This file is indexed.

/usr/lib/python3/dist-packages/astroplan/observer.py is in python3-astroplan 0.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
# Licensed under a 3-clause BSD style license - see LICENSE.rst
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

# Standard library
import datetime
import warnings

# Third-party
from astropy.coordinates import (EarthLocation, SkyCoord, AltAz, get_sun,
                                 get_moon, Angle, Longitude)
from astropy.extern.six import string_types
import astropy.units as u
from astropy.time import Time
import numpy as np
import pytz

# Package
from .exceptions import TargetNeverUpWarning, TargetAlwaysUpWarning
from .moon import moon_illumination, moon_phase_angle
from .target import get_skycoord, SpecialObjectFlag, SunFlag, MoonFlag


__all__ = ["Observer", "MAGIC_TIME"]

MAGIC_TIME = Time(-999, format='jd')


def _generate_24hr_grid(t0, start, end, N, for_deriv=False):
    """
    Generate a nearly linearly spaced grid of time durations.

    The midpoints of these grid points will span times from ``t0``+``start``
    to ``t0``+``end``, including the end points, which is useful when taking
    numerical derivatives.

    Parameters
    ----------
    t0 : `~astropy.time.Time`
        Time queried for, grid will be built from or up to this time.

    start : float
        Number of days before/after ``t0`` to start the grid.

    end : float
        Number of days before/after ``t0`` to end the grid.

    N : int
        Number of grid points to generate

    for_deriv : bool
        Generate time series for taking numerical derivative (modify
        bounds)?

    Returns
    -------
    `~astropy.time.Time`
    """

    if for_deriv:
        time_grid = np.concatenate([[start - 1/(N-1)],
                                    np.linspace(start, end, N)[1:-1],
                                    [end + 1/(N-1)]])*u.day
    else:
        time_grid = np.linspace(start, end, N)*u.day

    # broadcast so grid is first index, and remaining shape of t0
    # falls in later indices. e.g. if t0 is shape (10), time_grid
    # will be shape (N, 10). If t0 is shape (5, 2), time_grid is (N, 5, 2)
    while time_grid.ndim <= t0.ndim:
        time_grid = time_grid[:, np.newaxis]
    # we want to avoid 1D grids since we always want to broadcast against targets
    if time_grid.ndim == 1:
        time_grid = time_grid[:, np.newaxis]
    return t0 + time_grid


class Observer(object):

    """
    A container class for information about an observer's location and
    environment.

    Examples
    --------
    We can create an observer at Subaru Observatory in Hawaii two ways. First,
    locations for some observatories are stored in astroplan, and these can be
    accessed by name, like so:

    >>> from astroplan import Observer
    >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii")

    To find out which observatories can be accessed by name, check out
    `~astropy.coordinates.EarthLocation.get_site_names`.

    Next, you can initialize an observer by specifying the location with
    `~astropy.coordinates.EarthLocation`:

    >>> from astropy.coordinates import EarthLocation
    >>> import astropy.units as u
    >>> location = EarthLocation.from_geodetic(-155.4761*u.deg, 19.825*u.deg,
    ...                                        4139*u.m)
    >>> subaru = Observer(location=location, name="Subaru", timezone="US/Hawaii")

    You can also create an observer without an
    `~astropy.coordinates.EarthLocation`:

    >>> from astroplan import Observer
    >>> import astropy.units as u
    >>> subaru = Observer(longitude=-155.4761*u.deg, latitude=19.825*u.deg,
    ...                   elevation=0*u.m, name="Subaru", timezone="US/Hawaii")

    """
    @u.quantity_input(elevation=u.m)
    def __init__(self, location=None, timezone='UTC', name=None, latitude=None,
                 longitude=None, elevation=0*u.m, pressure=None,
                 relative_humidity=None, temperature=None, description=None):
        """
        Parameters
        ----------
        location : `~astropy.coordinates.EarthLocation`
            The location (latitude, longitude, elevation) of the observatory.

        timezone : str or `datetime.tzinfo` (optional)
            The local timezone to assume. If a string, it will be passed
            through ``pytz.timezone()`` to produce the timezone object.

        name : str
            A short name for the telescope, observatory or location.

        latitude : float, str, `~astropy.units.Quantity` (optional)
            The latitude of the observing location. Should be valid input for
            initializing a `~astropy.coordinates.Latitude` object.

        longitude : float, str, `~astropy.units.Quantity` (optional)
            The longitude of the observing location. Should be valid input for
            initializing a `~astropy.coordinates.Longitude` object.

        elevation : `~astropy.units.Quantity` (optional), default = 0 meters
            The elevation of the observing location, with respect to sea
            level. Defaults to sea level.

        pressure : `~astropy.units.Quantity` (optional)
            The ambient pressure. Defaults to zero (i.e. no atmosphere).

        relative_humidity : float (optional)
            The ambient relative humidity.

        temperature : `~astropy.units.Quantity` (optional)
            The ambient temperature.

        description : str (optional)
            A short description of the telescope, observatory or observing
            location.
        """

        self.name = name
        self.pressure = pressure
        self.temperature = temperature
        self.relative_humidity = relative_humidity

        # If lat/long given instead of EarthLocation, convert them
        # to EarthLocation
        if location is None and (latitude is not None and
                                 longitude is not None):
            self.location = EarthLocation.from_geodetic(longitude, latitude,
                                                        elevation)

        elif isinstance(location, EarthLocation):
            self.location = location

        else:
            raise TypeError('Observatory location must be specified with '
                            'either (1) an instance of '
                            'astropy.coordinates.EarthLocation or (2) '
                            'latitude and longitude in degrees as '
                            'accepted by astropy.coordinates.Latitude and '
                            'astropy.coordinates.Latitude.')

        # Accept various timezone inputs, default to UTC
        if isinstance(timezone, datetime.tzinfo):
            self.timezone = timezone
        elif isinstance(timezone, string_types):
            self.timezone = pytz.timezone(timezone)
        else:
            raise TypeError('timezone keyword should be a string, or an '
                            'instance of datetime.tzinfo')

    def __repr__(self):
        """
        String representation of the `~astroplan.Observer` object.

