/usr/lib/python3/dist-packages/asdf/yamlutil.py is in python3-asdf 1.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | # Licensed under a 3-clause BSD style license - see LICENSE.rst
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, unicode_literals, print_function
import numpy as np
import six
import yaml
import warnings
from collections import OrderedDict
from . constants import YAML_TAG_PREFIX
from . import schema
from . import tagged
from . import treeutil
from . import asdftypes
from . import versioning
from . import util
if getattr(yaml, '__with_libyaml__', None): # pragma: no cover
_yaml_base_dumper = yaml.CSafeDumper
_yaml_base_loader = yaml.CSafeLoader
else: # pragma: no cover
_yaml_base_dumper = yaml.SafeDumper
_yaml_base_loader = yaml.SafeLoader
# ----------------------------------------------------------------------
# Custom loader/dumpers
_yaml_base_type_map = {
yaml.MappingNode:
lambda node, loader: loader.construct_mapping(node, deep=True),
yaml.SequenceNode:
lambda node, loader: loader.construct_sequence(node, deep=True),
yaml.ScalarNode:
lambda node, loader: loader.construct_scalar(node)
}
def _yaml_to_base_type(node, loader):
"""
Converts a PyYAML node type to a basic Python data type.
Parameters
----------
node : yaml.Node
The node is converted to a basic Python type using the following:
- MappingNode -> dict
- SequenceNode -> list
- ScalarNode -> str, int, float etc.
loader : yaml.Loader
Returns
-------
basic : object
Basic Python data type.
"""
def unknown_type_exception(node, loader):
raise TypeError("Don't know how to implicitly construct '{0}'".format(
type(node)))
return _yaml_base_type_map.get(
type(node), unknown_type_exception)(node, loader)
class AsdfDumper(_yaml_base_dumper):
"""
A specialized YAML dumper that understands "tagged basic Python
data types" as implemented in the `tagged` module.
"""
def represent_data(self, data):
node = super(AsdfDumper, self).represent_data(data)
tag_name = getattr(data, '_tag', None)
if tag_name is not None:
node.tag = tag_name
return node
_flow_style_map = {
'flow': True,
'block': False
}
def represent_sequence(dumper, sequence):
flow_style = _flow_style_map.get(sequence.flow_style, None)
sequence = sequence.data
return super(AsdfDumper, dumper).represent_sequence(
None, sequence, flow_style)
def represent_mapping(dumper, mapping):
flow_style = _flow_style_map.get(mapping.flow_style, None)
node = super(AsdfDumper, dumper).represent_mapping(
None, mapping.data, flow_style)
if mapping.property_order:
values = node.value
new_mapping = {}
for key, val in values:
new_mapping[key.value] = (key, val)
new_values = []
for key in mapping.property_order:
if key in mapping:
new_values.append(new_mapping[key])
property_order = set(mapping.property_order)
for key, val in values:
if key.value not in property_order:
new_values.append((key, val))
node.value = new_values
return node
_style_map = {
'inline': '"',
'folded': '>',
'literal': '|'
}
def represent_scalar(dumper, value):
style = _style_map.get(value.style, None)
return super(AsdfDumper, dumper).represent_scalar(
None, value.data, style)
AsdfDumper.add_representer(tagged.TaggedList, represent_sequence)
AsdfDumper.add_representer(tagged.TaggedDict, represent_mapping)
AsdfDumper.add_representer(tagged.TaggedString, represent_scalar)
class AsdfLoader(_yaml_base_loader):
"""
A specialized YAML loader that can construct "tagged basic Python
data types" as implemented in the `tagged` module.
"""
ignore_version_mismatch = False
def construct_object(self, node, deep=False):
tag = node.tag
if node.tag in self.yaml_constructors:
return super(AsdfLoader, self).construct_object(node, deep=False)
data = _yaml_to_base_type(node, self)
tag = self.ctx.type_index.fix_yaml_tag(
self.ctx, tag, self.ignore_version_mismatch)
data = tagged.tag_object(tag, data)
return data
# ----------------------------------------------------------------------
# Handle omap (ordered mappings)
YAML_OMAP_TAG = YAML_TAG_PREFIX + 'omap'
# Add support for loading YAML !!omap objects as OrderedDicts and dumping
# OrderedDict in the omap format as well.
def ordereddict_constructor(loader, node):
try:
omap = loader.construct_yaml_omap(node)
return OrderedDict(*omap)
except yaml.constructor.ConstructorError:
return list(*loader.construct_yaml_seq(node))
def represent_ordered_mapping(dumper, tag, data):
