This file is indexed.

/usr/lib/python3/dist-packages/booleanOperations/flatten.py is in python3-booleanoperations 0.8.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
from __future__ import print_function, division, absolute_import
import math
from fontTools.misc import bezierTools
from fontTools.pens.basePen import decomposeQuadraticSegment
import pyclipper
from .exceptions import OpenContourError

"""
To Do:
- the stuff listed below
- need to know what kind of curves should be used for
  curve fit--curve or qcurve
- false curves and duplicate points need to be filtered early on
notes:
- the flattened segments *must* be cyclical.
  if they aren't, matching is almost impossible.
optimization ideas:
- the flattening of the output segment in the full contour
  matching is probably expensive.
- there should be a way to flag an input contour as
  entirely used so that it isn't tried and tried and
  tried for segment matches.
- do a faster test when matching segments: when a end
  match is found, jump back input length and grab the
  output segment. test for match with the input.
- cache input contour objects. matching these to incoming
  will be a little difficult because of point names and
  identifiers. alternatively, deal with those after the fact.
- some tests on input before conversion to input objects
  could yield significant speedups. would need to check
  each contour for self intersection and each
  non-self-intersectingcontour for collision with other
  contours. and contours that don't have a hit could be
  skipped. this cound be done roughly with bounds.
  this should probably be done by extenal callers.
- set a proper starting points of the output segments based on known points
  known points are:
    input oncurve points
    if nothing found intersection points (only use this is in the final curve fitting stage)
test cases:
- untouched contour: make clockwise and counter-clockwise tests
  of the same contour
"""
epsilon = 1e-8

# factors for transferring coordinates to and from Clipper
clipperScale = 1 << 17
inverseClipperScale = 1.0 / clipperScale

# approximateSegmentLength setting
_approximateSegmentLength = 5.3


# -------------
# Input Objects
# -------------

# Input

class InputContour(object):

    def __init__(self, contour):
        # gather the point data
        pointPen = ContourPointDataPen()
        contour.drawPoints(pointPen)
        points = pointPen.getData()
        reversedPoints = _reversePoints(points)
        # gather segments
        self.segments = _convertPointsToSegments(points)
        # only calculate once all the flat points.
        # it seems to have some tiny difference and its a lot faster
        # if the flat points are calculated from the reversed input points.
        self.reversedSegments = _convertPointsToSegments(reversedPoints, willBeReversed=True)
        # simple reverse the flat points and store them in the reversedSegments
        index = 0
        for segment in self.segments:
            otherSegment = self.reversedSegments[index]
            otherSegment.flat = segment.getReversedFlatPoints()
            index -= 1
        # get the direction; returns True if counter-clockwise, False otherwise
        self.clockwise = not pyclipper.Orientation(points)
        # store the gathered data
        if self.clockwise:
            self.clockwiseSegments = self.segments
            self.counterClockwiseSegments = self.reversedSegments
        else:
            self.clockwiseSegments = self.reversedSegments
            self.counterClockwiseSegments = self.segments
        # flag indicating if the contour has been used
        self.used = False

    # ----------
    # Attributes
    # ----------

    # the original direction in flat segments

    def _get_originalFlat(self):
        if self.clockwise:
            return self.clockwiseFlat
        else:
            return self.counterClockwiseFlat

    originalFlat = property(_get_originalFlat)

    # the clockwise direction in flat segments

    def _get_clockwiseFlat(self):
        flat = []
        segments = self.clockwiseSegments
        for segment in segments:
            flat.extend(segment.flat)
        return flat

    clockwiseFlat = property(_get_clockwiseFlat)

    # the counter-clockwise direction in flat segments

    def _get_counterClockwiseFlat(self):
        flat = []
        segments = self.counterClockwiseSegments
        for segment in segments:
            flat.extend(segment.flat)
        return flat

    counterClockwiseFlat = property(_get_counterClockwiseFlat)

    def hasOnCurve(self):
        for inputSegment in self.segments:
            if not inputSegment.used and inputSegment.segmentType != "line":
                return True
        return False


class InputSegment(object):

    # __slots__ = ["points", "previousOnCurve", "scaledPreviousOnCurve", "flat", "used"]

    def __init__(self, points=None, previousOnCurve=None, willBeReversed=False):
        if points is None:
            points = []
        self.points = points
        self.previousOnCurve = previousOnCurve
        self.scaledPreviousOnCurve = _scaleSinglePoint(previousOnCurve, scale=clipperScale)
        self.used = False
        self.flat = []
        # if the bcps are equal to the oncurves convert the segment to a line segment.
        # otherwise this causes an error when flattening.
        if self.segmentType == "curve":
            if previousOnCurve == points[0].coordinates and points[1].coordinates == points[-1].coordinates:
                oncurve = points[-1]
                oncurve.segmentType = "line"
                self.points = points = [oncurve]
            elif previousOnCurve[0] == points[0].coordinates[0] == points[1].coordinates[0] == points[-1].coordinates[0]:
                oncurve = points[-1]
                oncurve.segmentType = "line"
                self.points = points = [oncurve]
            elif previousOnCurve[1] == points[0].coordinates[1] == points[1].coordinates[1] == points[-1].coordinates[1]:
                oncurve = points[-1]
                oncurve.segmentType = "line"
                self.points = points = [oncurve]
        # its a reversed segment the flat points will be set later on in the InputContour
        if willBeReversed:
            return
        pointsToFlatten = []
        if self.segmentType == "qcurve":
            assert len(points) >= 0
            flat = []
            currentOnCurve = previousOnCurve
            pointCoordinates = [point.coordinates for point in points]
            for pt1, pt2 in decomposeQuadraticSegment(pointCoordinates[1:]):
                pt0x, pt0y = currentOnCurve
                pt1x, pt1y = pt1
                pt2x, pt2y = pt2
                mid1x = pt0x + 0.66666666666666667 * (pt1x - pt0x)
                mid1y = pt0y + 0.66666666666666667 * (pt1y - pt0y)
                mid2x = pt2x + 0.66666666666666667 * (pt1x - pt2x)
                mid2y = pt2y + 0.66666666666666667 * (pt1y - pt2y)