        Examples
        --------

        >>> from astroplan import Observer
        >>> keck = Observer.at_site("Keck", timezone="US/Hawaii")
        >>> print(keck)                                    # doctest: +FLOAT_CMP
        <Observer: name='Keck',
            location (lon, lat, el)=(-155.478333333 deg, 19.8283333333 deg, 4160.0 m),
            timezone=<DstTzInfo 'US/Hawaii' LMT-1 day, 13:29:00 STD>>
        """
        class_name = self.__class__.__name__
        attr_names = ['name', 'location', 'timezone', 'pressure', 'temperature',
                      'relative_humidity']
        attr_values = [getattr(self, attr) for attr in attr_names]
        attributes_strings = []
        for name, value in zip(attr_names, attr_values):
            if value is not None:
                # Format location for easy readability
                if name == 'location':
                    formatted_loc = ["{} {}".format(i.value, i.unit)
                                     for i in value.to_geodetic()]
                    attributes_strings.append(
                        "{} (lon, lat, el)=({})".format(
                            name, ", ".join(formatted_loc)))
                else:
                    if name != 'name':
                        value = repr(value)
                    else:
                        value = "'{}'".format(value)
                    attributes_strings.append("{}={}".format(name, value))
        return "<{}: {}>".format(class_name, ",\n    ".join(attributes_strings))

    @classmethod
    def at_site(cls, site_name, **kwargs):
        """
        Initialize an `~astroplan.observer.Observer` object with a site name.

        Extra keyword arguments are passed to the `~astroplan.Observer`
        constructor (see `~astroplan.Observer` for available keyword
        arguments).

        Parameters
        ----------
        site_name : str
            Observatory name, must be resolvable with
            `~astropy.coordinates.EarthLocation.get_site_names`.

        Returns
        -------
        `~astroplan.observer.Observer`
            Observer object.

        Examples
        --------
        Initialize an observer at Kitt Peak National Observatory:

        >>> from astroplan import Observer
        >>> import astropy.units as u
        >>> kpno_generic = Observer.at_site('kpno')
        >>> kpno_today = Observer.at_site('kpno', pressure=1*u.bar, temperature=0*u.deg_C)
        """
        name = kwargs.pop('name', site_name)
        if 'location' in kwargs:
            raise ValueError("Location kwarg should not be used if "
                             "initializing an Observer with Observer.at_site()")
        return cls(location=EarthLocation.of_site(site_name), name=name, **kwargs)

    def astropy_time_to_datetime(self, astropy_time):
        """
        Convert the `~astropy.time.Time` object ``astropy_time`` to a
        localized `~datetime.datetime` object.

        Timezones localized with `pytz`_.

        .. _pytz: https://pypi.python.org/pypi/pytz/

        Parameters
        ----------
        astropy_time : `~astropy.time.Time`
            Scalar or list-like.

        Returns
        -------
        `~datetime.datetime`
            Localized datetime, where the timezone of the datetime is
            set by the ``timezone`` keyword argument of the
            `~astroplan.Observer` constructor.

        Examples
        --------
        Convert an astropy time to a localized `~datetime.datetime`:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii")
        >>> astropy_time = Time('1999-12-31 06:00:00')
        >>> print(subaru.astropy_time_to_datetime(astropy_time))
        1999-12-30 20:00:00-10:00
        """

        if not astropy_time.isscalar:
            return [self.astropy_time_to_datetime(t) for t in astropy_time]

        # Convert astropy.time.Time to a UTC localized datetime (aware)
        utc_datetime = pytz.utc.localize(astropy_time.utc.datetime)

        # Convert UTC to local timezone
        return self.timezone.normalize(utc_datetime)

    def datetime_to_astropy_time(self, date_time):
        """
        Convert the `~datetime.datetime` object ``date_time`` to a
        `~astropy.time.Time` object.

        Timezones localized with `pytz`_. If the ``date_time`` is naive, the
        implied timezone is the ``timezone`` structure of ``self``.

        Parameters
        ----------
        date_time : `~datetime.datetime` or list-like

        Returns
        -------
        `~astropy.time.Time`
            Astropy time object (no timezone information preserved).

        Examples
        --------
        Convert a localized `~datetime.datetime` to a `~astropy.time.Time`
        object. Non-localized datetimes are assumed to be UTC.
        <Time object: scale='utc' format='datetime' value=1999-12-31 06:00:00>

        >>> from astroplan import Observer
        >>> import datetime
        >>> import pytz
        >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii")
        >>> hi_date_time = datetime.datetime(2005, 6, 21, 20, 0, 0, 0)
        >>> subaru.datetime_to_astropy_time(hi_date_time)
        <Time object: scale='utc' format='datetime' value=2005-06-22 06:00:00>
        >>> utc_date_time = datetime.datetime(2005, 6, 22, 6, 0, 0, 0,
        ...                                   tzinfo=pytz.timezone("UTC"))
        >>> subaru.datetime_to_astropy_time(utc_date_time)
        <Time object: scale='utc' format='datetime' value=2005-06-22 06:00:00>
        """

        if hasattr(date_time, '__iter__'):
            return Time([self.datetime_to_astropy_time(t) for t in date_time])

        # For timezone-naive datetimes, assign local timezone
        if date_time.tzinfo is None:
            date_time = self.timezone.localize(date_time)

        return Time(date_time, location=self.location)

    def _is_broadcastable(self, shp1, shp2):
        """Test if two shape tuples are broadcastable"""
        if shp1 == shp2:
            return True
        for a, b in zip(shp1[::-1], shp2[::-1]):
            if a == 1 or b == 1 or a == b:
                pass
            else:
                return False
        return True

    def _preprocess_inputs(self, time, target=None, grid_times_targets=False):
        """
        Preprocess time and target inputs

        This routine takes the inputs for time and target and attempts to
        return a single `~astropy.time.Time` and `~astropy.coordinates.SkyCoord`
        for each argument, which may be non-scalar if necessary.

        time : `~astropy.time.Time` or other (see below)
            The time(s) to use in the calculation. It can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time` object)

        target : `~astroplan.FixedTarget`, `~astropy.coordinates.SkyCoord`, or list
            The target(s) to use in the calculation.

