This file is indexed.

/usr/lib/python3/dist-packages/biotools/align.py is in python3-biotools 1.2.12-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#!/usr/bin/env python

'''
This module is used to align sequences. Currently, there is only a single
alignment algorithm implementented; it is a hybrid between Needleman-Wunsch
and Smith-Waterman and is used to find the subsequence within a larger sequence
that best aligns to a reference.
'''

from biotools.translate import translate
import biotools.analysis.options as options

DIAG_MARK, VGAP_MARK, HGAP_MARK = 3, 2, 1
bl = {
 '*': {'*': 0, 'A': -9, 'C': -9, 'E': -9, 'D': -9, 'G': -9, 'F': -9, 'I': -9,
       'H': -9, 'K': -9, 'M': -9, 'L': -9, 'N': -9, 'Q': -9, 'P': -9, 'S': -9,
       'R': -9, 'T': -9, 'W': -9, 'V': -9, 'Y': -9, 'X': 0},
 'A': {'*': -9, 'A': 4, 'C': 0, 'E': -1, 'D': -2, 'G': 0, 'F': -2, 'I': -1,
       'H': -2, 'K': -1, 'M': -1, 'L': -1, 'N': -1, 'Q': -1, 'P': -1, 'S': 1,
       'R': -1, 'T': -1, 'W': -3, 'V': -2, 'Y': -2, 'X': 0},
 'C': {'*': -9, 'A': 0, 'C': 9, 'E': -4, 'D': -3, 'G': -3, 'F': -2, 'I': -1,
       'H': -3, 'K': -3, 'M': -1, 'L': -1, 'N': -3, 'Q': -3, 'P': -3, 'S': -1,
       'R': -3, 'T': -1, 'W': -2, 'V': -1, 'Y': -2, 'X': 0},
 'E': {'*': -9, 'A': -1, 'C': -4, 'E': 5, 'D': 2, 'G': -2, 'F': -3, 'I': -3,
       'H': 0, 'K': 1, 'M': -2, 'L': -3, 'N': 0, 'Q': 2, 'P': -1, 'S': 0,
       'R': 0, 'T': 0, 'W': -3, 'V': -3, 'Y': -2, 'X': 0},
 'D': {'*': -9, 'A': -2, 'C': -3, 'E': 2, 'D': 6, 'G': -1, 'F': -3, 'I': -3,
       'H': -1, 'K': -1, 'M': -3, 'L': -4, 'N': 1, 'Q': 0, 'P': -1, 'S': 0,
       'R': -2, 'T': 1, 'W': -4, 'V': -3, 'Y': -3, 'X': 0},
 'G': {'*': -9, 'A': 0, 'C': -3, 'E': -2, 'D': -1, 'G': 6, 'F': -3, 'I': -4,
       'H': -2, 'K': -2, 'M': -3, 'L': -4, 'N': -2, 'Q': -2, 'P': -2, 'S': 0,
       'R': -2, 'T': 1, 'W': -2, 'V': 0, 'Y': -3, 'X': 0},
 'F': {'*': -9, 'A': -2, 'C': -2, 'E': -3, 'D': -3, 'G': -3, 'F': 6, 'I': 0,
       'H': -1, 'K': -3, 'M': 0, 'L': 0, 'N': -3, 'Q': -3, 'P': -4, 'S': -2,
       'R': -3, 'T': -2, 'W': 1, 'V': -1, 'Y': 3, 'X': 0},
 'I': {'*': -9, 'A': -1, 'C': -1, 'E': -3, 'D': -3, 'G': -4, 'F': 0, 'I': 4,
       'H': -3, 'K': -3, 'M': 1, 'L': 2, 'N': -3, 'Q': -3, 'P': -3, 'S': -2,
       'R': -3, 'T': -2, 'W': -3, 'V': 1, 'Y': -1, 'X': 0},
 'H': {'*': -9, 'A': -2, 'C': -3, 'E': 0, 'D': 1, 'G': -2, 'F': -1, 'I': -3,
       'H': 8, 'K': -1, 'M': -2, 'L': -3, 'N': 1, 'Q': 0, 'P': -2, 'S': -1,
       'R': 0, 'T': 0, 'W': -2, 'V': -2, 'Y': 2, 'X': 0},
 'K': {'*': -9, 'A': -1, 'C': -3, 'E': 1, 'D': -1, 'G': -2, 'F': -3, 'I': -3,
       'H': -1, 'K': 5, 'M': -1, 'L': -2, 'N': 0, 'Q': 1, 'P': -1, 'S': 0,