                convertedQuadPointToFlatten = [currentOnCurve, (mid1x, mid1y), (mid2x, mid2y), pt2]
                flat.extend(_flattenSegment(convertedQuadPointToFlatten))
                currentOnCurve = pt2
            self.flat = flat
            # this shoudl be easy.
            # copy the quad to cubic from fontTools.pens.basePen
        elif self.segmentType == "curve":
            pointsToFlatten = [previousOnCurve] + [point.coordinates for point in points]
        else:
            assert len(points) == 1
            self.flat = [point.coordinates for point in points]
        if pointsToFlatten:
            self.flat = _flattenSegment(pointsToFlatten)
        # if len(self.flat) == 1 and self.segmentType == "curve":
        #     oncurve = self.points[-1]
        #     oncurve.segmentType = "line"
        #     self.points = [oncurve]
        self.flat = _scalePoints(self.flat, scale=clipperScale)
        self.flat = _checkFlatPoints(self.flat)
        self.used = False

    def _get_segmentType(self):
        return self.points[-1].segmentType

    segmentType = property(_get_segmentType)

    def getReversedFlatPoints(self):
        reversedFlatPoints = [self.scaledPreviousOnCurve] + self.flat[:-1]
        reversedFlatPoints.reverse()
        return reversedFlatPoints

    def split(self, tValues):
        """
        Split the segment according the t values
        """
        if self.segmentType == "curve":
            on1 = self.previousOnCurve
            off1 = self.points[0].coordinates
            off2 = self.points[1].coordinates
            on2 = self.points[2].coordinates
            return bezierTools.splitCubicAtT(on1, off1, off2, on2, *tValues)
        elif self.segmentType == "line":
            segments = []
            x1, y1 = self.previousOnCurve
            x2, y2 = self.points[0].coordinates
            dx = x2 - x1
            dy = y2 - y1
            pp = x1, y1
            for t in tValues:
                np = (x1+dx*t, y1+dy*t)
                segments.append([pp, np])
                pp = np
            segments.append([pp, (x2, y2)])
            return segments
        elif self.segmentType == "qcurve":
            raise NotImplementedError
        else:
            raise NotImplementedError

    def tValueForPoint(self, point):
        """
        get a t values for a given point
        required:
            the point must be a point on the curve.
            in an overlap cause the point will be an intersection points wich is alwasy a point on the curve
        """
        if self.segmentType == "curve":
            on1 = self.previousOnCurve
            off1 = self.points[0].coordinates
            off2 = self.points[1].coordinates
            on2 = self.points[2].coordinates
            return _tValueForPointOnCubicCurve(point, (on1, off1, off2, on2))
        elif self.segmentType == "line":
            return _tValueForPointOnLine(point, (self.previousOnCurve, self.points[0].coordinates))
        elif self.segmentType == "qcurve":
            raise NotImplementedError
        else:
            raise NotImplementedError


class InputPoint(object):

    __slots__ = ["coordinates", "segmentType", "smooth", "name", "kwargs"]

    def __init__(self, coordinates, segmentType=None, smooth=False, name=None, kwargs=None):
        x, y = coordinates
        self.coordinates = coordinates
        self.segmentType = segmentType
        self.smooth = smooth
        self.name = name
        self.kwargs = kwargs

    def __getitem__(self, i):
        return self.coordinates[i]

    def copy(self):
        copy = self.__class__(
            coordinates=self.coordinates,
            segmentType=self.segmentType,
            smooth=self.smooth,
            name=self.name,
            kwargs=self.kwargs
        )
        return copy

    def __str__(self):
        return "%s %s" % (self.segmentType, self.coordinates)

    def __repr__(self):
        return self.__str__()


# -------------
# Input Support
# -------------

class ContourPointDataPen:

    """
    Point pen for gathering raw contour data.
    An instance of this pen may only be used for one contour.
    """

    def __init__(self):
        self._points = None
        self._foundStartingPoint = False

    def getData(self):
        """
        Return a list of normalized InputPoint objects
        for the contour drawn with this pen.
        """
        # organize the points into segments
        # 1. make sure there is an on curve
        haveOnCurve = False
        for point in self._points:
            if point.segmentType is not None:
                haveOnCurve = True
                break
        # 2. move the off curves to front of the list
        if haveOnCurve:
            _prepPointsForSegments(self._points)
        # 3. ignore double points on start and end
        firstPoint = self._points[0]
        lastPoint = self._points[-1]
        if firstPoint.segmentType is not None and lastPoint.segmentType is not None:
            if firstPoint.coordinates == lastPoint.coordinates:
                if (firstPoint.segmentType in ["line", "move"]):
                    del self._points[0]
                else:
                    raise AssertionError("Unhandled point type sequence")
        # done
        return self._points

    def beginPath(self, **kwargs):
        # TODO store and pass on the contour identifier?
        assert self._points is None
        self._points = []

    def endPath(self):
        pass

    def addPoint(self, pt, segmentType=None, smooth=False, name=None, **kwargs):
        if segmentType == "move":
            raise OpenContourError("Unhandled open contour")
        if not self._foundStartingPoint and segmentType is not None:
            kwargs['startingPoint'] = self._foundStartingPoint = True
        data = InputPoint(
            coordinates=pt,
            segmentType=segmentType,
            smooth=smooth,
            name=name,
            kwargs=kwargs
        )
        self._points.append(data)

    def addComponent(self, baseGlyphName, transformation):
        raise NotImplementedError


def _prepPointsForSegments(points):
    """
    Move any off curves at the end of the contour
    to the beginning of the contour. This makes
    segmentation easier.
    """
    while 1:
        point = points[-1]
        if point.segmentType:
            break
        else:
            point = points.pop()
            points.insert(0, point)
            continue
        break


def _copyPoints(points):
    """
    Make a shallow copy of the points.
    """
    copied = [point.copy() for point in points]
    return copied


def _reversePoints(points):
    """
    Reverse the points. This differs from the
    reversal point pen in RoboFab in that it doesn't
    worry about maintaing the start point position.
    That has no benefit within the context of this module.
    """
    # copy the points
    points = _copyPoints(points)
    # find the first on curve type and recycle
    # it for the last on curve type
    firstOnCurve = None
    for index, point in enumerate(points):
        if point.segmentType is not None:
            firstOnCurve = index
            break
    lastSegmentType = points[firstOnCurve].segmentType
    # reverse the points
    points = reversed(points)
    # work through the reversed remaining points
    final = []
    for point in points:
        segmentType = point.segmentType
        if segmentType is not None:
            point.segmentType = lastSegmentType
            lastSegmentType = segmentType
        final.append(point)
    # move any offcurves at the end of the points
    # to the start of the points
    _prepPointsForSegments(final)
    # done
    return final


def _convertPointsToSegments(points, willBeReversed=False):
    """
    Compile points into InputSegment objects.
    """
    # get the last on curve
    previousOnCurve = None
    for point in reversed(points):
        if point.segmentType is not None:
            previousOnCurve = point.coordinates
            break
    assert previousOnCurve is not None
    # gather the segments
    offCurves = []
    segments = []
    for point in points:
        # off curve, hold.
        if point.segmentType is None:
            offCurves.append(point)
        else:
            segment = InputSegment(
                points=offCurves + [point],
                previousOnCurve=previousOnCurve,
                willBeReversed=willBeReversed
            )
            segments.append(segment)
            offCurves = []
            previousOnCurve = point.coordinates
    assert not offCurves
    return segments


# --------------
# Output Objects
# --------------

class OutputContour(object):

    def __init__(self, pointList):
        if pointList[0] == pointList[-1]:
            del pointList[-1]
        self.clockwise = not pyclipper.Orientation(pointList)
        self.segments = [
            OutputSegment(
                segmentType="flat",
                points=[point]
            ) for point in pointList
        ]

    def _scalePoint(self, point):
        x, y = point
        x = x * inverseClipperScale
        if int(x) == x:
            x = int(x)
        y = y * inverseClipperScale
        if int(y) == y:
            y = int(y)
        return x, y

    # ----------
    # Attributes
    # ----------

    def _get_final(self):
        # XXX this could be optimized:
        # store a fixed value after teh contour is finalized
        # don't do the dymanic searching if that flag is set to True
        for segment in self.segments:
            if not segment.final:
                return False
        return True

    final = property(_get_final)

    # --------------------------
    # Re-Curve and Curve Fitting
    # --------------------------

    def reCurveFromEntireInputContour(self, inputContour):
        """
        Match if entire input contour matches entire output contour,
        allowing for different start point.
        """
        if self.clockwise:
            inputFlat = inputContour.clockwiseFlat
        else:
            inputFlat = inputContour.counterClockwiseFlat
        outputFlat = []
        for segment in self.segments:
            # XXX this could be expensive
            assert segment.segmentType == "flat"
            outputFlat += segment.points
        # test lengths
        haveMatch = False
        if len(inputFlat) == len(outputFlat):
            if inputFlat == outputFlat:
                haveMatch = True
            else:
                inputStart = inputFlat[0]
                if inputStart in outputFlat:
                    # there should be only one occurance of the point
                    # but handle it just in case
                    if outputFlat.count(inputStart) > 1:
                        startIndexes = [index for index, point in enumerate(outputFlat) if point == inputStart]
                    else:
                        startIndexes = [outputFlat.index(inputStart)]
                    # slice and dice to test possible orders
                    for startIndex in startIndexes:
                        test = outputFlat[startIndex:] + outputFlat[:startIndex]
                        if inputFlat == test:
                            haveMatch = True
                            break
        if haveMatch:
            # clear out the flat points
            self.segments = []
            # replace with the appropriate points from the input
            if self.clockwise:
                inputSegments = inputContour.clockwiseSegments
            else:
                inputSegments = inputContour.counterClockwiseSegments
            for inputSegment in inputSegments:
                self.segments.append(
                    OutputSegment(
                        segmentType=inputSegment.segmentType,
                        points=[
                            OutputPoint(
                                coordinates=point.coordinates,
                                segmentType=point.segmentType,
                                smooth=point.smooth,
                                name=point.name,
                                kwargs=point.kwargs
                            )
                            for point in inputSegment.points
                        ],
                        final=True
                    )
                )
                inputSegment.used = True
            # reset the direction of the final contour
            self.clockwise = inputContour.clockwise
            return True
        return False