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed onto the end,
            so that calculations with M targets and N times will return an (M, N)
            shaped result. Otherwise, we rely on broadcasting the shapes together
            using standard numpy rules. Useful for grid searches for rise/set times etc.
        """
        # make sure we have a non-scalar time
        if not isinstance(time, Time):
            time = Time(time)

        if target is None:
            return time, None

        # convert any kind of target argument to non-scalar SkyCoord
        target = get_skycoord(target)
        if grid_times_targets:
            if target.isscalar:
                # ensure we have a (1, 1) shape coord
                target = SkyCoord(np.tile(target, 1))[:, np.newaxis]
            else:
                while target.ndim <= time.ndim:
                    target = target[:, np.newaxis]

        elif not self._is_broadcastable(target.shape, time.shape):
            raise ValueError('Time and Target arguments cannot be broadcast '
                             'against each other with shapes {} and {}'
                             .format(time.shape, target.shape))
        return time, target

    def altaz(self, time, target=None, obswl=None, grid_times_targets=False):
        """
        Get an `~astropy.coordinates.AltAz` frame or coordinate.

        If ``target`` is None, generates an altitude/azimuth frame. Otherwise,
        calculates the transformation to that frame for the requested ``target``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            The time at which the observation is taking place. Will be used as
            the ``obstime`` attribute in the resulting frame or coordinate. This
            will be passed in as the first argument to the `~astropy.time.Time`
            initializer, so it can be anything that `~astropy.time.Time` will
            accept (including a `~astropy.time.Time` object)

        target : `~astroplan.FixedTarget`, `~astropy.coordinates.SkyCoord`, or list (optional)
            Celestial object(s) of interest. If ``target`` is `None`, returns
            the `~astropy.coordinates.AltAz` frame without coordinates.

        obswl : `~astropy.units.Quantity` (optional)
            Wavelength of the observation used in the calculation.

        grid_times_targets: bool (optional)
            If True, the target object will have extra dimensions packed
            onto the end, so that calculations with M targets and N times
            will return an (M, N) shaped result. Otherwise, we rely on
            broadcasting the shapes together using standard numpy
            rules. Useful for grid searches for rise/set times etc.

        Returns
        -------
        `~astropy.coordinates.AltAz`
            If ``target`` is `None`, returns `~astropy.coordinates.AltAz` frame.
            If ``target`` is not `None`, returns the ``target`` transformed to
            the `~astropy.coordinates.AltAz` frame.

        Examples
        --------
        Create an instance of the `~astropy.coordinates.AltAz` frame for an
        observer at Apache Point Observatory at a particular time:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> from astropy.coordinates import SkyCoord
        >>> apo = Observer.at_site("APO")
        >>> time = Time('2001-02-03 04:05:06')
        >>> target = SkyCoord(0*u.deg, 0*u.deg)
        >>> altaz_frame = apo.altaz(time)

        Now transform the target's coordinates to the alt/az frame:

        >>> target_altaz = target.transform_to(altaz_frame) # doctest: +SKIP

        Alternatively, construct an alt/az frame and transform the target to
        that frame all in one step:

        >>> target_altaz = apo.altaz(time, target) # doctest: +SKIP
        """
        if target is not None:
            time, target = self._preprocess_inputs(time, target, grid_times_targets)

        altaz_frame = AltAz(location=self.location, obstime=time,
                            pressure=self.pressure, obswl=obswl,
                            temperature=self.temperature,
                            relative_humidity=self.relative_humidity)
        if target is None:
            # Return just the frame
            return altaz_frame
        else:
            return target.transform_to(altaz_frame)

    def parallactic_angle(self, time, target, grid_times_targets=False):
        """
        Calculate the parallactic angle.

        Parameters
        ----------
        time : `~astropy.time.Time`
            Observation time.

        target : `~astroplan.FixedTarget` or `~astropy.coordinates.SkyCoord` or list
            Target celestial object(s).

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed onto the end,
            so that calculations with M targets and N times will return an (M, N)
            shaped result. Otherwise, we rely on broadcasting the shapes together
            using standard numpy rules.

        Returns
        -------
        `~astropy.coordinates.Angle`
            Parallactic angle.

        Notes
        -----
        The parallactic angle is the angle between the great circle that
        intersects a celestial object and the zenith, and the object's hour
        circle [1]_.

        .. [1] https://en.wikipedia.org/wiki/Parallactic_angle

        """
        time, coordinate = self._preprocess_inputs(time, target, grid_times_targets)

        # Eqn (14.1) of Meeus' Astronomical Algorithms
        LST = time.sidereal_time('mean', longitude=self.location.lon)
        H = (LST - coordinate.ra).radian
        q = np.arctan(np.sin(H) /
                      (np.tan(self.location.lat.radian) *
                       np.cos(coordinate.dec.radian) -
                       np.sin(coordinate.dec.radian)*np.cos(H)))*u.rad

        return Angle(q)

    # Sun-related methods.
    @u.quantity_input(horizon=u.deg)
    def _horiz_cross(self, t, alt, rise_set, horizon=0*u.degree):
        """
        Find time ``t`` when values in array ``a`` go from
        negative to positive or positive to negative (exclude endpoints)

        ``return_limits`` will return nearest times to zero-crossing.

