)

    def __exit__(self, typ, value, traceback):
        Command._prepend_stack.pop()


    def __call__(self, *args, **kwargs):
        kwargs = kwargs.copy()
        args = list(args)

        cmd = []

        # aggregate any 'with' contexts
        call_args = Command._call_args.copy()
        for prepend in self._prepend_stack:
            # don't pass the 'with' call arg
            pcall_args = prepend.call_args.copy()
            try:
                del pcall_args["with"]
            except:
                pass

            call_args.update(pcall_args)
            cmd.extend(prepend.cmd)

        cmd.append(self._path)

        # here we extract the special kwargs and override any
        # special kwargs from the possibly baked command
        tmp_call_args, kwargs = self._extract_call_args(kwargs, self._partial_call_args)
        call_args.update(tmp_call_args)

        if not getattr(call_args["ok_code"], "__iter__", None):
            call_args["ok_code"] = [call_args["ok_code"]]


        if call_args["done"]:
            call_args["bg"] = True

        # check if we're piping via composition
        stdin = call_args["in"]
        if args:
            first_arg = args.pop(0)
            if isinstance(first_arg, RunningCommand):
                # it makes sense that if the input pipe of a command is running
                # in the background, then this command should run in the
                # background as well
                if first_arg.call_args["bg"]:
                    call_args["bg"] = True

                if first_arg.call_args["piped"] == "direct":
                    stdin = first_arg.process
                else:
                    stdin = first_arg.process._pipe_queue

            else:
                args.insert(0, first_arg)

        processed_args = self._compile_args(args, kwargs, call_args["long_sep"])

        # makes sure our arguments are broken up correctly
        split_args = self._partial_baked_args + processed_args

        final_args = split_args

        cmd.extend(final_args)


        # stdout redirection
        stdout = call_args["out"]
        if output_redirect_is_filename(stdout):
            stdout = open(str(stdout), "wb")

        # stderr redirection
        stderr = call_args["err"]
        if output_redirect_is_filename(stderr):
            stderr = open(str(stderr), "wb")


        return RunningCommand(cmd, call_args, stdin, stdout, stderr)




def _start_daemon_thread(fn, *args):
    thrd = threading.Thread(target=fn, args=args)
    thrd.daemon = True
    thrd.start()
    return thrd


def setwinsize(fd, rows_cols):
    """ set the terminal size of a tty file descriptor.  borrowed logic
    from pexpect.py """
    rows, cols = rows_cols
    TIOCSWINSZ = getattr(termios, 'TIOCSWINSZ', -2146929561)

    s = struct.pack('HHHH', rows, cols, 0, 0)
    fcntl.ioctl(fd, TIOCSWINSZ, s)

def construct_streamreader_callback(process, handler):
    """ here we're constructing a closure for our streamreader callback.  this
    is used in the case that we pass a callback into _out or _err, meaning we
    want to our callback to handle each bit of output

    we construct the closure based on how many arguments it takes.  the reason
    for this is to make it as easy as possible for people to use, without
    limiting them.  a new user will assume the callback takes 1 argument (the
    data).  as they get more advanced, they may want to terminate the process,
    or pass some stdin back, and will realize that they can pass a callback of
    more args """


    # implied arg refers to the "self" that methods will pass in.  we need to
    # account for this implied arg when figuring out what function the user
    # passed in based on number of args
    implied_arg = 0

    partial_args = 0
    handler_to_inspect = handler

    if isinstance(handler, partial):
        partial_args = len(handler.args)
        handler_to_inspect = handler.func

    if inspect.ismethod(handler_to_inspect):
        implied_arg = 1
        num_args = len(inspect.getargspec(handler_to_inspect).args)

    else:
        if inspect.isfunction(handler_to_inspect):
            num_args = len(inspect.getargspec(handler_to_inspect).args)

        # is an object instance with __call__ method
        else:
            implied_arg = 1
            num_args = len(inspect.getargspec(handler_to_inspect.__call__).args)


    net_args = num_args - implied_arg - partial_args

    handler_args = ()

    # just the chunk
    if net_args == 1:
        handler_args = ()

    # chunk, stdin
    if net_args == 2:
        handler_args = (process.stdin,)

    # chunk, stdin, process
    elif net_args == 3:
        # notice we're only storing a weakref, to prevent cyclic references
        # (where the process holds a streamreader, and a streamreader holds a
        # handler-closure with a reference to the process
        handler_args = (process.stdin, weakref.ref(process))

    def fn(chunk):
        # this is pretty ugly, but we're evaluating the process at call-time,
        # because it's a weakref
        args = handler_args
        if len(args) == 2:
            args = (handler_args[0], handler_args[1]())
        return handler(chunk, *args)

    return fn



def handle_process_exit_code(exit_code):
    """ this should only ever be called once for each child process """
    # if we exited from a signal, let our exit code reflect that
    if os.WIFSIGNALED(exit_code):
        return -os.WTERMSIG(exit_code)
    # otherwise just give us a normal exit code
    elif os.WIFEXITED(exit_code):
        return os.WEXITSTATUS(exit_code)
    else:
        raise RuntimeError("Unknown child exit status!")




