This file is indexed.

/usr/share/pyshared/webhelpers/containers.py is in python-webhelpers 1.3-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
"""Container objects, and helpers for lists and dicts.

This would have been called this "collections" except that Python 2 can't
import a top-level module that's the same name as a module in the current
package.
"""

import sys

from webhelpers.misc import NotGiven

try:
    from collections import defaultdict
except ImportError:   # Python < 2.5
    class defaultdict(dict):
        """Backport of Python 2.5's ``defaultdict``.

        From the Python Cookbook.  Written by Jason Kirtland.
        http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/523034

        """
        def __init__(self, default_factory=None, *a, **kw):
            if (default_factory is not None and
                not hasattr(default_factory, '__call__')):
                raise TypeError('first argument must be callable')
            dict.__init__(self, *a, **kw)
            self.default_factory = default_factory
        def __getitem__(self, key):
            try:
                return dict.__getitem__(self, key)
            except KeyError:
                return self.__missing__(key)
        def __missing__(self, key):
            if self.default_factory is None:
                raise KeyError(key)
            self[key] = value = self.default_factory()
            return value
        def __reduce__(self):
            if self.default_factory is None:
                args = tuple()
            else:
                args = self.default_factory,
            return type(self), args, None, None, self.items()
        def copy(self):
            return self.__copy__()
        def __copy__(self):
            return type(self)(self.default_factory, self)
        def __deepcopy__(self, memo):
            import copy
            return type(self)(self.default_factory,
                              copy.deepcopy(self.items()))
        def __repr__(self):
            return 'defaultdict(%s, %s)' % (self.default_factory,
                                            dict.__repr__(self))

class DumbObject(object):
    """A container for arbitrary attributes.

    Usage::
    
        >>> do = DumbObject(a=1, b=2)
        >>> do.b
        2
    
    Alternatives to this class include ``collections.namedtuple`` in Python
    2.6, and ``formencode.declarative.Declarative`` in Ian Bicking's FormEncode
    package.  Both alternatives offer more features, but ``DumbObject``
    shines in its simplicity and lack of dependencies.

    """
    def __init__(self, **kw):
        self.__dict__.update(kw)


class Counter(object):
    """I count the number of occurrences of each value registered with me.
    
    Call the instance to register a value. The result is available as the
    ``.result`` attribute.  Example::

        >>> counter = Counter()
        >>> counter("foo")
        >>> counter("bar")
        >>> counter("foo")
        >>> sorted(counter.result.items())
        [('bar', 1), ('foo', 2)]

        >> counter.result
        {'foo': 2, 'bar': 1}

    To see the most frequently-occurring items in order::

        >>> counter.get_popular(1)
        [(2, 'foo')]
        >>> counter.get_popular()
        [(2, 'foo'), (1, 'bar')]

    Or if you prefer the list in item order::

        >>> counter.get_sorted_items()
        [('bar', 1), ('foo', 2)]
    """

    def __init__(self):
        self.result = defaultdict(int)
        self.total = 0  # Number of times instance has been called.

    def __call__(self, item):
        """Register an item with the counter."""
        self.result[item] += 1
        self.total += 1

    def get_popular(self, max_items=None):
        """Return the results as as a list of ``(count, item)`` pairs, with the
        most frequently occurring items first.

        If ``max_items`` is provided, return no more than that many items.
        """
        data = [(x[1], x[0]) for x in self.result.iteritems()]
        data.sort(key=lambda x: (sys.maxint - x[0], x[1]))
        if max_items:
            return data[:max_items]
        else:
            return data

    def get_sorted_items(self):
        """Return the result as a list of ``(item, count)`` pairs sorted by item.
        """
        data = self.result.items()
        data.sort()
        return data

    def correlate(class_, iterable):
        """Build a Counter from an iterable in one step.

        This is the same as adding each item individually.

        ::

            >>> counter = Counter.correlate(["A", "B", "A"])
            >>> counter.result["A"]
            2
            >>> counter.result["B"]
            1
        """
        counter = class_()
        for elm in iterable:
            counter(elm)
        return counter
    correlate = classmethod(correlate)


class Accumulator(object):
    """Accumulate a dict of all values for each key.