        Parameters
        ----------
        t : `~astropy.time.Time`
            Grid of N times, any shape. Search grid along first axis, e.g (N, ...)
        alt : `~astropy.units.Quantity`
            Grid of altitudes
            Depending on broadcasting we either have ndim >=3 and
            M targets along first axis, e.g (M, N, ...), or
            ndim = 2 and targets/times in last axis
        rise_set : {"rising",  "setting"}
            Calculate either rising or setting across the horizon
        horizon : float
            Number of degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        Returns
        -------
        Returns the lower and upper limits on the time and altitudes
        of the horizon crossing. The altitude limits have shape (M, ...) and the
        time limits have shape (...). These arrays aresuitable for interpolation
        to find the horizon crossing time.
        """
        # handle different cases by enforcing standard shapes on
        # the altitude grid
        finesse_time_indexes = False
        if alt.ndim == 1:
            raise ValueError('Must supply more at least a 2D grid of altitudes')
        elif alt.ndim == 2:
            # TODO: this test for ndim=2 doesn't work. if times is e.g (2,5)
            # then alt will have ndim=3, but shape (100, 2, 5) so grid
            # is in first index...
            ntargets = alt.shape[1]
            ngrid = alt.shape[0]
            unit = alt.unit
            alt = np.broadcast_to(alt, (ntargets, ngrid, ntargets)).T
            alt = alt*unit
            extra_dimension_added = True
            if t.shape[1] == 1:
                finesse_time_indexes = True
        else:
            extra_dimension_added = False
        output_shape = (alt.shape[0],) + alt.shape[2:]

        if rise_set == 'rising':
            # Find index where altitude goes from below to above horizon
            condition = (alt[:, :-1, ...] < horizon) * (alt[:, 1:, ...] > horizon)
        elif rise_set == 'setting':
            # Find index where altitude goes from above to below horizon
            condition = (alt[:, :-1, ...] > horizon) * (alt[:, 1:, ...] < horizon)

        noncrossing_indices = np.sum(condition, axis=1, dtype=np.intp) < 1
        alt_lims1 = u.Quantity(np.zeros(output_shape), unit=u.deg)
        alt_lims2 = u.Quantity(np.zeros(output_shape), unit=u.deg)
        jd_lims1 = np.zeros(output_shape)
        jd_lims2 = np.zeros(output_shape)
        if np.any(noncrossing_indices):
            for target_index in set(np.where(noncrossing_indices)[0]):
                warnmsg = ('Target with index {} does not cross horizon={} within '
                           '24 hours'.format(target_index, horizon))
                if (alt[target_index, ...] > horizon).all():
                    warnings.warn(warnmsg, TargetAlwaysUpWarning)
                else:
                    warnings.warn(warnmsg, TargetNeverUpWarning)

            alt_lims1[np.nonzero(noncrossing_indices)] = np.nan
            alt_lims2[np.nonzero(noncrossing_indices)] = np.nan
            jd_lims1[np.nonzero(noncrossing_indices)] = np.nan
            jd_lims2[np.nonzero(noncrossing_indices)] = np.nan

        before_indices = np.array(np.nonzero(condition))
        # we want to add an vector like (0, 1, ...) to get after indices
        after_indices = before_indices.copy()
        after_indices[1, :] += 1

        al1 = alt[tuple(before_indices)]
        al2 = alt[tuple(after_indices)]
        # slice the time in the same way, but delete the object index
        before_time_index_tuple = np.delete(before_indices, 0, 0)
        after_time_index_tuple = np.delete(after_indices, 0, 0)
        if finesse_time_indexes:
            before_time_index_tuple[1:] = 0
            after_time_index_tuple[1:] = 0
        tl1 = t[tuple(before_time_index_tuple)]
        tl2 = t[tuple(after_time_index_tuple)]

        alt_lims1[tuple(np.delete(before_indices, 1, 0))] = al1
        alt_lims2[tuple(np.delete(before_indices, 1, 0))] = al2
        jd_lims1[tuple(np.delete(before_indices, 1, 0))] = tl1.utc.jd
        jd_lims2[tuple(np.delete(before_indices, 1, 0))] = tl2.utc.jd

        if extra_dimension_added:
            return (alt_lims1.diagonal(), alt_lims2.diagonal(),
                    jd_lims1.diagonal(), jd_lims2.diagonal())
        else:
            return alt_lims1, alt_lims2, jd_lims1, jd_lims2

    @u.quantity_input(horizon=u.deg)
    def _two_point_interp(self, jd_before, jd_after,
                          alt_before, alt_after, horizon=0*u.deg):
        """
        Do linear interpolation between two ``altitudes`` at
        two ``times`` to determine the time where the altitude
        goes through zero.

        Parameters
        ----------
        jd_before : `float`
            JD(UTC) before crossing event

        jd_after : `float`
            JD(UTC) after crossing event

        alt_before : `~astropy.units.Quantity`
            altitude before crossing event

        alt_after : `~astropy.units.Quantity`
            altitude after crossing event

        horizon : `~astropy.units.Quantity`
            Solve for the time when the altitude is equal to
            reference_alt.

        Returns
        -------
        t : `~astropy.time.Time`
            Time when target crosses the horizon

        """
        slope = (alt_after-alt_before)/((jd_after - jd_before)*u.d)
        crossing_jd = (jd_after*u.d - ((alt_after - horizon)/slope))
        crossing_jd[np.isnan(crossing_jd)] = u.d*MAGIC_TIME.jd
        return np.squeeze(Time(crossing_jd, format='jd'))

    def _altitude_trig(self, LST, target, grid_times_targets=False):
        """
        Calculate the altitude of ``target`` at local sidereal times ``LST``.

        This method provides a factor of ~3 speed up over calling `altaz`, and
        inherently does *not* take the atmosphere into account.

        Parameters
        ----------
        LST : `~astropy.time.Time`
            Local sidereal times (array)

        target : {`~astropy.coordinates.SkyCoord`, `FixedTarget`} or similar
            Target celestial object's coordinates.

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed onto the end,
            so that calculations with M targets and N times will return an (M, N)
            shaped result. Otherwise, we rely on broadcasting the shapes together
            using standard numpy rules. Useful for grid searches for rise/set times etc.

        Returns
        -------
        alt : `~astropy.unit.Quantity`
            Array of altitudes
        """
        LST, target = self._preprocess_inputs(LST, target, grid_times_targets)
        alt = np.arcsin(np.sin(self.location.lat.radian) *
                        np.sin(target.dec) +
                        np.cos(self.location.lat.radian) *
                        np.cos(target.dec) *
                        np.cos(LST.radian - target.ra.radian))
        return alt

    def _calc_riseset(self, time, target, prev_next, rise_set, horizon,
                      N=150, grid_times_targets=False):
        """
        Time at next rise/set of ``target``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`
            Position of target or multiple positions of that target
            at multiple times (if target moves, like the Sun)

        prev_next : str - either 'previous' or 'next'
            Test next rise/set or previous rise/set

        rise_set : str - either 'rising' or 'setting'
            Compute prev/next rise or prev/next set

        horizon : `~astropy.units.Quantity`
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        N : int
            Number of altitudes to compute when searching for
            rise or set.