# TODO: Again, adjust for preferred flow style, and other stylistic details
# NOTE: For block style this uses the compact omap notation, but for flow style
# it does not.
# TODO: Need to see if I can figure out a mechanism so that classes that
# use this representer can specify which values should use flow style
values = []
node = yaml.SequenceNode(tag, values,
flow_style=dumper.default_flow_style)
if dumper.alias_key is not None:
dumper.represented_objects[dumper.alias_key] = node
for key, value in data.items():
key_item = dumper.represent_data(key)
value_item = dumper.represent_data(value)
node_item = yaml.MappingNode(YAML_OMAP_TAG,
[(key_item, value_item)],
flow_style=False)
values.append(node_item)
return node
def represent_ordereddict(dumper, data):
return represent_ordered_mapping(dumper, YAML_OMAP_TAG, data)
AsdfLoader.add_constructor(YAML_OMAP_TAG, ordereddict_constructor)
AsdfDumper.add_representer(OrderedDict, represent_ordereddict)
# ----------------------------------------------------------------------
# Handle numpy scalars
for scalar_type in util.iter_subclasses(np.floating):
AsdfDumper.add_representer(scalar_type, AsdfDumper.represent_float)
for scalar_type in util.iter_subclasses(np.integer):
AsdfDumper.add_representer(scalar_type, AsdfDumper.represent_int)
# ----------------------------------------------------------------------
# Unicode fix on Python 2
if six.PY2: # pragma: no cover
# This dumps Python unicode strings as regular YAML strings rather
# than !!python/unicode. See http://pyyaml.org/ticket/11
def _unicode_representer(dumper, value):
return dumper.represent_scalar("tag:yaml.org,2002:str", value)
AsdfDumper.add_representer(unicode, _unicode_representer)
AsdfLoader.add_constructor('tag:yaml.org,2002:str',
AsdfLoader.construct_scalar)
def custom_tree_to_tagged_tree(tree, ctx):
"""
Convert a tree, possibly containing custom data types that aren't
directly representable in YAML, to a tree of basic data types,
annotated with tags.
"""
def walker(node):
tag = ctx.type_index.from_custom_type(type(node), ctx.version_string)
if tag is not None:
return tag.to_tree_tagged(node, ctx)
return node
return treeutil.walk_and_modify(tree, walker)
def tagged_tree_to_custom_tree(tree, ctx, force_raw_types=False):
"""
Convert a tree containing only basic data types, annotated with
tags, to a tree containing custom data types.
"""
def walker(node):
if force_raw_types:
return node
tag_name = getattr(node, '_tag', None)
if tag_name is None:
return node
tag_type = ctx.type_index.from_yaml_tag(ctx, tag_name)
# This means the tag did not correspond to any type in our type index.
if tag_type is None:
if not ctx._ignore_unrecognized_tag:
warnings.warn("{} is not recognized, converting to raw Python "
"data structure".format(tag_name))
return node
real_tag = ctx.type_index.get_real_tag(tag_name)
real_tag_name, real_tag_version = asdftypes.split_tag_version(real_tag)
# This means that there is an explicit description of versions that are
# compatible with the associated tag class implementation, but the
# version we found does not fit that description.
if tag_type.incompatible_version(real_tag_version):
warnings.warn("Version {} of {} is not compatible with any "
"existing tag implementations".format(
real_tag_version, real_tag_name))
return node
# If a tag class does not explicitly list compatible versions, then all
# versions of the corresponding schema are assumed to be compatible.
# Therefore we need to check to make sure whether the conversion is
# actually successful, and just return a raw Python data type if it is
# not.
try:
return tag_type.from_tree_tagged(node, ctx)
except TypeError as err:
warnings.warn("Failed to convert {} to custom type (detail: {}). "
"Using raw Python data structure instead".format(real_tag, err))
return node
return treeutil.walk_and_modify(tree, walker)
def load_tree(stream, ctx, ignore_version_mismatch=False):
"""
Load YAML, returning a tree of objects.
Parameters
----------
stream : readable file-like object
Stream containing the raw YAML content.
"""
class AsdfLoaderTmp(AsdfLoader):
pass
AsdfLoaderTmp.ctx = ctx
AsdfLoaderTmp.ignore_version_mismatch = ignore_version_mismatch
return yaml.load(stream, Loader=AsdfLoaderTmp)
def dump_tree(tree, fd, ctx):
"""
Dump a tree of objects, possibly containing custom types, to YAML.
Parameters
----------
tree : object
Tree of objects, possibly containing custom data types.
fd : asdf.generic_io.GenericFile
A file object to dump the serialized YAML to.
ctx : Context
The writing context.
"""
class AsdfDumperTmp(AsdfDumper):
pass
AsdfDumperTmp.ctx = ctx
tags = None
if hasattr(tree, 'yaml_tag'):
tag = tree.yaml_tag
tag = tag[:tag.index('/core/asdf') + 1]
if tag.strip():
tags = {'!': tag}
tree = custom_tree_to_tagged_tree(tree, ctx)
schema.validate(tree, ctx)
schema.remove_defaults(tree, ctx)
yaml_version = tuple(
int(x) for x in ctx.version_map['YAML_VERSION'].split('.'))
yaml.dump_all(
[tree], stream=fd, Dumper=AsdfDumperTmp,
explicit_start=True, explicit_end=True,
version=yaml_version,
allow_unicode=True, encoding='utf-8',
tags=tags)
|