class OProc(object):
    """ this class is instantiated by RunningCommand for a command to be exec'd.
    it handles all the nasty business involved with correctly setting up the
    input/output to the child process.  it gets its name for subprocess.Popen
    (process open) but we're calling ours OProc (open process) """

    _default_window_size = (24, 80)

    # used in redirecting
    STDOUT = -1
    STDERR = -2

    def __init__(self, parent_log, cmd, stdin, stdout, stderr, call_args, pipe):
        """
            cmd is the full string that will be exec'd.  it includes the program
            name and all its arguments

            stdin, stdout, stderr are what the child will use for standard
            input/output/err

            call_args is a mapping of all the special keyword arguments to apply
            to the child process
        """

        self.call_args = call_args

        # I had issues with getting 'Input/Output error reading stdin' from dd,
        # until I set _tty_out=False
        if self.call_args["piped"] == "direct":
            self.call_args["tty_out"] = False

        self._single_tty = self.call_args["tty_in"] and self.call_args["tty_out"]

        # this logic is a little convoluted, but basically this top-level
        # if/else is for consolidating input and output TTYs into a single
        # TTY.  this is the only way some secure programs like ssh will
        # output correctly (is if stdout and stdin are both the same TTY)
        if self._single_tty:
            self._stdin_fd, self._slave_stdin_fd = pty.openpty()

            self._stdout_fd = self._stdin_fd
            self._slave_stdout_fd = self._slave_stdin_fd

            self._stderr_fd = self._stdin_fd
            self._slave_stderr_fd = self._slave_stdin_fd

        # do not consolidate stdin and stdout.  this is the most common use-
        # case
        else:
            # this check here is because we may be doing "direct" piping
            # (_piped="direct"), and so our stdin might be an instance of
            # OProc
            if isinstance(stdin, OProc):
                self._slave_stdin_fd = stdin._stdout_fd
                self._stdin_fd = None
            elif self.call_args["tty_in"]:
                self._slave_stdin_fd, self._stdin_fd = pty.openpty()
            # tty_in=False is the default
            else:
                self._slave_stdin_fd, self._stdin_fd = os.pipe()


            # tty_out=True is the default
            if self.call_args["tty_out"]:
                self._stdout_fd, self._slave_stdout_fd = pty.openpty()
            else:
                self._stdout_fd, self._slave_stdout_fd = os.pipe()

            # unless STDERR is going to STDOUT, it ALWAYS needs to be a pipe,
            # and never a PTY.  the reason for this is not totally clear to me,
            # but it has to do with the fact that if STDERR isn't set as the
            # CTTY (because STDOUT is), the STDERR buffer won't always flush
            # by the time the process exits, and the data will be lost.
            # i've only seen this on OSX.
            if stderr is not OProc.STDOUT:
                self._stderr_fd, self._slave_stderr_fd = os.pipe()


        # this is a hack, but what we're doing here is intentionally throwing an
        # OSError exception if our child processes's directory doesn't exist,
        # but we're doing it BEFORE we fork.  the reason for before the fork is
        # error handling.  i'm currently too lazy to implement what
        # subprocess.py did and set up a error pipe to handle exceptions that
        # happen in the child between fork and exec.  it has only been seen in
        # the wild for a missing cwd, so we'll handle it here.
        cwd = self.call_args["cwd"]
        if cwd is not None and not os.path.exists(cwd):
            os.chdir(cwd)


        gc_enabled = gc.isenabled()
        if gc_enabled:
            gc.disable()
        self.pid = os.fork()


        # child
        if self.pid == 0: # pragma: no cover
            try:
                # ignoring SIGHUP lets us persist even after the parent process
                # exits.  only ignore if we're backgrounded
                if self.call_args["bg"] is True:
                    signal.signal(signal.SIGHUP, signal.SIG_IGN)

                # this piece of ugliness is due to a bug where we can lose output
                # if we do os.close(self._slave_stdout_fd) in the parent after
                # the child starts writing.
                # see http://bugs.python.org/issue15898
                if IS_OSX:
                    time.sleep(0.01)

                os.setsid()

                if self.call_args["tty_out"]:
                    # set raw mode, so there isn't any weird translation of
                    # newlines to \r\n and other oddities.  we're not outputting
                    # to a terminal anyways
                    #
                    # we HAVE to do this here, and not in the parent process,
                    # because we have to guarantee that this is set before the
                    # child process is run, and we can't do it twice.
                    tty.setraw(self._slave_stdout_fd)


                # if the parent-side fd for stdin exists, close it.  the case
                # where it may not exist is if we're using piped="direct"
                if self._stdin_fd:
                    os.close(self._stdin_fd)

                if not self._single_tty:
                    os.close(self._stdout_fd)
                    if stderr is not OProc.STDOUT:
                        os.close(self._stderr_fd)


                if cwd:
                    os.chdir(cwd)

                os.dup2(self._slave_stdin_fd, 0)
                os.dup2(self._slave_stdout_fd, 1)

                # we're not directing stderr to stdout?  then set self._slave_stderr_fd to
                # fd 2, the common stderr fd
                if stderr is OProc.STDOUT:
                    os.dup2(self._slave_stdout_fd, 2)
                else:
                    os.dup2(self._slave_stderr_fd, 2)