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed onto the end,
            so that calculations with M targets and N times will return an (M, N)
            shaped result. Otherwise, we rely on broadcasting the shapes together
            using standard numpy rules.

        Returns
        -------
        ret1 : `~astropy.time.Time`
            Time of rise/set
        """
        if not isinstance(time, Time):
            time = Time(time)

        if prev_next == 'next':
            start = 0
            end = (1 + (target.approx_sidereal_drift.to(u.day).value
                        if hasattr(target, 'approx_sidereal_drift') else 0))
        else:
            start = (-1 - (target.approx_sidereal_drift.to(u.day).value
                           if hasattr(target, 'approx_sidereal_drift') else 0))
            end = 0

        times = _generate_24hr_grid(time, start, end, N)

        if target is MoonFlag:
            altaz = self.altaz(times, get_moon(times, location=self.location),
                               grid_times_targets=grid_times_targets)
        elif target is SunFlag:
            altaz = self.altaz(times, get_sun(times),
                               grid_times_targets=grid_times_targets)
        else:
            altaz = self.altaz(times, target,
                               grid_times_targets=grid_times_targets)

        altitudes = altaz.alt

        al1, al2, jd1, jd2 = self._horiz_cross(times, altitudes, rise_set,
                                               horizon)
        return self._two_point_interp(jd1, jd2, al1, al2,
                                      horizon=horizon)

    def _calc_transit(self, time, target, prev_next, antitransit=False,
                      N=150, grid_times_targets=False):
        """
        Time at next transit of the meridian of `target`.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`
            Position of target or multiple positions of that target
            at multiple times (if target moves, like the Sun)

        prev_next : str - either 'previous' or 'next'
            Test next rise/set or previous rise/set

        antitransit : bool
            Toggle compute antitransit (below horizon, equivalent to midnight
            for the Sun)

        N : int
            Number of altitudes to compute when searching for
            rise or set.

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed onto the end,
            so that calculations with M targets and N times will return an (M, N)
            shaped result. Otherwise, we rely on broadcasting the shapes together
            using standard numpy rules.

        Returns
        -------
        ret1 : `~astropy.time.Time`
            Time of transit/antitransit
        """
        # TODO FIX BROADCASTING HERE
        if not isinstance(time, Time):
            time = Time(time)

        if prev_next == 'next':
            times = _generate_24hr_grid(time, 0, 1, N, for_deriv=True)
        else:
            times = _generate_24hr_grid(time, -1, 0, N, for_deriv=True)

        # The derivative of the altitude with respect to time is increasing
        # from negative to positive values at the anti-transit of the meridian
        if antitransit:
            rise_set = 'rising'
        else:
            rise_set = 'setting'

        altaz = self.altaz(times, target, grid_times_targets=grid_times_targets)
        altitudes = altaz.alt
        if altitudes.ndim > 2:
            # shape is (M, N, ...) where M is targets and N is grid
            d_altitudes = altitudes.diff(axis=1)
        else:
            # shape is (N, M) where M is targets and N is grid
            d_altitudes = altitudes.diff(axis=0)

        dt = Time((times.jd[1:] + times.jd[:-1])/2, format='jd')

        horizon = 0*u.degree  # Find when derivative passes through zero
        al1, al2, jd1, jd2 = self._horiz_cross(dt, d_altitudes,
                                               rise_set, horizon)
        return self._two_point_interp(jd1, jd2, al1, al2,
                                      horizon=horizon)

    def _determine_which_event(self, function, args_dict):
        """
        Run through the next/previous/nearest permutations of the solutions
        to `function(time, ...)`, and return the previous/next/nearest one
        specified by the args stored in args_dict.
        """
        time = args_dict.pop('time', None)
        target = args_dict.pop('target', None)
        which = args_dict.pop('which', None)
        horizon = args_dict.pop('horizon', None)
        rise_set = args_dict.pop('rise_set', None)
        antitransit = args_dict.pop('antitransit', None)
        grid_times_targets = args_dict.pop('grid_times_targets', False)

        # Assemble arguments for function, depending on the function.
        if function == self._calc_riseset:
            def event_function(w):
                return function(time, target, w, rise_set, horizon,
                                grid_times_targets=grid_times_targets)
        elif function == self._calc_transit:
            def event_function(w):
                return function(time, target, w, antitransit=antitransit,
                                grid_times_targets=grid_times_targets)
        else:
            raise ValueError('Function {} not supported in '
                             '_determine_which_event.'.format(function))

        if not isinstance(time, Time):
            time = Time(time)

        if which == 'next' or which == 'nearest':
            next_event = event_function('next')
            if which == 'next':
                return next_event

        if which == 'previous' or which == 'nearest':
            previous_event = event_function('previous')
            if which == 'previous':
                return previous_event

        if which == 'nearest':
            mask = abs(time - previous_event) < abs(time - next_event)
            return Time(np.where(mask, previous_event.utc.jd,
                                 next_event.utc.jd), format='jd')

        raise ValueError('"which" kwarg must be "next", "previous" or '
                         '"nearest".')

    @u.quantity_input(horizon=u.deg)
    def target_rise_time(self, time, target, which='nearest', horizon=0*u.degree,
                         grid_times_targets=False):
        """
        Calculate rise time.

        Compute time of the next/previous/nearest rise of the ``target``
        object, where "rise" is defined as the time when the ``target``
        transitions from altitudes below the ``horizon`` to above the
        ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`, or list
            Target celestial object(s)

        which : {'next', 'previous', 'nearest'}
            Choose which sunrise relative to the present ``time`` would you
            like to calculate

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed
            onto the end, so that calculations with M targets and N times
            will return an (M, N) shaped result. Otherwise, we rely on
            broadcasting the shapes together using standard numpy rules.