    def reCurveFromInputContourSegments(self, inputContour):
        return
        # match individual segments
        if self.clockwise:
            inputSegments = inputContour.clockwiseSegments
        else:
            inputSegments = inputContour.counterClockwiseSegments
        for inputSegment in inputSegments:
            # skip used
            if inputSegment.used:
                continue
            # skip if the input contains more points than the entire output contour
            if len(inputSegment.flat) > len(self.segments):
                continue
            # skip if the input end is not in the contour
            inputSegmentLastPoint = inputSegment.flat[-1]
            outputFlat = [segment.points[-1] for segment in self.segments]
            if inputSegmentLastPoint not in outputFlat:
                continue
            # work through all output segments
            for outputSegmentIndex, outputSegment in enumerate(self.segments):
                # skip finalized
                if outputSegment.final:
                    continue
                # skip if the output point doesn't match the input end
                if outputSegment.points[-1] != inputSegmentLastPoint:
                    continue
                # make a set of ranges for slicing the output into a testable list of points
                inputLength = len(inputSegment.flat)
                outputRanges = []
                outputSegmentIndex += 1
                if outputSegmentIndex - inputLength < 0:
                    r1 = (len(self.segments) + outputSegmentIndex - inputLength, len(self.segments))
                    outputRanges.append(r1)
                    r2 = (0, outputSegmentIndex)
                    outputRanges.append(r2)
                else:
                    outputRanges.append((outputSegmentIndex - inputLength, outputSegmentIndex))
                # gather the output segments
                testableOutputSegments = []
                for start, end in outputRanges:
                    testableOutputSegments += self.segments[start:end]
                # create a list of points
                test = []
                for s in testableOutputSegments:
                    # stop if a segment is final
                    if s.final:
                        test = None
                        break
                    test.append(s.points[-1])
                if test == inputSegment.flat and inputSegment.segmentType != "line":
                    # insert new segment
                    newSegment = OutputSegment(
                        segmentType=inputSegment.segmentType,
                        points=[
                            OutputPoint(
                                coordinates=point.coordinates,
                                segmentType=point.segmentType,
                                smooth=point.smooth,
                                name=point.name,
                                kwargs=point.kwargs
                            )
                            for point in inputSegment.points
                        ],
                        final=True
                    )
                    self.segments.insert(outputSegmentIndex, newSegment)
                    # remove old segments
                    # XXX this is sloppy
                    for start, end in outputRanges:
                        if start > outputSegmentIndex:
                            start += 1
                            end += 1
                        del self.segments[start:end]
                    # flag the original as used
                    inputSegment.used = True
                    break
        # ? match line start points (to prevent curve fit in shortened line)
        return False

    def reCurveSubSegmentsCheckInputContoursOnHasCurve(self, inputContours):
        # test is the remaining input contours contains only lineTo points
        # XXX could be cached
        return True
        # for inputContour in inputContours:
        #     if inputContour.used:
        #         continue
        #     if inputContour.hasOnCurve():
        #         return True
        # return False

    def reCurveSubSegments(self, inputContours):
        if not self.segments:
            # its all done
            return
        # the inputContours has some curved segments
        # if not it all the segments will be converted at the end
        if self.reCurveSubSegmentsCheckInputContoursOnHasCurve(inputContours):
            # collect all flat points in a dict of unused inputContours
            # collect both clockwise segment and counterClockwise segments
            # it happens a lot that the directions turns around
            # the clockwise attribute can help but testing the directions is always needed
            # collect all oncurve points as well
            flatInputPointsSegmentDict = dict()
            reversedFlatInputPointsSegmentDict = dict()
            flatIntputOncurves = set()
            for inputContour in inputContours:
                if inputContour.used:
                    continue
                if self.clockwise:
                    inputSegments = inputContour.clockwiseSegments
                    reversedSegments = inputContour.counterClockwiseSegments
                else:
                    inputSegments = inputContour.counterClockwiseSegments
                    reversedSegments = inputContour.clockwiseSegments
                for inputSegment in inputSegments:
                    if inputSegment.used:
                        continue
                    for p in inputSegment.flat:
                        flatInputPointsSegmentDict[p] = inputSegment
                    flatIntputOncurves.add(inputSegment.scaledPreviousOnCurve)