                # don't inherit file descriptors
                max_fd = resource.getrlimit(resource.RLIMIT_NOFILE)[0]
                os.closerange(3, max_fd)


                # set our controlling terminal.  tty_out defaults to true
                if self.call_args["tty_out"]:
                    tmp_fd = os.open(os.ttyname(1), os.O_RDWR)
                    os.close(tmp_fd)


                if self.call_args["tty_out"]:
                    setwinsize(1, self.call_args["tty_size"])

                # actually execute the process
                if self.call_args["env"] is None:
                    os.execv(cmd[0], cmd)
                else:
                    os.execve(cmd[0], cmd, self.call_args["env"])

            # we must ensure that we ALWAYS exit the child process, otherwise
            # the parent process code will be executed twice on exception
            # https://github.com/amoffat/sh/issues/202
            #
            # if your parent process experiences an exit code 255, it is most
            # likely that an exception occurred between the fork of the child
            # and the exec.  this should be reported.
            finally:
                os._exit(255)

        # parent
        else:
            if gc_enabled:
                gc.enable()

            # used to determine what exception to raise.  if our process was
            # killed via a timeout counter, we'll raise something different than
            # a SIGKILL exception
            self.timed_out = False

            self.started = time.time()
            self.cmd = cmd

            # exit code should only be manipulated from within self._wait_lock
            # to prevent race conditions
            self.exit_code = None

            self.stdin = stdin or Queue()

            # _pipe_queue is used internally to hand off stdout from one process
            # to another.  by default, all stdout from a process gets dumped
            # into this pipe queue, to be consumed in real time (hence the
            # thread-safe Queue), or at a potentially later time
            self._pipe_queue = Queue()

            # this is used to prevent a race condition when we're waiting for
            # a process to end, and the OProc's internal threads are also checking
            # for the processes's end
            self._wait_lock = threading.Lock()

            # these are for aggregating the stdout and stderr.  we use a deque
            # because we don't want to overflow
            self._stdout = deque(maxlen=self.call_args["internal_bufsize"])
            self._stderr = deque(maxlen=self.call_args["internal_bufsize"])

            if self.call_args["tty_in"]:
                setwinsize(self._stdin_fd, self.call_args["tty_size"])


            self.log = parent_log.get_child("process", repr(self))

            os.close(self._slave_stdin_fd)
            if not self._single_tty:
                os.close(self._slave_stdout_fd)
                if stderr is not OProc.STDOUT:
                    os.close(self._slave_stderr_fd)

            self.log.debug("started process")


            if self.call_args["tty_in"]:
                attr = termios.tcgetattr(self._stdin_fd)
                attr[3] &= ~termios.ECHO
                termios.tcsetattr(self._stdin_fd, termios.TCSANOW, attr)

            # this represents the connection from a Queue object (or whatever
            # we're using to feed STDIN) to the process's STDIN fd
            self._stdin_stream = None
            if not isinstance(self.stdin, OProc):
                self._stdin_stream = \
                        StreamWriter(self.log.get_child("streamwriter",
                            "stdin"), self._stdin_fd, self.stdin,
                            self.call_args["in_bufsize"],
                            self.call_args["encoding"],
                            self.call_args["tty_in"])

            stdout_pipe = None
            if pipe is OProc.STDOUT and not self.call_args["no_pipe"]:
                stdout_pipe = self._pipe_queue


            # this represents the connection from a process's STDOUT fd to
            # wherever it has to go, sometimes a pipe Queue (that we will use
            # to pipe data to other processes), and also an internal deque
            # that we use to aggregate all the output
            save_stdout = not self.call_args["no_out"] and \
                (self.call_args["tee"] in (True, "out") or stdout is None)


            # if we're piping directly into another process's filedescriptor, we
            # bypass reading from the stdout stream altogether, because we've
            # already hooked up this processes's stdout fd to the other
            # processes's stdin fd
            self._stdout_stream = None
            if self.call_args["piped"] != "direct":
                if callable(stdout):
                    stdout = construct_streamreader_callback(self, stdout)
                self._stdout_stream = \
                        StreamReader(self.log.get_child("streamreader",
                            "stdout"), self._stdout_fd, stdout, self._stdout,
                            self.call_args["out_bufsize"],
                            self.call_args["encoding"],
                            self.call_args["decode_errors"], stdout_pipe,
                            save_data=save_stdout)

            if stderr is OProc.STDOUT or self._single_tty:
                self._stderr_stream = None
            else:
                stderr_pipe = None
                if pipe is OProc.STDERR and not self.call_args["no_pipe"]:
                    stderr_pipe = self._pipe_queue

                save_stderr = not self.call_args["no_err"] and \
                    (self.call_args["tee"] in ("err",) or stderr is None)

                if callable(stderr):
                    stderr = construct_streamreader_callback(self, stderr)

                self._stderr_stream = StreamReader(Logger("streamreader"),
                    self._stderr_fd, stderr, self._stderr,
                    self.call_args["err_bufsize"], self.call_args["encoding"],
                    self.call_args["decode_errors"], stderr_pipe,
                    save_data=save_stderr)