        Returns
        -------
        `~astropy.time.Time`
            Rise time of target

        Examples
        --------
        Calculate the rise time of Rigel at Keck Observatory:

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> time = Time("2001-02-03 04:05:06")
        >>> target = FixedTarget.from_name("Rigel")
        >>> keck = Observer.at_site("Keck")
        >>> rigel_rise_time = keck.target_rise_time(time, target, which="next") # doctest: +SKIP
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(rigel_rise_time)) # doctest: +SKIP
        ISO: 2001-02-04 00:51:23.330, JD: 2451944.53569
        """
        return self._determine_which_event(self._calc_riseset,
                                           dict(time=time, target=target,
                                                which=which, rise_set='rising',
                                                horizon=horizon,
                                                grid_times_targets=grid_times_targets))

    @u.quantity_input(horizon=u.deg)
    def target_set_time(self, time, target, which='nearest', horizon=0*u.degree,
                        grid_times_targets=False):
        """
        Calculate set time.

        Compute time of the next/previous/nearest set of ``target``, where
        "set" is defined as when the ``target`` transitions from altitudes
        above ``horizon`` to below ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`, or list
            Target celestial object(s)

        which : {'next', 'previous', 'nearest'}
            Choose which sunset relative to the present ``time`` would you
            like to calculate

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed
            onto the end, so that calculations with M targets and N times
            will return an (M, N) shaped result. Otherwise, we rely on
            broadcasting the shapes together using standard numpy rules.

        Returns
        -------
        `~astropy.time.Time`
            Set time of target.

        Examples
        --------
        Calculate the set time of Rigel at Keck Observatory:

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> time = Time("2001-02-03 04:05:06")
        >>> target = FixedTarget.from_name("Rigel")
        >>> keck = Observer.at_site("Keck")
        >>> rigel_set_time = keck.target_set_time(time, target, which="next") # doctest: +SKIP
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(rigel_set_time)) # doctest: +SKIP
        ISO: 2001-02-03 12:29:34.768, JD: 2451944.02054
        """
        return self._determine_which_event(self._calc_riseset,
                                           dict(time=time, target=target,
                                                which=which, rise_set='setting',
                                                horizon=horizon,
                                                grid_times_targets=grid_times_targets))

    def target_meridian_transit_time(self, time, target, which='nearest', grid_times_targets=False):
        """
        Calculate time at the transit of the meridian.

        Compute time of the next/previous/nearest transit of the ``target``
        object.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`, or list
            Target celestial object(s)

        which : {'next', 'previous', 'nearest'}
            Choose which sunrise relative to the present ``time`` would you
            like to calculate

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed
            onto the end, so that calculations with M targets and N times
            will return an (M, N) shaped result. Otherwise, we rely on
            broadcasting the shapes together using standard numpy rules.

        Returns
        -------
        `~astropy.time.Time`
            Transit time of target

        Examples
        --------
        Calculate the meridian transit time of Rigel at Keck Observatory:

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> time = Time("2001-02-03 04:05:06")
        >>> target = FixedTarget.from_name("Rigel")
        >>> keck = Observer.at_site("Keck")
        >>> rigel_transit_time = keck.target_meridian_transit_time(time, target,
        ...                                                        which="next") # doctest: +SKIP
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(rigel_transit_time)) # doctest: +SKIP
        ISO: 2001-02-03 06:42:26.863, JD: 2451943.77948
        """
        return self._determine_which_event(self._calc_transit,
                                           dict(time=time, target=target,
                                                which=which,
                                                rise_set='setting',
                                                grid_times_targets=grid_times_targets))

    def target_meridian_antitransit_time(self, time, target, which='nearest',
                                         grid_times_targets=False):
        """
        Calculate time at the antitransit of the meridian.

        Compute time of the next/previous/nearest antitransit of the ``target``
        object.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        target : `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`, or list
            Target celestial object(s)

        which : {'next', 'previous', 'nearest'}
            Choose which sunrise relative to the present ``time`` would you
            like to calculate

        grid_times_targets : bool
            If True, the target object will have extra dimensions packed onto the end,
            so that calculations with M targets and N times will return an (M, N)
            shaped result. Otherwise, we rely on broadcasting the shapes together
            using standard numpy rules.

        Returns
        -------
        `~astropy.time.Time`
            Antitransit time of target

        Examples
        --------
        Calculate the meridian anti-transit time of Rigel at Keck Observatory:

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> time = Time("2001-02-03 04:05:06")
        >>> target = FixedTarget.from_name("Rigel")
        >>> keck = Observer.at_site("Keck")
        >>> rigel_antitransit_time = keck.target_meridian_antitransit_time(
        ...     time, target, which="next") # doctest: +SKIP
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(rigel_antitransit_time)) # doctest: +SKIP
        ISO: 2001-02-03 18:40:29.761, JD: 2451944.27812

        """
        return self._determine_which_event(self._calc_transit,
                                           dict(time=time, target=target,
                                                which=which, antitransit=True,
                                                rise_set='setting',
                                                grid_times_targets=grid_times_targets))

    @u.quantity_input(horizon=u.deg)
    def sun_rise_time(self, time, which='nearest', horizon=0*u.degree):
        """
        Time of sunrise.

        Compute time of the next/previous/nearest sunrise, where
        sunrise is defined as when the Sun transitions from altitudes
        below ``horizon`` to above ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which sunrise relative to the present ``time`` would you
            like to calculate.

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        Returns
        -------
        `~astropy.time.Time`
            Time of sunrise

        Examples
        --------
        Calculate the time of the previous sunrise at Apache Point Observatory:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time('2001-02-03 04:05:06')
        >>> sun_rise = apo.sun_rise_time(time, which="previous") # doctest: +SKIP
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(sun_rise)) # doctest: +SKIP
        ISO: 2001-02-02 14:02:50.554, JD: 2451943.08531
        """
        return self.target_rise_time(time, get_sun(time), which, horizon)

    @u.quantity_input(horizon=u.deg)
    def sun_set_time(self, time, which='nearest', horizon=0*u.degree):
        """
        Time of sunset.