    Call the instance to register a value. The result is available as the
    ``.result`` attribute.  Example::

        >>> bowling_scores = Accumulator()
        >>> bowling_scores("Fred", 0)
        >>> bowling_scores("Barney", 10)
        >>> bowling_scores("Fred", 1)
        >>> bowling_scores("Barney", 9)
        >>> sorted(bowling_scores.result.items())
        [('Barney', [10, 9]), ('Fred', [0, 1])]

        >> bowling_scores.result
        {'Fred': [0, 1], 'Barney': [10, 9]}

    The values are stored in the order they're registered.

    Alternatives to this class include ``paste.util. multidict.MultiDict``
    in Ian Bicking's Paste package.
    """

    def __init__(self):
        self.result = defaultdict(list)

    def __call__(self, key, value):
        """Register a key-value pair."""
        self.result[key].append(value)

    def correlate(class_, iterable, key):
        """Create an Accumulator based on several related values.

        ``key`` is a function to calculate the key for each item, akin to
        ``list.sort(key=)``.

        This is the same as adding each item individually.
        """
        accumulator = class_()
        for v in iterable:
            k = key(v)
            accumulator(k, v)
        return accumulator
    correlate = classmethod(correlate)

class UniqueAccumulator(object):
    """Accumulate a dict of unique values for each key.

    The values are stored in an unordered set.

    Call the instance to register a value. The result is available as the
    ``.result`` attribute.
    """

    def __init__(self):
        self.result = defaultdict(set)

    def __call__(self, key, value):
        """Register a key-value pair."""
        self.result[key].add(value)


def unique(it):
    """Return a list of unique elements in the iterable, preserving the order.

    Usage::

        >>> unique([None, "spam", 2, "spam", "A", "spam", "spam", "eggs", "spam"])
        [None, 'spam', 2, 'A', 'eggs']
    """
    seen = set()
    ret = []
    for elm in it:
        if elm not in seen:
            ret.append(elm)
            seen.add(elm)
    return ret

def only_some_keys(dic, keys):
    """Return a copy of the dict with only the specified keys present.  
    
    ``dic`` may be any mapping. The return value is always a Python dict.

    ::

        >> only_some_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"])
        >>> sorted(only_some_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"]).items())
        [('A', 1), ('C', 3)]
    """
    ret = {}
    for key in keys:
        ret[key] = dic[key]   # Raises KeyError.
    return ret

def except_keys(dic, keys):
    """Return a copy of the dict without the specified keys.

    ::

        >>> except_keys({"A": 1, "B": 2, "C": 3}, ["A", "C"])
        {'B': 2}
    """
    ret = dic.copy()
    for key in keys:
        try:
            del ret[key]
        except KeyError:
            pass
    return ret

def extract_keys(dic, keys):
    """Return two copies of the dict.  The first has only the keys specified.
    The second has all the *other* keys from the original dict.

    ::

        >> extract_keys({"From": "F", "To": "T", "Received", R"}, ["To", "From"]) 
        ({"From": "F", "To": "T"}, {"Received": "R"})
        >>> regular, extra = extract_keys({"From": "F", "To": "T", "Received": "R"}, ["To", "From"]) 
        >>> sorted(regular.keys())
        ['From', 'To']
        >>> sorted(extra.keys())
        ['Received']
    """
    for k in keys:
        if k not in dic:
            raise KeyError("key %r is not in original mapping" % k)
    r1 = {}
    r2 = {}
    for k, v in dic.items():
        if k in keys:
            r1[k] = v
        else:
            r2[k] = v
    return r1, r2

def ordered_items(dic, key_order, other_keys=True, default=NotGiven):
    """Like ``dict.iteritems()`` but with a specified key order.

    Arguments:

    * ``dic`` is any mapping.
    * ``key_order`` is a list of keys.  Items will be yielded in this order.
    * ``other_keys`` is a boolean.
    * ``default`` is a value returned if the key is not in the dict.

    This yields the items listed in ``key_order``.  If a key does not exist
    in the dict, yield the default value if specified, otherwise skip the
    missing key.  Afterwards, if ``other_keys`` is true, yield the remaining
    items in an arbitrary order.