            # start the main io threads
            # stdin thread is not needed if we are connecting from another process's stdout pipe
            self._input_thread = None
            if self._stdin_stream:
                self._input_thread = _start_daemon_thread(self.input_thread,
                        self._stdin_stream)

            self._output_thread = _start_daemon_thread(self.output_thread,
                    self._stdout_stream, self._stderr_stream,
                    self.call_args["timeout"], self.started,
                    self.call_args["timeout_signal"])


    def __repr__(self):
        return "<Process %d %r>" % (self.pid, self.cmd[:500])


    def change_in_bufsize(self, buf):
        self._stdin_stream.stream_bufferer.change_buffering(buf)

    def change_out_bufsize(self, buf):
        self._stdout_stream.stream_bufferer.change_buffering(buf)

    def change_err_bufsize(self, buf):
        self._stderr_stream.stream_bufferer.change_buffering(buf)


    def input_thread(self, stdin):
        """ this is run in a separate thread.  it writes into our process's
        stdin (a streamwriter) and waits the process to end AND everything that
        can be written to be written """
        done = False
        while not done and self.is_alive():
            self.log.debug("%r ready for more input", stdin)
            done = stdin.write()

        stdin.close()


    def output_thread(self, stdout, stderr, timeout, started, timeout_exc):
        """ this function is run in a separate thread.  it reads from the
        process's stdout stream (a streamreader), and waits for it to claim that
        its done """

        readers = []
        errors = []

        if stdout is not None:
            readers.append(stdout)
            errors.append(stdout)
        if stderr is not None:
            readers.append(stderr)
            errors.append(stderr)

        # this is our select loop for polling stdout or stderr that is ready to
        # be read and processed.  if one of those streamreaders indicate that it
        # is done altogether being read from, we remove it from our list of
        # things to poll.  when no more things are left to poll, we leave this
        # loop and clean up
        while readers:
            outputs, inputs, err = select.select(readers, [], errors, 0.1)

            # stdout and stderr
            for stream in outputs:
                self.log.debug("%r ready to be read from", stream)
                done = stream.read()
                if done:
                    readers.remove(stream)

            for stream in err:
                pass

            # test if the process has been running too long
            if timeout:
                now = time.time()
                if now - started > timeout:
                    self.log.debug("we've been running too long")
                    self.timed_out = True
                    self.signal(timeout_exc)


        # this is here because stdout may be the controlling TTY, and
        # we can't close it until the process has ended, otherwise the
        # child will get SIGHUP.  typically, if we've broken out of
        # the above loop, and we're here, the process is just about to
        # end, so it's probably ok to aggressively poll self.is_alive()
        #
        # the other option to this would be to do the CTTY close from
        # the method that does the actual os.waitpid() call, but the
        # problem with that is that the above loop might still be
        # running, and closing the fd will cause some operation to
        # fail.  this is less complex than wrapping all the ops
        # in the above loop with out-of-band fd-close exceptions
        while self.is_alive():
            time.sleep(0.001)

        if stdout:
            stdout.close()

        if stderr:
            stderr.close()


    @property
    def stdout(self):
        return "".encode(self.call_args["encoding"]).join(self._stdout)

    @property
    def stderr(self):
        return "".encode(self.call_args["encoding"]).join(self._stderr)


    def signal(self, sig):
        self.log.debug("sending signal %d", sig)
        try:
            os.kill(self.pid, sig)
        except OSError:
            pass

    def kill(self):
        self.log.debug("killing")
        self.signal(signal.SIGKILL)

    def terminate(self):
        self.log.debug("terminating")
        self.signal(signal.SIGTERM)


    def is_alive(self):
        """ polls if our child process has completed, without blocking.  this
        method has side-effects, such as setting our exit_code, if we happen to
        see our child exit while this is running """

        if self.exit_code is not None:
            return False

        # what we're doing here essentially is making sure that the main thread
        # (or another thread), isn't calling .wait() on the process.  because
        # .wait() calls os.waitpid(self.pid, 0), we can't do an os.waitpid
        # here...because if we did, and the process exited while in this
        # thread, the main thread's os.waitpid(self.pid, 0) would raise OSError
        # (because the process ended in another thread).
        #
        # so essentially what we're doing is, using this lock, checking if
        # we're calling .wait(), and if we are, let .wait() get the exit code
        # and handle the status, otherwise let us do it.
        acquired = self._wait_lock.acquire(False)
        if not acquired:
            if self.exit_code is not None:
                return False
            return True

        try:
            # WNOHANG is just that...we're calling waitpid without hanging...
            # essentially polling the process.  the return result is (0, 0) if
            # there's no process status, so we check that pid == self.pid below
            # in order to determine how to proceed
            pid, exit_code = os.waitpid(self.pid, os.WNOHANG)
            if pid == self.pid:
                self.exit_code = handle_process_exit_code(exit_code)
                return False

        # no child process
        except OSError:
            return False
        else:
            return True
        finally:
            self._wait_lock.release()


    def wait(self):
        """ waits for the process to complete, handles the exit code """

        self.log.debug("acquiring wait lock to wait for completion")
        # using the lock in a with-context blocks, which is what we want if
        # we're running wait()
        with self._wait_lock:
            self.log.debug("got wait lock")

            if self.exit_code is None:
                self.log.debug("exit code not set, waiting on pid")
                pid, exit_code = os.waitpid(self.pid, 0) # blocks
                self.exit_code = handle_process_exit_code(exit_code)
            else:
                self.log.debug("exit code already set (%d), no need to wait", self.exit_code)