        Compute time of the next/previous/nearest sunset, where
        sunset is defined as when the Sun transitions from altitudes
        below ``horizon`` to above ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which sunset relative to the present ``time`` would you
            like to calculate

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        Returns
        -------
        `~astropy.time.Time`
            Time of sunset

        Examples
        --------
        Calculate the time of the next sunset at Apache Point Observatory:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time('2001-02-03 04:05:06')
        >>> sun_set = apo.sun_set_time(time, which="next") # doctest: +SKIP
        >>> print("ISO: {0.iso}, JD: {0.jd}".format(sun_set)) # doctest: +SKIP
        ISO: 2001-02-04 00:35:42.102, JD: 2451944.52479
        """
        return self.target_set_time(time, get_sun(time), which, horizon)

    def noon(self, time, which='nearest'):
        """
        Time at solar noon.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which noon relative to the present ``time`` would you
            like to calculate

        Returns
        -------
        `~astropy.time.Time`
            Time at solar noon
        """
        return self.target_meridian_transit_time(time, get_sun(time), which)

    def midnight(self, time, which='nearest'):
        """
        Time at solar midnight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which noon relative to the present ``time`` would you
            like to calculate

        Returns
        -------
        `~astropy.time.Time`
            Time at solar midnight
        """
        return self.target_meridian_antitransit_time(time, get_sun(time), which)

    # Twilight convenience functions

    def twilight_evening_astronomical(self, time, which='nearest'):
        """
        Time at evening astronomical (-18 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_set_time(time, which, horizon=-18*u.degree)

    def twilight_evening_nautical(self, time, which='nearest'):
        """
        Time at evening nautical (-12 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_set_time(time, which, horizon=-12*u.degree)

    def twilight_evening_civil(self, time, which='nearest'):
        """
        Time at evening civil (-6 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_set_time(time, which, horizon=-6*u.degree)

    def twilight_morning_astronomical(self, time, which='nearest'):
        """
        Time at morning astronomical (-18 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_rise_time(time, which, horizon=-18*u.degree)

    def twilight_morning_nautical(self, time, which='nearest'):
        """
        Time at morning nautical (-12 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of twilight
        """
        return self.sun_rise_time(time, which, horizon=-12*u.degree)

    def twilight_morning_civil(self, time, which='nearest'):
        """
        Time at morning civil (-6 degree) twilight.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observations. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which twilight relative to the present ``time`` would you
            like to calculate. Default is nearest.

        Returns
        -------
        `~astropy.time.Time`
            Time of sunset
        """
        return self.sun_rise_time(time, which, horizon=-6*u.degree)

    # Moon-related methods.

    def moon_rise_time(self, time, which='nearest', horizon=0*u.deg):
        """
        Returns the local moon rise time.

        Compute time of the next/previous/nearest moon rise, where
        moon rise is defined as the time when the moon transitions from
        altitudes below ``horizon`` to above ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which moon rise relative to the present ``time`` would you
            like to calculate.

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        """
        return self.target_rise_time(time, MoonFlag, which, horizon)

    def moon_set_time(self, time, which='nearest', horizon=0*u.deg):
        """
        Returns the local moon set time.

        Compute time of the next/previous/nearest moon set, where
        moon set is defined as the time when the moon transitions from
        altitudes below ``horizon`` to above ``horizon``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        which : {'next', 'previous', 'nearest'}
            Choose which moon set relative to the present ``time`` would you
            like to calculate.

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating set/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        """
        return self.target_set_time(time, MoonFlag, which, horizon)

    def moon_illumination(self, time):
        """
        Calculate the illuminated fraction of the moon.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        Returns
        -------
        float
            Fraction of lunar surface illuminated

        Examples
        --------
        How much of the lunar surface is illuminated at 2015-08-29 18:35 UTC,
        which we happen to know is the time of a full moon?

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time("2015-08-29 18:35")
        >>> apo.moon_illumination(time) # doctest: +SKIP
        array([ 0.99972487])
        """
        if not isinstance(time, Time):
            time = Time(time)

        return moon_illumination(time)

    def moon_phase(self, time=None):
        """
        Calculate lunar orbital phase.

        For example, phase=2*pi is "new", phase=0 is "full".

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        Returns
        -------
        moon_phase_angle : float
            Orbital phase angle of the moon where 2*pi corresponds to new moon,
            zero corresponds to full moon.

        Examples
        --------
        Calculate the phase of the moon at 2015-08-29 18:35 UTC. Near zero
        radians corresponds to a nearly full moon.

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site('APO')
        >>> time = Time('2015-08-29 18:35')
        >>> apo.moon_phase(time) # doctest: +SKIP
        <Quantity [ 0.03317537] rad>
        """
        if time is not None and not isinstance(time, Time):
            time = Time(time)

        return moon_phase_angle(time)

    def moon_altaz(self, time, ephemeris=None):
        """
        Returns the position of the moon in alt/az.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        ephemeris : str, optional
            Ephemeris to use.  If not given, use the one set with
            ``astropy.coordinates.solar_system_ephemeris.set`` (which is
            set to 'builtin' by default).


        Returns
        -------
        altaz : `~astropy.coordinates.SkyCoord`
            Position of the moon transformed to altitude and azimuth

        Examples
        --------
        Calculate the altitude and azimuth of the moon at Apache Point
        Observatory:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time("2015-08-29 18:35")
        >>> altaz_moon = apo.moon_altaz(time) # doctest: +SKIP
        >>> print("alt: {0.alt}, az: {0.az}".format(altaz_moon)) # doctest: +SKIP
        alt: -63.72706397691421 deg, az: 345.3640380598265 deg
        """
        if not isinstance(time, Time):
            time = Time(time)

        moon = get_moon(time, location=self.location, ephemeris=ephemeris)
        return self.altaz(time, moon)

    def sun_altaz(self, time):
        """
        Returns the position of the Sun in alt/az.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object).

        ephemeris : str, optional
            Ephemeris to use.  If not given, use the one set with
            ``astropy.coordinates.solar_system_ephemeris.set`` (which is
            set to 'builtin' by default).