    Usage::

        >>> dic = {"To": "you", "From": "me", "Date": "2008/1/4", "Subject": "X"}
        >>> dic["received"] = "..."
        >>> order = ["From", "To", "Subject"]
        >>> list(ordered_items(dic, order, False))
        [('From', 'me'), ('To', 'you'), ('Subject', 'X')]
    """
    d = dict(dic)
    for key in key_order:
        if key in d:
            yield key, d.pop(key)
        elif default is not NotGiven:
            yield key, default
    if other_keys:
        for key, value in d.iteritems():
            yield key, value

def get_many(d, required=None, optional=None, one_of=None):
    """Extract values from a dict for unpacking into simple variables.

    ``d`` is a dict.

    ``required`` is a list of keys that must be in the dict. The corresponding
    values will be the first elements in the return list. Raise KeyError if any
    of the keys are missing.

    ``optional`` is a list of optional keys. The corresponding values will be
    appended to the return list, substituting None for missing keys.

    ``one_of`` is a list of alternative keys. Take the first key that exists 
    and append its value to the list. Raise KeyError if none of the keys exist.
    This argument will append exactly one value if specified, or will do
    nothing if not specified.

    Example::

        uid, action, limit, offset = get_many(request.params, 
            required=['uid', 'action'], optional=['limit', 'offset'])

    Contributed by Shazow.

    """
    r = []
    if required:
        for k in required:
            r.append(d[k])
    if optional:
        for k in optional:
            r.append(d.get(k))
    if one_of:
        for k in one_of:
            if k in d:
                r.append(d[k])
                break
        else:
            raise KeyError("none of these keys found: %s" % one_of)
    return r

def del_quiet(dic, keys):
    """Delete several keys from a dict, ignoring those that don't exist.
    
    This modifies the dict in place.

    ::

        >>> d ={"A": 1, "B": 2, "C": 3}
        >>> del_quiet(d, ["A", "C"])
        >>> d
        {'B': 2}
    """
    for key in keys:
        try:
            del dic[key]
        except KeyError:
            pass

def correlate_dicts(dicts, key):
    """Correlate several dicts under one superdict.

    If you have several dicts each with a 'name' key, this 
    puts them in a container dict keyed by name.

    ::

        >>> d1 = {"name": "Fred", "age": 41}
        >>> d2 = {"name": "Barney", "age": 31}
        >>> flintstones = correlate_dicts([d1, d2], "name")
        >>> sorted(flintstones.keys())
        ['Barney', 'Fred']
        >>> flintstones["Fred"]["age"]
        41

    If you're having trouble spelling this method correctly, remember:
    "relate" has one 'l'.  The 'r' is doubled because it occurs after a prefix.
    Thus "correlate".
    """
    ret = {}
    i = 0
    for d in dicts:
        try:
            my_key = d[key]
        except KeyError:
            msg = "'dicts' element %d contains no key '%s'"
            tup = i, key 
            raise KeyError(msg % tup)
        ret[my_key] = d
        i += 1
    return ret



def correlate_objects(objects, attr):
    """Correlate several objects under one dict.

    If you have several objects each with a 'name' attribute, this
    puts them in a dict keyed by name.

    ::

        >>> class Flintstone(DumbObject):
        ...    pass
        ...
        >>> fred = Flintstone(name="Fred", age=41)
        >>> barney = Flintstone(name="Barney", age=31)
        >>> flintstones = correlate_objects([fred, barney], "name")
        >>> sorted(flintstones.keys())
        ['Barney', 'Fred']
        >>> flintstones["Barney"].age
        31

    If you're having trouble spelling this method correctly, remember:
    "relate" has one 'l'.  The 'r' is doubled because it occurs after a prefix.
    Thus "correlate".
    """
    ret = {}
    i = 0
    for obj in objects:
        try:
            my_key = getattr(obj, attr)
        except AttributeError:
            msg = "'%s' object at 'objects[%d]' contains no attribute '%s'"
            tup = type(obj).__name__, i, attr 
            raise AttributeError(msg % tup)
        ret[my_key] = obj
        i += 1
    return ret


def distribute(lis, columns, direction, fill=None):
    """Distribute a list into a N-column table (list of lists).

    ``lis`` is a list of values to distribute.

    ``columns`` is an int greater than 1, specifying the number of columns in
    the table.

    ``direction`` is a string beginning with "H" (horizontal) or "V"
    (vertical), case insensitive.  This affects how values are distributed in
    the table, as described below.