            # we may not have a thread for stdin, if the pipe has been connected
            # via _piped="direct"
            if self._input_thread:
                self._input_thread.join()

            # wait for our stdout and stderr streamreaders to finish reading and
            # aggregating the process output
            self._output_thread.join()

            return self.exit_code




class DoneReadingForever(Exception): pass
class NotYetReadyToRead(Exception): pass


def determine_how_to_read_input(input_obj):
    """ given some kind of input object, return a function that knows how to
    read chunks of that input object.
    
    each reader function should return a chunk and raise a DoneReadingForever
    exception, or return None, when there's no more data to read

    NOTE: the function returned does not need to care much about the requested
    buffering type (eg, unbuffered vs newline-buffered).  the StreamBufferer
    will take care of that.  these functions just need to return a
    reasonably-sized chunk of data. """

    get_chunk = None

    if isinstance(input_obj, Queue):
        log_msg = "queue"
        get_chunk = get_queue_chunk_reader(input_obj)

    elif callable(input_obj):
        log_msg = "callable"
        get_chunk = get_callable_chunk_reader(input_obj)

    # also handles stringio
    elif hasattr(input_obj, "read"):
        log_msg = "file descriptor"
        get_chunk = get_file_chunk_reader(input_obj)

    elif isinstance(input_obj, basestring):
        log_msg = "string"
        get_chunk = get_iter_string_reader(input_obj)

    else:
        log_msg = "general iterable"
        get_chunk = get_iter_chunk_reader(iter(input_obj))

    return get_chunk, log_msg



def get_queue_chunk_reader(stdin):
    def fn():
        try:
            chunk = stdin.get(True, 0.01)
        except Empty:
            raise NotYetReadyToRead
        if chunk is None:
            raise DoneReadingForever
        return chunk
    return fn


def get_callable_chunk_reader(stdin):
    def fn():
        try:
            return stdin()
        except:
            raise DoneReadingForever
    return fn


def get_iter_string_reader(stdin):
    """ return an iterator that returns a chunk of a string every time it is
    called.  notice that even though bufsize_type might be line buffered, we're
    not doing any line buffering here.  that's because our StreamBufferer
    handles all buffering.  we just need to return a reasonable-sized chunk. """
    bufsize = 1024
    iter_str = (stdin[i:i + bufsize] for i in range(0, len(stdin), bufsize))
    return get_iter_chunk_reader(iter_str)


def get_iter_chunk_reader(stdin):
    def fn():
        try:
            if IS_PY3:
                chunk = stdin.__next__()
            else:
                chunk = stdin.next()
            return chunk
        except StopIteration:
            raise DoneReadingForever
    return fn

def get_file_chunk_reader(stdin):
    bufsize = 1024

    def fn():
        chunk = stdin.read(bufsize)
        if not chunk:
            raise DoneReadingForever
        else:
            return chunk
    return fn


def bufsize_type_to_bufsize(bf_type):
    """ for a given bufsize type, return the actual bufsize we will read.
    notice that although 1 means "newline-buffered", we're reading a chunk size
    of 1024.  this is because we have to read something.  we let a
    StreamBufferer instance handle splitting our chunk on newlines """

    # newlines
    if bf_type == 1:
        bufsize = 1024
    # unbuffered
    elif bf_type == 0:
        bufsize = 1
    # or buffered by specific amount
    else:
        bufsize = bf_type

    return bufsize



class StreamWriter(object):
    """ StreamWriter reads from some input (the stdin param) and writes to a fd
    (the stream param).  the stdin may be a Queue, a callable, something with
    the "read" method, a string, or an iterable """

    def __init__(self, log, stream, stdin, bufsize_type, encoding, tty_in):
        self.stream = stream
        self.stdin = stdin

        self.log = log
        self.encoding = encoding
        self.tty_in = tty_in


        self.stream_bufferer = StreamBufferer(bufsize_type, self.encoding)
        self.get_chunk, log_msg = determine_how_to_read_input(stdin)
        self.log.debug("parsed stdin as a %s", log_msg)


    def fileno(self):
        """ defining this allows us to do select.select on an instance of this
        class """
        return self.stream



    def write(self):
        """ attempt to get a chunk of data to write to our child process's
        stdin, then write it.  the return value answers the questions "are we
        done writing forever?" """

        # get_chunk may sometimes return bytes, and sometimes returns trings
        # because of the nature of the different types of STDIN objects we
        # support
        try:
            chunk = self.get_chunk()
            if chunk is None:
                raise DoneReadingForever

        except DoneReadingForever:
            self.log.debug("done reading")

            if self.tty_in:
                # EOF time
                try:
                    char = termios.tcgetattr(self.stream)[6][termios.VEOF]
                except:
                    char = chr(4).encode()
                os.write(self.stream, char)

            return True

        except NotYetReadyToRead:
            self.log.debug("received no data")
            return False