       'R': 2, 'T': 0, 'W': -3, 'V': -3, 'Y': -2, 'X': 0},
 'M': {'*': -9, 'A': -1, 'C': -1, 'E': -2, 'D': -3, 'G': -3, 'F': 0, 'I': 1,
       'H': -2, 'K': -1, 'M': 5, 'L': 2, 'N': -2, 'Q': 0, 'P': -2, 'S': -1,
       'R': -1, 'T': -1, 'W': -1, 'V': -2, 'Y': -1, 'X': 0},
 'L': {'*': -9, 'A': -1, 'C': -1, 'E': -3, 'D': -4, 'G': -4, 'F': 0, 'I': 2,
       'H': -3, 'K': -2, 'M': 2, 'L': 4, 'N': -3, 'Q': -2, 'P': -3, 'S': -2,
       'R': -2, 'T': -2, 'W': -2, 'V': 3, 'Y': -1, 'X': 0},
 'N': {'*': -9, 'A': -2, 'C': -3, 'E': 0, 'D': 1, 'G': 0, 'F': -3, 'I': -3,
       'H': -1, 'K': 0, 'M': -2, 'L': -3, 'N': 6, 'Q': 0, 'P': -2, 'S': 1,
       'R': 0, 'T': 0, 'W': -4, 'V': -3, 'Y': -2, 'X': 0},
 'Q': {'*': -9, 'A': -1, 'C': -3, 'E': 2, 'D': 0, 'G': -2, 'F': -3, 'I': -3,
       'H': 0, 'K': 1, 'M': 0, 'L': -2, 'N': 0, 'Q': 5, 'P': -1, 'S': 0,
       'R': 1, 'T': 0, 'W': -2, 'V': -2, 'Y': -1, 'X': 0},
 'P': {'*': -9, 'A': -1, 'C': -3, 'E': -1, 'D': -1, 'G': -2, 'F': -4, 'I': -3,
       'H': -2, 'K': -1, 'M': -2, 'L': -3, 'N': -1, 'Q': -1, 'P': 7, 'S': -1,
       'R': -2, 'T': 1, 'W': -4, 'V': -2, 'Y': -3, 'X': 0},
 'S': {'*': -9, 'A': 1, 'C': -1, 'E': 0, 'D': 0, 'G': 0, 'F': -2, 'I': -2,
       'H': -1, 'K': 0, 'M': -1, 'L': -2, 'N': 1, 'Q': 0, 'P': -1, 'S': 4,
       'R': -1, 'T': 1, 'W': -3, 'V': -2, 'Y': -2, 'X': 0},
 'R': {'*': -9, 'A': -1, 'C': -3, 'E': 0, 'D': -2, 'G': -2, 'F': -3, 'I': -3,
       'H': 0, 'K': 2, 'M': -1, 'L': -2, 'N': 0, 'Q': 1, 'P': -2, 'S': -1,
       'R': 5, 'T': -1, 'W': -3, 'V': -3, 'Y': -2, 'X': 0},
 'T': {'*': -9, 'A': -1, 'C': -1, 'E': 0, 'D': 1, 'G': 1, 'F': -2, 'I': -2,
       'H': 0, 'K': 0, 'M': -1, 'L': -2, 'N': 0, 'Q': 0, 'P': 1, 'S': 1,
       'R': -1, 'T': 4, 'W': -3, 'V': -2, 'Y': -2, 'X': 0},
 'W': {'*': -9, 'A': -3, 'C': -2, 'E': -3, 'D': -4, 'G': -2, 'F': 1, 'I': -3,
       'H': -2, 'K': -3, 'M': -1, 'L': -2, 'N': -4, 'Q': -2, 'P': -4, 'S': -3,
       'R': -3, 'T': -3, 'W': 11, 'V': -3, 'Y': 2, 'X': 0},
 'V': {'*': -9, 'A': 0, 'C': -1, 'E': -2, 'D': -3, 'G': -3, 'F': -1, 'I': 3,
       'H': -3, 'K': -2, 'M': 1, 'L': 1, 'N': -3, 'Q': -2, 'P': -2, 'S': -2,
       'R': -3, 'T': -2, 'W': -3, 'V': 4, 'Y': -1, 'X': 0},
 'Y': {'*': -9, 'A': -2, 'C': -2, 'E': -2, 'D': -3, 'G': -3, 'F': 3, 'I': -1,
       'H': 2, 'K': -2, 'M': -1, 'L': -1, 'N': -2, 'Q': -1, 'P': -3, 'S': -2,
       'R': -2, 'T': -2, 'W': 2, 'V': -1, 'Y': 7, 'X': 0},
 'X': {'*': 0, 'A': 0, 'C': 0, 'E': 0, 'D': 0, 'G': 0, 'F': 0, 'I': 0,
       'H': 0, 'K': 0, 'M': 0, 'L': 0, 'N': 0, 'Q': 0, 'P': 0, 'S': 0,
       'R': 0, 'T': 0, 'W': 0, 'V': 0, 'Y': 0, 'X': 0}
}