                for inputSegment in reversedSegments:
                    if inputSegment.used:
                        continue
                    for p in inputSegment.flat:
                        reversedFlatInputPointsSegmentDict[p] = inputSegment
                    flatIntputOncurves.add(inputSegment.scaledPreviousOnCurve)
            flatInputPoints = set(flatInputPointsSegmentDict.keys())
            # reset the starting point to a known point.
            # not somewhere in the middle of a flatten point list
            firstSegment = self.segments[0]
            foundStartingPoint = True
            if firstSegment.segmentType == "flat":
                foundStartingPoint = False
                for index, segment in enumerate(self.segments):
                    if segment.segmentType in ["line", "curve", "qcurve"]:
                        foundStartingPoint = True
                        break
                if foundStartingPoint:
                    # if found re index the segments
                    # if there is no known starting point found do it later based on the intersection points
                    self.segments = self.segments[index:] + self.segments[:index]
            # collect all flat points in a intersect segment
            remainingSubSegment = OutputSegment(segmentType="intersect", points=[])
            # store all segments in one big temp list
            newSegments = []
            for index, segment in enumerate(self.segments):
                if segment.segmentType != "flat":
                    # when the segment contains only one points its a line cause it is a single intersection point
                    if len(remainingSubSegment.points) == 1:
                        remainingSubSegment.segmentType = "line"
                        remainingSubSegment.final = True
                        remainingSubSegment.points = [
                                          OutputPoint(
                                                coordinates=self._scalePoint(point),
                                                segmentType="line",
                                                smooth=point.smooth,
                                                name=point.name,
                                                kwargs=point.kwargs
                                              )
                                          for point in remainingSubSegment.points
                                          ]
                    newSegments.append(remainingSubSegment)
                    remainingSubSegment = OutputSegment(segmentType="intersect", points=[])
                    newSegments.append(segment)
                    continue
                remainingSubSegment.points.extend(segment.points)
            newSegments.append(remainingSubSegment)
            # loop over all segments
            for segment in newSegments:
                # handle only segments tagged as intersect
                if segment.segmentType != "intersect":
                    continue
                # skip empty segments
                if not segment.points:
                    continue
                # get al inputSegments, this is an unorderd list of all points no in the the flatInputPoints
                segmentPointsSet = set(segment.points)
                intersectionPoints = segmentPointsSet - flatInputPoints
                # merge both oncurves and intersectionPoints as known points
                possibleStartingPoints = flatIntputOncurves | intersectionPoints
                hasOncurvePoints = segmentPointsSet & flatIntputOncurves
                # if not starting point is found earlier do it here
                foundStartingPointIndex = None
                if not foundStartingPoint:
                    for index, p in enumerate(segment.points):
                        if p in flatIntputOncurves:
                            foundStartingPointIndex = index
                            break
                    if foundStartingPointIndex is None:
                        for index, p in enumerate(segment.points):
                            if p in intersectionPoints:
                                foundStartingPointIndex = index
                                break
                    segment.points = segment.points[foundStartingPointIndex:] + segment.points[:foundStartingPointIndex]
                # split list based on oncurvepoints and intersection points, aka possibleStartingPoints.
                segmentedFlatPoints = [[]]
                for p in segment.points:
                    segmentedFlatPoints[-1].append(p)
                    if p in possibleStartingPoints:
                        segmentedFlatPoints.append([])
                if not segmentedFlatPoints[-1]:
                    segmentedFlatPoints.pop(-1)
                if len(segmentedFlatPoints) > 1 and len(segmentedFlatPoints[0]) == 1:
                    # if last segment is a curve, the start point may be last point on the last segment. If so, merge them.
                    # check if they both have the same inputSegment or reversedInputSegment
                    fp = segmentedFlatPoints[0][0]
                    lp = segmentedFlatPoints[-1][-1]
                    mergeFirstSegments = False
                    if fp in flatInputPoints and lp in flatInputPoints:
                        firstInputSegment = flatInputPointsSegmentDict[fp]
                        lastInputSegment = flatInputPointsSegmentDict[lp]
                        reversedFirstInputSegment = reversedFlatInputPointsSegmentDict[fp]
                        reversedLastInputSegment = reversedFlatInputPointsSegmentDict[lp]
                        if (firstInputSegment.segmentType == reversedFirstInputSegment.segmentType == "curve") or (lastInputSegment.segmentType == reversedLastInputSegment.segmentType == "curve"):
                            if firstInputSegment == lastInputSegment or reversedFirstInputSegment == reversedLastInputSegment:
                                mergeFirstSegments = True
                            # elif len(firstInputSegment.points) > 1 and len(lastInputSegment.points) > 1:
                            elif fp == lastInputSegment.scaledPreviousOnCurve:
                                mergeFirstSegments = True
                            elif lp == firstInputSegment.scaledPreviousOnCurve:
                                mergeFirstSegments = True
                            elif fp == reversedLastInputSegment.scaledPreviousOnCurve:
                                mergeFirstSegments = True
                            elif lp == reversedFirstInputSegment.scaledPreviousOnCurve:
                                mergeFirstSegments = True
                    elif not hasOncurvePoints and _distance(fp, lp):
                        # Merge last segment with first segment if the distance between the last point and the first
                        # point is less than the step distance between the last two points. _approximateSegmentLength
                        # can be significantly smaller than this step size.
                        if len(segmentedFlatPoints[-1]) > 1:
                            f1 = segmentedFlatPoints[-1][-2]
                            f2 = segmentedFlatPoints[-1][-1]
                            stepLen = _distance(f1, f2)
                        else:
                            stepLen = _approximateSegmentLength*clipperScale

