This file is indexed.

/usr/lib/python2.7/dist-packages/snuggs-1.4.1.egg-info/PKG-INFO is in python-snuggs 1.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
Metadata-Version: 1.0
Name: snuggs
Version: 1.4.1
Summary: Snuggs are s-expressions for Numpy
Home-page: https://github.com/mapbox/snuggs
Author: Sean Gillies
Author-email: sean@mapbox.com
License: MIT
Description: ======
        snuggs
        ======
        
        .. image:: https://travis-ci.org/mapbox/snuggs.svg?branch=master
           :target: https://travis-ci.org/mapbox/snuggs
        
        .. image:: https://coveralls.io/repos/mapbox/snuggs/badge.svg
           :target: https://coveralls.io/r/mapbox/snuggs
        
        Snuggs are s-expressions for Numpy
        
        .. code-block:: python
        
            >>> snuggs.eval("(+ (asarray 1 1) (asarray 2 2))")
            array([3, 3])
        
        Syntax
        ======
        
        Snuggs wraps Numpy in expressions with the following syntax:
        
        .. code-block::
        
            expression = "(" (operator | function) *arg ")"
            arg = expression | name | number | string
        
        Examples
        ========
        
        Addition of two numbers
        -----------------------
        
        .. code-block:: python
        
            import snuggs
            snuggs.eval('(+ 1 2)')
            # 3
        
        Multiplication of a number and an array
        ---------------------------------------
        
        Arrays can be created using ``asarray``.
        
        .. code-block:: python
        
            snuggs.eval("(* 3.5 (asarray 1 1))")
            # array([ 3.5,  3.5])
        
        Evaluation context
        ------------------
        
        Expressions can also refer by name to arrays in a local context.
        
        .. code-block:: python
        
            snuggs.eval("(+ (asarray 1 1) b)", b=np.array([2, 2]))
            # array([3, 3])
        
        This local context may be provided using keyword arguments (e.g.,
        ``b=np.array([2, 2])``), or by passing a dictionary that stores
        the keys and associated array values. Passing a dictionary, specifically
        an ``OrderedDict``, is important when using a function or operator that
        references the order in which values have been provided. For example,
        the ``read`` function will lookup the `i-th` value passed:
        
        .. code-block:: python
        
            ctx = OrderedDict((
                ('a', np.array([5, 5])),
                ('b', np.array([2, 2]))
            ))
            snuggs.eval("(- (read 1) (read 2))", ctx)
            # array([3, 3])
        
        Functions and operators
        =======================
        
        Arithmetic (``* + / -``) and logical (``< <= == != >= > & |``) operators are
        available. Members of the ``numpy`` module such as ``asarray()``, ``mean()``,
        and ``where()`` are also available.
        
        .. code-block:: python
        
            snuggs.eval("(mean (asarray 1 2 4))")
            # 2.3333333333333335
        
        .. code-block:: python
        
            snuggs.eval("(where (& tt tf) 1 0)",
                tt=numpy.array([True, True]),
                tf=numpy.array([True, False]))
            # array([1, 0])
        
        Higher-order functions
        ======================
        
        New in snuggs 1.1 are higher-order functions ``map`` and ``partial``.
        
        .. code-block:: python
        
            snuggs.eval("((partial * 2) 2)")
            # 4
        
            snuggs.eval('(asarray (map (partial * 2) (asarray 1 2 3)))')
            # array([2, 4, 6])
        
        Performance notes
        =================
        
        Snuggs makes simple calculator programs possible. None of the optimizations
        of, e.g., `numexpr <https://github.com/pydata/numexpr>`__ (multithreading,
        elimination of temporary data, etc) are currently available.
        
        If you're looking to combine Numpy with a more complete Lisp, see
        `Hy <https://github.com/hylang/hy>`__:
        
        .. code-block:: clojure
        
            => (import numpy)
            => (* 2 (.asarray numpy [1 2 3]))
            array([2, 4, 6])
        
Platform: UNKNOWN