        Returns
        -------
        altaz : `~astropy.coordinates.SkyCoord`
            Position of the moon transformed to altitude and azimuth
        """
        if not isinstance(time, Time):
            time = Time(time)

        sun = get_sun(time)
        return self.altaz(time, sun)

    @u.quantity_input(horizon=u.deg)
    def target_is_up(self, time, target, horizon=0*u.degree,
                     return_altaz=False, grid_times_targets=False):
        """
        Is ``target`` above ``horizon`` at this ``time``?

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`, or list
            Target celestial object(s)

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating rise/set times (i.e.,
            -6 deg horizon = civil twilight, etc.)

        return_altaz : bool (optional)
            Also return the '~astropy.coordinates.AltAz' coordinate.

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed
            onto the end, so that calculations with M targets and N times
            will return an (M, N) shaped result. Otherwise, we rely on
            broadcasting the shapes together using standard numpy rules.

        Returns
        -------
        observable : boolean or np.ndarray(bool)
            True if ``target`` is above ``horizon`` at ``time``, else False.

        Examples
        --------
        Are Aldebaran and Vega above the horizon at Apache Point Observatory
        at 2015-08-29 18:35 UTC?

        >>> from astroplan import Observer, FixedTarget
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time("2015-08-29 18:35")
        >>> aldebaran = FixedTarget.from_name("Aldebaran")
        >>> vega = FixedTarget.from_name("Vega")
        >>> apo.target_is_up(time, aldebaran) # doctest: +SKIP
        True
        >>> apo.target_is_up(time, [aldebaran, vega]) # doctest: +SKIP
        array([ True, False], dtype=bool)
        """
        if not isinstance(time, Time):
            time = Time(time)

        altaz = self.altaz(time, target, grid_times_targets=grid_times_targets)
        observable = altaz.alt > horizon

        if altaz.isscalar:
            observable = bool(observable)

        if not return_altaz:
            return observable
        else:
            return observable, altaz

    @u.quantity_input(horizon=u.deg)
    def is_night(self, time, horizon=0*u.deg, obswl=None):
        """
        Is the Sun below ``horizon`` at ``time``?

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use
            for calculating day/night (i.e.,
            -6 deg horizon = civil twilight, etc.)

        obswl : `~astropy.units.Quantity` (optional)
            Wavelength of the observation used in the calculation

        Returns
        -------
        sun_below_horizon : bool or np.ndarray(bool)
            `True` if sun is below ``horizon`` at ``time``, else `False`.

        Examples
        --------
        Is it "nighttime" (i.e. is the Sun below ``horizon``) at Apache Point
        Observatory at 2015-08-29 18:35 UTC?

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> apo = Observer.at_site("APO")
        >>> time = Time("2015-08-29 18:35")
        >>> apo.is_night(time) # doctest: +SKIP
        False
        """
        if not isinstance(time, Time):
            time = Time(time)

        solar_altitude = self.altaz(time, target=get_sun(time), obswl=obswl).alt

        if solar_altitude.isscalar:
            return bool(solar_altitude < horizon)
        else:
            return solar_altitude < horizon

    def local_sidereal_time(self, time, kind='apparent', model=None):
        """
        Convert ``time`` to local sidereal time for observer.

        This is a thin wrapper around the `~astropy.time.Time.sidereal_time`
        method.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        kind : {'mean', 'apparent'} (optional)
            Passed to the ``kind`` argument of
            `~astropy.time.Time.sidereal_time`

        model : str or `None`; optional
            The precession/nutation model to assume - see
            `~astropy.time.Time.sidereal_time` for more details.

        Returns
        -------
        `~astropy.coordinates.Longitude`
            Local sidereal time.
        """
        if not isinstance(time, Time):
            time = Time(time)

        return time.sidereal_time(kind, longitude=self.location.lon,
                                  model=model)

    def target_hour_angle(self, time, target, grid_times_targets=False):
        """
        Calculate the local hour angle of ``target`` at ``time``.

        Parameters
        ----------
        time : `~astropy.time.Time` or other (see below)
            Time of observation. This will be passed in as the first argument to
            the `~astropy.time.Time` initializer, so it can be anything that
            `~astropy.time.Time` will accept (including a `~astropy.time.Time`
            object)

        target : `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`, or list
            Target celestial object(s)

        grid_times_targets: bool
            If True, the target object will have extra dimensions packed
            onto the end, so that calculations with M targets and N times
            will return an (M, N) shaped result. Otherwise, we rely on
            broadcasting the shapes together using standard numpy rules.

        Returns
        -------
        hour_angle : `~astropy.coordinates.Angle`
            The hour angle(s) of the target(s) at ``time``
        """
        time, target = self._preprocess_inputs(time, target, grid_times_targets)
        return Longitude(self.local_sidereal_time(time) - target.ra)

    @u.quantity_input(horizon=u.degree)
    def tonight(self, time=None, horizon=0 * u.degree, obswl=None):
        """
        Return a time range corresponding to the nearest night

        This will return a range of `~astropy.time.Time` corresponding to the
        beginning and ending of the night. If in the middle of a given night,
        return times from `~astropy.time.Time.now` until the nearest
        `~astroplan.Observer.sun_rise_time`

        Parameters
        ----------
        time : `~astropy.time.Time` (optional), default = `~astropy.time.Time.now`
            The start time for tonight, which is allowed to be arbitrary. See description
            above for behavior
        horizon : `~astropy.units.Quantity` (optional), default = zero degrees
            Degrees above/below actual horizon to use for calculating rise/set times
            (e.g., -6 deg horizon = civil twilight, etc.)
        obswl : `~astropy.units.Quantity` (optional)
            Wavelength of the observation used in the calculation

        Returns
        -------
        times : `~astropy.time.Time`
            A tuple of times corresponding to the start and end of current night
        """
        current_time = Time.now() if time is None else time
        night_mask = self.is_night(current_time, horizon=horizon, obswl=obswl)
        sun_set_time = self.sun_set_time(current_time, which='next', horizon=horizon)

        start_time = np.where(night_mask, current_time, sun_set_time)
        # np.where gives us a list of start Times - convert to Time object
        if not isinstance(start_time, Time):
            start_time = Time(start_time)
        end_time = self.sun_rise_time(start_time, which='next', horizon=horizon)

        return start_time, end_time