                        if _distance(fp, lp) <= stepLen:
                                mergeFirstSegments = True
                    if mergeFirstSegments:
                        segmentedFlatPoints[0] = segmentedFlatPoints[-1] + segmentedFlatPoints[0]
                        segmentedFlatPoints.pop(-1)
                        mergeFirstSegments = False
                convertedSegments = []
                previousIntersectionPoint = None
                if segmentedFlatPoints[-1][-1] in intersectionPoints:
                    previousIntersectionPoint = self._scalePoint(segmentedFlatPoints[-1][-1])
                elif segmentedFlatPoints[0][0] in intersectionPoints:
                    previousIntersectionPoint = self._scalePoint(segmentedFlatPoints[0][0])

                for flatSegment in segmentedFlatPoints:
                    # search two points in the flat segment that is not an inputOncurve or intersection point
                    # to get a proper direction of the flatSegment
                    # based on these two points pick a inputSegment
                    fp = ep = None
                    for p in flatSegment:
                        if p in possibleStartingPoints:
                            continue
                        elif fp is None:
                            fp = p
                        elif ep is None:
                            ep = p
                        else:
                            break
                    canDoFastLine = True
                    if ep is None and ((fp is None) or (len(flatSegment) == 2)):
                        # if fp is not None, then it is a flattened part of a curve, and should be used to derive the input segment.
                        # It may be either the first or second point.
                        # If fp is None, I use the original logic.
                        if fp is None:
                            fp = flatSegment[-1]
                        # flat segment only contains two intersection points or one intersection point and one input oncurve point
                        # this can be ignored cause this is a very small line
                        # and will be converted to a simple line
                        if self.clockwise:
                            inputSegment = reversedFlatInputPointsSegmentDict.get(fp)
                        else:
                            inputSegment = flatInputPointsSegmentDict.get(fp)
                    else:
                        # get inputSegment based on the clockwise settings
                        inputSegment = flatInputPointsSegmentDict[fp]
                        if ep is not None and ep in inputSegment.flat:
                            # if two points are found get indexes
                            fi = inputSegment.flat.index(fp)
                            ei = inputSegment.flat.index(ep)
                            if fi > ei:
                                # if the start index is bigger
                                # get the reversed inputSegment
                                inputSegment = reversedFlatInputPointsSegmentDict[fp]
                        else:
                            # if flat segment is short and has only one point not in intersections and input oncurves
                            # test it against the reversed inputSegment
                            reversedInputSegment = reversedFlatInputPointsSegmentDict[fp]
                            if flatSegment[0] == reversedInputSegment.flat[0] and flatSegment[-1] == reversedInputSegment.flat[-1]:
                                inputSegment = reversedInputSegment
                            elif flatSegment[0] in intersectionPoints and flatSegment[-1] == reversedInputSegment.flat[-1]:
                                inputSegment = reversedInputSegment
                            elif flatSegment[-1] in intersectionPoints and flatSegment[0] == reversedInputSegment.flat[0]:
                                inputSegment = reversedInputSegment
                            canDoFastLine = False
                        # if there is only one point in a flat segment
                        # this is a single intersection points (two crossing lineTo's)
                        if inputSegment.segmentType == "curve":
                            canDoFastLine = False
                    if (len(flatSegment) == 1 or inputSegment is None) and canDoFastLine:
                        # p = flatSegment[0]
                        for p in flatSegment:
                            previousIntersectionPoint = self._scalePoint(p)
                            pointInfo = dict()
                            kwargs = dict()
                            if p in flatInputPointsSegmentDict:
                                lineSegment = flatInputPointsSegmentDict[p]
                                segmentPoint = lineSegment.points[-1]
                                pointInfo["smooth"] = segmentPoint.smooth
                                pointInfo["name"] = segmentPoint.name
                                kwargs.update(segmentPoint.kwargs)
                            convertedSegments.append(OutputPoint(coordinates=previousIntersectionPoint, segmentType="line", kwargs=kwargs, **pointInfo))
                        continue
                    tValues = None
                    lastPointWithAttributes = None
                    if flatSegment[0] == inputSegment.flat[0] and flatSegment[-1] != inputSegment.flat[-1]:
                        # needed the first part of the segment
                        # if previousIntersectionPoint is None:
                        #    previousIntersectionPoint = self._scalePoint(flatSegment[-1])
                        searchPoint = self._scalePoint(flatSegment[-1])
                        tValues = inputSegment.tValueForPoint(searchPoint)
                        curveNeeded = 0
                        replacePointOnNewCurve = [(3, searchPoint)]
                        previousIntersectionPoint = searchPoint
                    elif flatSegment[-1] == inputSegment.flat[-1] and flatSegment[0] != inputSegment.flat[0]:
                        # needed the end of the segment
                        if previousIntersectionPoint is None:
                            previousIntersectionPoint = self._scalePoint(flatSegment[0])
                            convertedSegments.append(OutputPoint(
                                coordinates=previousIntersectionPoint,
                                segmentType="line",
                            ))
                        tValues = inputSegment.tValueForPoint(previousIntersectionPoint)
                        curveNeeded = -1
                        replacePointOnNewCurve = [(0, previousIntersectionPoint)]
                        previousIntersectionPoint = None
                        lastPointWithAttributes = inputSegment.points[-1]
                    elif flatSegment[0] != inputSegment.flat[0] and flatSegment[-1] != inputSegment.flat[-1]:
                        # needed the a middle part of the segment
                        if previousIntersectionPoint is None:
                            previousIntersectionPoint = self._scalePoint(flatSegment[0])
                        tValues = inputSegment.tValueForPoint(previousIntersectionPoint)
                        searchPoint = self._scalePoint(flatSegment[-1])
                        tValues.extend(inputSegment.tValueForPoint(searchPoint))
                        curveNeeded = 1
                        replacePointOnNewCurve = [(0, previousIntersectionPoint), (3, searchPoint)]
                        previousIntersectionPoint = searchPoint
                    else:
                        # take the whole segments as is
                        newCurve = [
                            OutputPoint(
                                coordinates=point.coordinates,
                                segmentType=point.segmentType,
                                smooth=point.smooth,
                                name=point.name,
                                kwargs=point.kwargs
                            )
                            for point in inputSegment.points
                        ]
                        convertedSegments.extend(newCurve)
                        previousIntersectionPoint = None
                    # if we found some tvalue, split the curve and get the requested parts of the splitted curves
                    if tValues:
                        newCurve = inputSegment.split(tValues)
                        newCurve = list(newCurve[curveNeeded])
                        for i, replace in replacePointOnNewCurve:
                            newCurve[i] = replace
                        newCurve = [OutputPoint(coordinates=p, segmentType=None) for p in newCurve[1:]]
                        newCurve[-1].segmentType = inputSegment.segmentType
                        if lastPointWithAttributes is not None:
                            newCurve[-1].smooth = lastPointWithAttributes.smooth
                            newCurve[-1].name = lastPointWithAttributes.name
                            newCurve[-1].kwargs = lastPointWithAttributes.kwargs
                        convertedSegments.extend(newCurve)
                # replace the the points with the converted segments
                segment.points = convertedSegments
                segment.segmentType = "reCurved"
            self.segments = newSegments
        # XXX convert all of the remaining segments to lines
        for segment in self.segments:
            if not segment.points:
                continue
            if segment.segmentType not in ["intersect", "flat"]:
                continue
            segment.segmentType = "line"
            segment.points = [
                OutputPoint(
                    coordinates=self._scalePoint(point),
                    segmentType="line",
                    # smooth=point.smooth,
                    # name=point.name,
                    # kwargs=point.kwargs
                )
                for point in segment.points
            ]