def OptimalCTether(reference, translation, extend=1, create=10):
    '''
    This function will take two sequences: a `reference` sequence and  another
    protein sequence (`translation`; usually, this is an open reading frame
    that has been translated). Needleman-Wunsch alignment will be performed
    and the substring of translation with the highest identity that begins
    with a start codon [default: `['ATG']`] is reported.

    This function returns a dictionary of relevent information from the
    alignment; specifically, the alignments itself [keys: `query`, `subject`],
    the score [key: `score`], the length of the alignment [key: `length`], the
    length of the substring of translation used [key: `sublength`], the number
    of identities [key: `identities`], and the number of gaps [key: `gaps`].
    '''

    starts = set(translate(s) for s in options.START_CODONS)
    v, w = reference, translation

    try:
        v = v.seq
    except AttributeError:
        pass
    try:
        w = w.seq
    except AttributeError:
        pass
    if not starts & set(w):
        raise ValueError("Open reading frame does not contain a start codon.")

    v, w = v[::-1], w[::-1]
    lv, lw = len(v), len(w)
    rv, rw = range(lv + 1), range(lw + 1)
    gpc = [[create * int(not (i | j)) for i in rw] for j in rv]
    mat = [[-(i + j) * extend - create * (not (i | j) and w[0] != v[0])
           for i in rw] for j in rv]
    pnt = [[VGAP_MARK if i > j else HGAP_MARK if j > i else DIAG_MARK
           for i in rw] for j in rv]
    ids = [[0 for i in rw] for j in rv]
    optimal = [None, 0, 0]

    for i in range(lv):
        for j in range(lw):
            vals = [[mat[i][j] + bl[v[i]][w[j]], DIAG_MARK],
                    [mat[i + 1][j] - extend - gpc[i + 1][j], VGAP_MARK],
                    [mat[i][j + 1] - extend - gpc[i][j + 1], HGAP_MARK]]
            mat[i + 1][j + 1], pnt[i + 1][j + 1] = max(vals)
            gpc[i + 1][j + 1] = create * int(pnt[i + 1][j + 1] == DIAG_MARK)
            if (optimal[0] is None or mat[i + 1][j + 1] > optimal[0]) and \
                    abs(lv - i) / float(lv) <= options.LENGTH_ERR and \
                    w[j] in starts:
                optimal = [mat[i + 1][j + 1], i + 1, j + 1]

    i, j = optimal[1], optimal[2]
    seq, ids = ['', ''], 0
    gapcount, length, sublen = 0, 0, 0
    methods = {
        VGAP_MARK:
            lambda s, i, j, l, g, n:
                (['-' + s[0], w[j - 1] + s[1]], i, j - 1, l + 1, g + 1, n),
        DIAG_MARK:
            lambda s, i, j, l, g, n:
                ([v[i - 1] + s[0], w[j - 1] + s[1]], i - 1, j - 1,
                 l + 1, g, n + (w[j - 1] == v[i - 1])),
        HGAP_MARK:
            lambda s, i, j, l, g, n:
                ([v[i - 1] + s[0], '-' + s[1]], i - 1, j, l, g + 1, n)
    }

    while [i, j] != [0, 0]:
        length += 1
        state = (seq, i, j, sublen, gapcount, ids)
        seq, i, j, sublen, gapcount, ids = methods[pnt[i][j]](*state)

    return {
        'subject': seq[0][::-1],
        'query': seq[1][::-1],
        'score': optimal[0],
        'gaps': gapcount,
        'length': length,
        'sublength': sublen,
        'identities': ids
    }