/usr/lib/python2.7/dist-packages/ufl/algebra.py is in python-ufl 2017.2.0.0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | # -*- coding: utf-8 -*-
"Basic algebra operations."
# Copyright (C) 2008-2016 Martin Sandve Alnæs
#
# This file is part of UFL.
#
# UFL is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# UFL is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with UFL. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Anders Logg, 2008
from ufl.log import error
from ufl.utils.py23 import as_native_strings
from ufl.core.ufl_type import ufl_type
from ufl.core.expr import Expr, ufl_err_str
from ufl.core.operator import Operator
from ufl.constantvalue import Zero, zero, ScalarValue, IntValue, as_ufl
from ufl.checks import is_ufl_scalar, is_true_ufl_scalar
from ufl.index_combination_utils import merge_unique_indices
from ufl.sorting import sorted_expr
from ufl.precedence import parstr
# --- Algebraic operators ---
@ufl_type(num_ops=2,
inherit_shape_from_operand=0, inherit_indices_from_operand=0,
binop="__add__", rbinop="__radd__")
class Sum(Operator):
__slots__ = ()
def __new__(cls, a, b):
# Make sure everything is an Expr
a = as_ufl(a)
b = as_ufl(b)
# Assert consistent tensor properties
sh = a.ufl_shape
fi = a.ufl_free_indices
fid = a.ufl_index_dimensions
if b.ufl_shape != sh:
error("Can't add expressions with different shapes.")
if b.ufl_free_indices != fi:
error("Can't add expressions with different free indices.")
if b.ufl_index_dimensions != fid:
error("Can't add expressions with different index dimensions.")
# Skip adding zero
if isinstance(a, Zero):
return b
elif isinstance(b, Zero):
return a
# Handle scalars specially and sort operands
sa = isinstance(a, ScalarValue)
sb = isinstance(b, ScalarValue)
if sa and sb:
# Apply constant propagation
return as_ufl(a._value + b._value)
elif sa:
# Place scalar first
# operands = (a, b)
pass # a, b = a, b
elif sb:
# Place scalar first
# operands = (b, a)
a, b = b, a
# elif a == b:
# # Replace a+b with 2*foo
# return 2*a
else:
# Otherwise sort operands in a canonical order
# operands = (b, a)
a, b = sorted_expr((a, b))
# construct and initialize a new Sum object
self = Operator.__new__(cls)
self._init(a, b)
return self
def _init(self, a, b):
self.ufl_operands = (a, b)
def __init__(self, a, b):
Operator.__init__(self)
def evaluate(self, x, mapping, component, index_values):
return sum(o.evaluate(x, mapping, component,
index_values) for o in self.ufl_operands)
def __str__(self):
ops = [parstr(o, self) for o in self.ufl_operands]
if False:
# Implementation with line splitting:
limit = 70
delimop = " + \\\n + "
op = " + "
s = ops[0]
n = len(s)
for o in ops[1:]:
m = len(o)
if n+m > limit:
s += delimop
n = m
else:
s += op
n += m
s += o
return s
# Implementation with no line splitting:
return "%s" % " + ".join(ops)
@ufl_type(num_ops=2,
binop="__mul__", rbinop="__rmul__")
class Product(Operator):
"""The product of two or more UFL objects."""
__slots__ = as_native_strings((
"ufl_free_indices",
"ufl_index_dimensions",
))
def __new__(cls, a, b):
# Conversion
a = as_ufl(a)
b = as_ufl(b)
# Type checking
# Make sure everything is scalar
if a.ufl_shape or b.ufl_shape:
error("Product can only represent products of scalars, "
"got\n\t%s\nand\n\t%s" % (ufl_err_str(a), ufl_err_str(b)))
# Simplification
if isinstance(a, Zero) or isinstance(b, Zero):
# Got any zeros? Return zero.
fi, fid = merge_unique_indices(a.ufl_free_indices,
a.ufl_index_dimensions,
b.ufl_free_indices,
b.ufl_index_dimensions)
return Zero((), fi, fid)
sa = isinstance(a, ScalarValue)
sb = isinstance(b, ScalarValue)
if sa and sb: # const * const = const
# FIXME: Handle free indices like with zero? I think
# IntValue may be index annotated now?
return as_ufl(a._value * b._value)
elif sa: # 1 * b = b
if a._value == 1:
return b
# a, b = a, b
elif sb: # a * 1 = a
if b._value == 1:
return a
a, b = b, a
# elif a == b: # a * a = a**2 # TODO: Why? Maybe just remove this?
# if not a.ufl_free_indices:
# return a**2
else: # a * b = b * a
# Sort operands in a semi-canonical order
# (NB! This is fragile! Small changes here can have large effects.)
a, b = sorted_expr((a, b))
# Construction
self = Operator.__new__(cls)
self._init(a, b)
return self
def _init(self, a, b):
"Constructor, called by __new__ with already checked arguments."