    # ----
    # Draw
    # ----

    def drawPoints(self, pointPen):
        pointPen.beginPath()
        points = []
        for segment in self.segments:
            points.extend(segment.points)

        hasOnCurve = False
        originalStartingPoints = []
        for index, point in enumerate(points):
            if point.segmentType is not None:
                hasOnCurve = True
                if point.kwargs is not None and point.kwargs.get("startingPoint"):
                    distanceFromOrigin = math.hypot(*point)
                    originalStartingPoints.append((distanceFromOrigin, index))
        if originalStartingPoints:
            # use the original starting point that is closest to the origin
            startingPointIndex = sorted(originalStartingPoints)[0][1]
            points = points[startingPointIndex:] + points[:startingPointIndex]
        elif hasOnCurve:
            while points[0].segmentType is None:
                p = points.pop(0)
                points.append(p)
        previousPointCoordinates = None
        for point in points:
            if previousPointCoordinates is not None and point.segmentType and tuple(point.coordinates) == previousPointCoordinates:
                continue
            kwargs = {}
            if point.kwargs is not None:
                kwargs = point.kwargs
            pointPen.addPoint(
                point.coordinates,
                segmentType=point.segmentType,
                smooth=point.smooth,
                name=point.name,
                **kwargs
            )
            if point.segmentType:
                previousPointCoordinates = tuple(point.coordinates)
            else:
                previousPointCoordinates = None
        pointPen.endPath()


class OutputSegment(object):

    __slots__ = ["segmentType", "points", "final"]

    def __init__(self, segmentType=None, points=None, final=False):
        self.segmentType = segmentType
        if points is None:
            points = []
        self.points = points
        self.final = final


class OutputPoint(InputPoint):
    pass


# ----------
# Misc. Math
# ----------

def _tValueForPointOnCubicCurve(point, cubicCurve, isHorizontal=0):
    """
    Finds a t value on a curve from a point.
    The points must be originaly be a point on the curve.
    This will only back trace the t value, needed to split the curve in parts
    """
    pt1, pt2, pt3, pt4 = cubicCurve
    a, b, c, d = bezierTools.calcCubicParameters(pt1, pt2, pt3, pt4)
    solutions = bezierTools.solveCubic(a[isHorizontal], b[isHorizontal], c[isHorizontal],
        d[isHorizontal] - point[isHorizontal])
    solutions = [t for t in solutions if 0 <= t < 1]
    if not solutions and not isHorizontal:
        # can happen that a horizontal line doens intersect, try the vertical
        return _tValueForPointOnCubicCurve(point, (pt1, pt2, pt3, pt4), isHorizontal=1)
    if len(solutions) > 1:
        intersectionLenghts = {}
        for t in solutions:
            tp = _getCubicPoint(t, pt1, pt2, pt3, pt4)
            dist = _distance(tp, point)
            intersectionLenghts[dist] = t
        minDist = min(intersectionLenghts.keys())
        solutions = [intersectionLenghts[minDist]]
    return solutions