    ``fill`` is a value that will be placed in any remaining cells if the data
    runs out before the last row or column is completed.  This must be an 
    immutable value such as ``None`` , ``""``, 0, "&nbsp;", etc.  If you
    use a mutable value like ``[]`` and later change any cell containing the
    fill value, all other cells containing the fill value will also be changed.

    The return value is a list of lists, where each sublist represents a row in
    the table.
    ``table[0]`` is the first row.
    ``table[0][0]`` is the first column in the first row.
    ``table[0][1]`` is the second column in the first row.

    This can be displayed in an HTML table via the following Mako template:

    .. code-block:: html+mako

        <table>
        % for row in table:
          <tr>
        % for cell in row:
            <td>${cell}</td>
        % endfor   cell
          </tr>
        % endfor   row
        </table>

    In a horizontal table, each row is filled before going on to the next row.
    This is the same as dividing the list into chunks::

        >>> distribute([1, 2, 3, 4, 5, 6, 7, 8], 3, "H")
        [[1, 2, 3], [4, 5, 6], [7, 8, None]]

    In a vertical table, the first element of each sublist is filled before
    going on to the second element.  This is useful for displaying an
    alphabetical list in columns, or when the entire column will be placed in
    a single <td> with a <br /> between each element::

        >>> food = ["apple", "banana", "carrot", "daikon", "egg", "fish", "gelato", "honey"]
        >>> table = distribute(food, 3, "V", "")
        >>> table
        [['apple', 'daikon', 'gelato'], ['banana', 'egg', 'honey'], ['carrot', 'fish', '']]
        >>> for row in table:
        ...    for item in row:
        ...         print "%-9s" % item,
        ...    print "."   # To show where the line ends.
        ...
        apple     daikon    gelato    .
        banana    egg       honey     .
        carrot    fish                .

    Alternatives to this function include a NumPy matrix of objects.

    """
    if columns < 1:
        raise ValueError("arg 'columns' must be >= 1")
    dir = direction[0].upper()
    if dir == "H":   # Horizontal table (row-wise)
        table = []
        for i in range(0, len(lis), columns):
            row = lis[i:i+columns]
            row_len = len(row)
            if row_len < columns:
                extra = [fill] * (columns - row_len)
                row.extend(extra)
            table.append(row)
        return table
    elif dir == "V":  # Vertical table (column-wise)
        total = len(lis)
        rows, remainder = divmod(total, columns)
        if remainder:
            rows += 1
        table = [[fill] * columns for x in range(rows)]
        #print table
        for i, elm in enumerate(lis):
            col, row = divmod(i, rows)
            #print "i=%d, row=%d, col=%d, element=%r" % (i, row, col, elm)
            table[row][col] = elm
        return table
    else:
        raise ValueError("arg ``direction`` must start with 'H' or 'V'")

def transpose(array):
    """Turn a list of lists sideways, making columns into rows and vice-versa.

    ``array`` must be rectangular; i.e., all elements must be the same 
    length. Otherwise the behavior is undefined: you may get ``IndexError``
    or missing items.

    Examples::

        >>> transpose([["A", "B", "C"], ["D", "E", "F"]])
        [['A', 'D'], ['B', 'E'], ['C', 'F']]
        >>> transpose([["A", "B"], ["C", "D"], ["E", "F"]])
        [['A', 'C', 'E'], ['B', 'D', 'F']]
        >>> transpose([])
        []
        
    Here's a pictoral view of the first example::

       A B C    =>    A D
       D E F          B E
                      C F

    This can be used to turn an HTML table into a group of div columns. An HTML
    table is row major: it consists of several <tr> rows, each containing
    several <td> cells.  But a <div> layout consists of only one row, each
    containing an entire subarray. The <div>s have style "float:left", which
    makes them appear horizontally. The items within each <div> are placed in
    their own <div>'s or separated by <br />, which makes them appear
    vertically.  The point is that an HTML table is row major (``array[0]`` is
    the first row), while a group of div columns is column major (``array[0]``
    is the first column). ``transpose()`` can be used to switch between the
    two.
    """
    if not array:
        return []
    ret = []
    for c in range(len(array[0])):
        col = [row[c] for row in array]
        ret.append(col)
    return ret
        


if __name__ == "__main__":
    import doctest
    doctest.testmod()