        # if we're not bytes, make us bytes
        if IS_PY3 and hasattr(chunk, "encode"):
            chunk = chunk.encode(self.encoding)

        for proc_chunk in self.stream_bufferer.process(chunk):
            self.log.debug("got chunk size %d: %r", len(proc_chunk),
                    proc_chunk[:30])

            self.log.debug("writing chunk to process")
            try:
                os.write(self.stream, proc_chunk)
            except OSError:
                self.log.debug("OSError writing stdin chunk")
                return True


    def close(self):
        self.log.debug("closing, but flushing first")
        chunk = self.stream_bufferer.flush()
        self.log.debug("got chunk size %d to flush: %r", len(chunk), chunk[:30])
        try:
            if chunk:
                os.write(self.stream, chunk)

            if not self.tty_in:
                self.log.debug("we used a TTY, so closing the stream")
                os.close(self.stream)

        except OSError:
            pass



def determine_how_to_feed_output(handler, encoding, decode_errors):
    if callable(handler):
        process, finish = get_callback_chunk_consumer(handler, encoding,
                decode_errors)
    elif isinstance(handler, cStringIO):
        process, finish = get_cstringio_chunk_consumer(handler)
    elif isinstance(handler, StringIO):
        process, finish = get_stringio_chunk_consumer(handler, encoding,
                decode_errors)
    elif hasattr(handler, "write"):
        process, finish = get_file_chunk_consumer(handler)
    else:
        process = lambda chunk: False
        finish = lambda: None

    return process, finish


def get_file_chunk_consumer(handler):
    def process(chunk):
        handler.write(chunk)
        # we should flush on an fd.  chunk is already the correctly-buffered
        # size, so we don't need the fd buffering as well
        handler.flush()
        return False

    def finish():
        if hasattr(handler, "flush"):
            handler.flush()

    return process, finish

def get_callback_chunk_consumer(handler, encoding, decode_errors):
    def process(chunk):
        # try to use the encoding first, if that doesn't work, send
        # the bytes, because it might be binary
        try:
            chunk = chunk.decode(encoding, decode_errors)
        except UnicodeDecodeError:
            pass
        return handler(chunk)

    def finish():
        pass

    return process, finish

def get_cstringio_chunk_consumer(handler):
    def process(chunk):
        handler.write(chunk)
        return False

    def finish():
        pass

    return process, finish


def get_stringio_chunk_consumer(handler, encoding, decode_errors):
    def process(chunk):
        handler.write(chunk.decode(encoding, decode_errors))
        return False

    def finish():
        pass

    return process, finish


class StreamReader(object):
    """ reads from some output (the stream) and sends what it just read to the
    handler.  """
    def __init__(self, log, stream, handler, buffer, bufsize_type, encoding,
            decode_errors, pipe_queue=None, save_data=True):
        self.stream = stream
        self.buffer = buffer
        self.save_data = save_data
        self.encoding = encoding
        self.decode_errors = decode_errors

        self.pipe_queue = None
        if pipe_queue:
            self.pipe_queue = weakref.ref(pipe_queue)

        self.log = log

        self.stream_bufferer = StreamBufferer(bufsize_type, self.encoding,
                self.decode_errors)
        self.bufsize = bufsize_type_to_bufsize(bufsize_type)

        self.process_chunk, self.finish_chunk_processor = \
                determine_how_to_feed_output(handler, encoding, decode_errors)

        self.should_quit = False


    def fileno(self):
        """ defining this allows us to do select.select on an instance of this
        class """
        return self.stream

    def close(self):
        chunk = self.stream_bufferer.flush()
        self.log.debug("got chunk size %d to flush: %r", len(chunk), chunk[:30])
        if chunk:
            self.write_chunk(chunk)

        self.finish_chunk_processor()

        if self.pipe_queue and self.save_data:
            self.pipe_queue().put(None)

        try:
            os.close(self.stream)
        except OSError:
            pass


    def write_chunk(self, chunk):
        # in PY3, the chunk coming in will be bytes, so keep that in mind

        if not self.should_quit:
            self.should_quit = self.process_chunk(chunk)


        if self.save_data:
            self.buffer.append(chunk)

            if self.pipe_queue:
                self.log.debug("putting chunk onto pipe: %r", chunk[:30])
                self.pipe_queue().put(chunk)


    def read(self):
        # if we're PY3, we're reading bytes, otherwise we're reading
        # str
        try:
            chunk = os.read(self.stream, self.bufsize)
        except OSError as e:
            self.log.debug("got errno %d, done reading", e.errno)
            return True
        if not chunk:
            self.log.debug("got no chunk, done reading")
            return True

        self.log.debug("got chunk size %d: %r", len(chunk), chunk[:30])
        for chunk in self.stream_bufferer.process(chunk):
            self.write_chunk(chunk)




class StreamBufferer(object):
    """ this is used for feeding in chunks of stdout/stderr, and breaking it up
    into chunks that will actually be put into the internal buffers.  for
    example, if you have two processes, one being piped to the other, and you
    want that, first process to feed lines of data (instead of the chunks
    however they come in), OProc will use an instance of this class to chop up
    the data and feed it as lines to be sent down the pipe """

    def __init__(self, buffer_type, encoding=DEFAULT_ENCODING,
            decode_errors="strict"):
        # 0 for unbuffered, 1 for line, everything else for that amount
        self.type = buffer_type
        self.buffer = []
        self.n_buffer_count = 0
        self.encoding = encoding
        self.decode_errors = decode_errors