self.ufl_operands = (a, b)
# Extract indices
fi, fid = merge_unique_indices(a.ufl_free_indices,
a.ufl_index_dimensions,
b.ufl_free_indices,
b.ufl_index_dimensions)
self.ufl_free_indices = fi
self.ufl_index_dimensions = fid
def __init__(self, a, b):
Operator.__init__(self)
ufl_shape = ()
def evaluate(self, x, mapping, component, index_values):
ops = self.ufl_operands
sh = self.ufl_shape
if sh:
if sh != ops[-1].ufl_shape:
error("Expecting nonscalar product operand to be the last by convention.")
tmp = ops[-1].evaluate(x, mapping, component, index_values)
ops = ops[:-1]
else:
tmp = 1
for o in ops:
tmp *= o.evaluate(x, mapping, (), index_values)
return tmp
def __str__(self):
a, b = self.ufl_operands
return " * ".join((parstr(a, self), parstr(b, self)))
@ufl_type(num_ops=2,
inherit_indices_from_operand=0,
binop="__div__", rbinop="__rdiv__")
class Division(Operator):
__slots__ = ()
def __new__(cls, a, b):
# Conversion
a = as_ufl(a)
b = as_ufl(b)
# Type checking
# TODO: Enabled workaround for nonscalar division in __div__,
# so maybe we can keep this assertion. Some algorithms may
# need updating.
if not is_ufl_scalar(a):
error("Expecting scalar nominator in Division.")
if not is_true_ufl_scalar(b):
error("Division by non-scalar is undefined.")
if isinstance(b, Zero):
error("Division by zero!")
# Simplification
# Simplification a/b -> a
if isinstance(a, Zero) or (isinstance(b, ScalarValue) and b._value == 1):
return a
# Simplification "literal a / literal b" -> "literal value of
# a/b". Avoiding integer division by casting to float
if isinstance(a, ScalarValue) and isinstance(b, ScalarValue):
return as_ufl(float(a._value) / float(b._value))
# Simplification "a / a" -> "1"
# if not a.ufl_free_indices and not a.ufl_shape and a == b:
# return as_ufl(1)
# Construction
self = Operator.__new__(cls)
self._init(a, b)
return self
def _init(self, a, b):
self.ufl_operands = (a, b)
def __init__(self, a, b):
Operator.__init__(self)
ufl_shape = () # self.ufl_operands[0].ufl_shape
def evaluate(self, x, mapping, component, index_values):
a, b = self.ufl_operands
a = a.evaluate(x, mapping, component, index_values)
b = b.evaluate(x, mapping, component, index_values)
# Avoiding integer division by casting to float
return float(a) / float(b)
def __str__(self):
return "%s / %s" % (parstr(self.ufl_operands[0], self),
parstr(self.ufl_operands[1], self))
@ufl_type(num_ops=2,
inherit_indices_from_operand=0,
binop="__pow__", rbinop="__rpow__")
class Power(Operator):
__slots__ = ()
def __new__(cls, a, b):
# Conversion
a = as_ufl(a)
b = as_ufl(b)
# Type checking
if not is_true_ufl_scalar(a):
error("Cannot take the power of a non-scalar expression %s." % ufl_err_str(a))
if not is_true_ufl_scalar(b):
error("Cannot raise an expression to a non-scalar power %s." % ufl_err_str(b))
# Simplification
if isinstance(a, ScalarValue) and isinstance(b, ScalarValue):
return as_ufl(a._value ** b._value)
if isinstance(a, Zero) and isinstance(b, ScalarValue):
bf = float(b)
if bf < 0:
error("Division by zero, cannot raise 0 to a negative power.")
else:
return zero()
if isinstance(b, ScalarValue) and b._value == 1:
return a
if isinstance(b, Zero):
return IntValue(1)
# Construction
self = Operator.__new__(cls)
self._init(a, b)
return self
def _init(self, a, b):
self.ufl_operands = (a, b)
def __init__(self, a, b):
Operator.__init__(self)
ufl_shape = ()
def evaluate(self, x, mapping, component, index_values):
a, b = self.ufl_operands
a = a.evaluate(x, mapping, component, index_values)
b = b.evaluate(x, mapping, component, index_values)
return a**b
def __str__(self):
a, b = self.ufl_operands
return "%s ** %s" % (parstr(a, self), parstr(b, self))
@ufl_type(num_ops=1,
inherit_shape_from_operand=0, inherit_indices_from_operand=0,
unop="__abs__")
class Abs(Operator):
__slots__ = ()
def __init__(self, a):
Operator.__init__(self, (a,))
if not isinstance(a, Expr):
error("Expecting Expr instance, not %s." % ufl_err_str(a))
def evaluate(self, x, mapping, component, index_values):
a = self.ufl_operands[0].evaluate(x, mapping, component, index_values)
return abs(a)
def __str__(self):
a, = self.ufl_operands
return "|%s|" % (parstr(a, self),)
|