        # this is for if we change buffering types.  if we change from line
        # buffered to unbuffered, its very possible that our self.buffer list
        # has data that was being saved up (while we searched for a newline).
        # we need to use that up, so we don't lose it
        self._use_up_buffer_first = False

        # the buffering lock is used because we might chance the buffering
        # types from a different thread.  for example, if we have a stdout
        # callback, we might use it to change the way stdin buffers.  so we
        # lock
        self._buffering_lock = threading.RLock()
        self.log = Logger("stream_bufferer")


    def change_buffering(self, new_type):
        # TODO, when we stop supporting 2.6, make this a with context
        self.log.debug("acquiring buffering lock for changing buffering")
        self._buffering_lock.acquire()
        self.log.debug("got buffering lock for changing buffering")
        try:
            if new_type == 0:
                self._use_up_buffer_first = True

            self.type = new_type
        finally:
            self._buffering_lock.release()
            self.log.debug("released buffering lock for changing buffering")


    def process(self, chunk):
        # MAKE SURE THAT THE INPUT IS PY3 BYTES
        # THE OUTPUT IS ALWAYS PY3 BYTES

        # TODO, when we stop supporting 2.6, make this a with context
        self.log.debug("acquiring buffering lock to process chunk (buffering: %d)", self.type)
        self._buffering_lock.acquire()
        self.log.debug("got buffering lock to process chunk (buffering: %d)", self.type)
        try:
            # we've encountered binary, permanently switch to N size buffering
            # since matching on newline doesn't make sense anymore
            if self.type == 1:
                try:
                    chunk.decode(self.encoding, self.decode_errors)
                except:
                    self.log.debug("detected binary data, changing buffering")
                    self.change_buffering(1024)

            # unbuffered
            if self.type == 0:
                if self._use_up_buffer_first:
                    self._use_up_buffer_first = False
                    to_write = self.buffer
                    self.buffer = []
                    to_write.append(chunk)
                    return to_write

                return [chunk]

            # line buffered
            # we must decode the bytes before we try to match on newline
            elif self.type == 1:
                total_to_write = []
                chunk = chunk.decode(self.encoding, self.decode_errors)
                while True:
                    newline = chunk.find("\n")
                    if newline == -1:
                        break

                    chunk_to_write = chunk[:newline + 1]
                    if self.buffer:
                        # this is ugly, but it's designed to take the existing
                        # bytes buffer, join it together, tack on our latest
                        # chunk, then convert the whole thing to a string.
                        # it's necessary, i'm sure.  read the whole block to
                        # see why.
                        chunk_to_write = "".encode(self.encoding).join(self.buffer) \
                            + chunk_to_write.encode(self.encoding)
                        chunk_to_write = chunk_to_write.decode(self.encoding)

                        self.buffer = []
                        self.n_buffer_count = 0

                    chunk = chunk[newline + 1:]
                    total_to_write.append(chunk_to_write.encode(self.encoding))

                if chunk:
                    self.buffer.append(chunk.encode(self.encoding))
                    self.n_buffer_count += len(chunk)
                return total_to_write

            # N size buffered
            else:
                total_to_write = []
                while True:
                    overage = self.n_buffer_count + len(chunk) - self.type
                    if overage >= 0:
                        ret = "".encode(self.encoding).join(self.buffer) + chunk
                        chunk_to_write = ret[:self.type]
                        chunk = ret[self.type:]
                        total_to_write.append(chunk_to_write)
                        self.buffer = []
                        self.n_buffer_count = 0
                    else:
                        self.buffer.append(chunk)
                        self.n_buffer_count += len(chunk)
                        break
                return total_to_write
        finally:
            self._buffering_lock.release()
            self.log.debug("released buffering lock for processing chunk (buffering: %d)", self.type)


    def flush(self):
        self.log.debug("acquiring buffering lock for flushing buffer")
        self._buffering_lock.acquire()
        self.log.debug("got buffering lock for flushing buffer")
        try:
            ret = "".encode(self.encoding).join(self.buffer)
            self.buffer = []
            return ret
        finally:
            self._buffering_lock.release()
            self.log.debug("released buffering lock for flushing buffer")



@contextmanager
def pushd(path):
    """ pushd is just a specialized form of args, where we're passing in the
    current working directory """
    with args(_cwd=path):
        yield


@contextmanager
def args(*args, **kwargs):
    """ allows us to temporarily override all the special keyword parameters in
    a with context """
    call_args = Command._call_args
    old_args = call_args.copy()

    for key,value in kwargs.items():
        key = key.lstrip("_")
        call_args[key] = value

    yield
    call_args.update(old_args)



class Environment(dict):
    """ this allows lookups to names that aren't found in the global scope to be
    searched for as a program name.  for example, if "ls" isn't found in this
    module's scope, we consider it a system program and try to find it.

    we use a dict instead of just a regular object as the base class because the
    exec() statement used in this file requires the "globals" argument to be a
    dictionary """


    # this is a list of all of the names that the sh module exports that will
    # not resolve to functions.  we don't want to accidentally shadow real
    # commands with functions/imports that we define in sh.py.  for example,
    # "import time" may override the time system program
    whitelist = set([
        "Command",
        "CommandNotFound",
        "DEFAULT_ENCODING",
        "DoneReadingForever",
        "ErrorReturnCode",
        "NotYetReadyToRead",
        "SignalException",
        "TimeoutException",
        "__project_url__",
        "__version__",
        "args",
        "glob",
        "pushd",
    ])

    def __init__(self, globs, baked_args={}):
        self.globs = globs
        self.baked_args = baked_args
        self.disable_whitelist = False

    def __setitem__(self, k, v):
        self.globs[k] = v

    def __getitem__(self, k):
        # if we first import "_disable_whitelist" from sh, we can import
        # anything defined in the global scope of sh.py.  this is useful for our
        # tests
        if k == "_disable_whitelist":
            self.disable_whitelist = True
            return None

        # we're trying to import something real (maybe), see if it's in our
        # global scope
        if k in self.whitelist or self.disable_whitelist:
            try:
                return self.globs[k]
            except KeyError:
                pass

        # somebody tried to be funny and do "from sh import *"
        if k == "__all__":
            raise AttributeError("Cannot import * from sh. \
Please import sh or import programs individually.")


        # check if we're naming a dynamically generated ReturnCode exception
        exc = get_exc_from_name(k)
        if exc:
            return exc


        # https://github.com/ipython/ipython/issues/2577
        # https://github.com/amoffat/sh/issues/97#issuecomment-10610629
        if k.startswith("__") and k.endswith("__"):
            raise AttributeError

        # how about an environment variable?
        try:
            return os.environ[k]
        except KeyError:
            pass

        # is it a custom builtin?
        builtin = getattr(self, "b_" + k, None)
        if builtin:
            return builtin

        # it must be a command then
        # we use _create instead of instantiating the class directly because
        # _create uses resolve_program, which will automatically do underscore-
        # to-dash conversions.  instantiating directly does not use that
        return Command._create(k, **self.baked_args)


    # methods that begin with "b_" are custom builtins and will override any
    # program that exists in our path.  this is useful for things like
    # common shell builtins that people are used to, but which aren't actually
    # full-fledged system binaries

    def b_cd(self, path):
        os.chdir(path)

    def b_which(self, program):
        return which(program)




def run_repl(env): # pragma: no cover
    banner = "\n>> sh v{version}\n>> https://github.com/amoffat/sh\n"

    print(banner.format(version=__version__))
    while True:
        try:
            line = raw_input("sh> ")
        except (ValueError, EOFError):
            break

        try:
            exec(compile(line, "<dummy>", "single"), env, env)
        except SystemExit:
            break
        except:
            print(traceback.format_exc())

    # cleans up our last line
    print("")




# this is a thin wrapper around THIS module (we patch sys.modules[__name__]).
# this is in the case that the user does a "from sh import whatever"
# in other words, they only want to import certain programs, not the whole
# system PATH worth of commands.  in this case, we just proxy the
# import lookup to our Environment class
class SelfWrapper(ModuleType):
    def __init__(self, self_module, baked_args={}):
        # this is super ugly to have to copy attributes like this,
        # but it seems to be the only way to make reload() behave
        # nicely.  if i make these attributes dynamic lookups in
        # __getattr__, reload sometimes chokes in weird ways...
        for attr in ["__builtins__", "__doc__", "__name__", "__package__"]:
            setattr(self, attr, getattr(self_module, attr, None))

        # python 3.2 (2.7 and 3.3 work fine) breaks on osx (not ubuntu)
        # if we set this to None.  and 3.3 needs a value for __path__
        self.__path__ = []
        self.__self_module = self_module
        self.__env = Environment(globals(), baked_args)

    def __setattr__(self, name, value):
        if hasattr(self, "__env"):
            self.__env[name] = value
        else:
            ModuleType.__setattr__(self, name, value)

    def __getattr__(self, name):
        if name == "__env":
            raise AttributeError
        return self.__env[name]

    # accept special keywords argument to define defaults for all operations
    # that will be processed with given by return SelfWrapper
    def __call__(self, **kwargs):
        return SelfWrapper(self.__self_module, kwargs)



# we're being run as a stand-alone script
if __name__ == "__main__": # pragma: no cover
    try:
        arg = sys.argv.pop(1)
    except:
        arg = None

    if arg == "test":
        import subprocess

        def run_test(version, locale):
            py_version = "python%s" % version
            py_bin = which(py_version)

            if py_bin:
                print("Testing %s, locale %r" % (py_version.capitalize(),
                    locale))

                env = os.environ.copy()
                env["LANG"] = locale
                p = subprocess.Popen([py_bin, os.path.join(THIS_DIR, "test.py")]
                    + sys.argv[1:], env=env)
                return_code = p.wait()

                if return_code != 0:
                    exit(1)
            else:
                print("Couldn't find %s, skipping" % py_version.capitalize())

        versions = ("2.6", "2.7", "3.1", "3.2", "3.3", "3.4")
        locales = ("en_US.UTF-8", "C")
        for locale in locales:
            for version in versions:
                run_test(version, locale)

    else:
        env = Environment(globals())
        run_repl(env)

# we're being imported from somewhere
else:
    self = sys.modules[__name__]
    sys.modules[__name__] = SelfWrapper(self)