def _tValueForPointOnQuadCurve(point, pts, isHorizontal=0):
    quadSegments = decomposeQuadraticSegment(pts[1:])
    previousOnCurve = pts[0]
    solutionsDict = dict()
    for index, (pt1, pt2) in enumerate(quadSegments):
        a, b, c = bezierTools.calcQuadraticParameters(previousOnCurve, pt1, pt2)
        subSolutions = bezierTools.solveQuadratic(a[isHorizontal], b[isHorizontal], c[isHorizontal] - point[isHorizontal])
        subSolutions = [t for t in subSolutions if 0 <= t < 1]
        for t in subSolutions:
            solutionsDict[(t, index)] = _getQuadPoint(t, previousOnCurve, pt1, pt2)
        previousOnCurve = pt2
    solutions = list(solutionsDict.keys())
    if not solutions and not isHorizontal:
        return _tValueForPointOnQuadCurve(point, pts, isHorizontal=1)
    if len(solutions) > 1:
        intersectionLenghts = {}
        for t in solutions:
            tp = solutionsDict[t]
            dist = _distance(tp, point)
            intersectionLenghts[dist] = t
        minDist = min(intersectionLenghts.keys())
        solutions = [intersectionLenghts[minDist]]
    return solutions


def _tValueForPointOnLine(point, line):
    pt1, pt2 = line
    dist = _distance(pt1, point)
    totalDist = _distance(pt1, pt2)
    return [dist / totalDist]


def _scalePoints(points, scale=1, convertToInteger=True):
    """
    Scale points and optionally convert them to integers.
    """
    if convertToInteger:
        points = [
            (int(round(x * scale)), int(round(y * scale)))
            for (x, y) in points
        ]
    else:
        points = [(x * scale, y * scale) for (x, y) in points]
    return points


def _scaleSinglePoint(point, scale=1, convertToInteger=True):
    """
    Scale a single point
    """
    x, y = point
    if convertToInteger:
        return int(round(x * scale)), int(round(y * scale))
    else:
        return (x * scale, y * scale)


def _intPoint(pt):
    return int(round(pt[0])), int(round(pt[1]))


def _checkFlatPoints(points):
    _points = []
    previousX = previousY = None
    for x, y in points:
        if x == previousX:
            continue
        elif y == previousY:
            continue
        if (x, y) not in _points:
            # is it possible that two flat point are on top of eachother???
            _points.append((x, y))
        previousX, previousY = x, y
    if _points[-1] != points[-1]:
        _points[-1] = points[-1]
    return _points


"""
The curve flattening code was forked and modified from RoboFab's FilterPen.
That code was written by Erik van Blokland.
"""


def _flattenSegment(segment, approximateSegmentLength=_approximateSegmentLength):
    """
    Flatten the curve segment int a list of points.
    The first and last points in the segment must be
    on curves. The returned list of points will not
    include the first on curve point.
    false curves (where the off curves are not any
    different from the on curves) must not be sent here.
    duplicate points must not be sent here.
    """
    onCurve1, offCurve1, offCurve2, onCurve2 = segment
    if _pointOnLine(onCurve1, onCurve2, offCurve1) and _pointOnLine(onCurve1, onCurve2, offCurve2):
        return [onCurve2]
    est = _estimateCubicCurveLength(onCurve1, offCurve1, offCurve2, onCurve2) / approximateSegmentLength
    flat = []
    minStep = 0.1564
    step = 1.0 / est
    if step > .3:
        step = minStep
    t = step
    while t < 1:
        pt = _getCubicPoint(t, onCurve1, offCurve1, offCurve2, onCurve2)
        # ignore when point is in the same direction as the on - off curve line
        if not _pointOnLine(offCurve2, onCurve2, pt) and not _pointOnLine(onCurve1, offCurve1, pt):
            flat.append(pt)
        t += step
    flat.append(onCurve2)
    return flat


def _distance(pt1, pt2):
    return math.sqrt((pt1[0] - pt2[0]) ** 2 + (pt1[1] - pt2[1]) ** 2)


def _pointOnLine(pt1, pt2, a):
    return abs(_distance(pt1, a) + _distance(a, pt2) - _distance(pt1, pt2)) < epsilon


def _estimateCubicCurveLength(pt0, pt1, pt2, pt3, precision=10):
    """
    Estimate the length of this curve by iterating
    through it and averaging the length of the flat bits.
    """
    points = []
    length = 0
    step = 1.0 / precision
    factors = range(0, precision + 1)
    for i in factors:
        points.append(_getCubicPoint(i * step, pt0, pt1, pt2, pt3))
    for i in range(len(points) - 1):
        pta = points[i]
        ptb = points[i + 1]
        length += _distance(pta, ptb)
    return length


def _mid(pt1, pt2):
    """
    (Point, Point) -> Point
    Return the point that lies in between the two input points.
    """
    (x0, y0), (x1, y1) = pt1, pt2
    return 0.5 * (x0 + x1), 0.5 * (y0 + y1)


def _getCubicPoint(t, pt0, pt1, pt2, pt3):
    if t == 0:
        return pt0
    if t == 1:
        return pt3
    if t == 0.5:
        a = _mid(pt0, pt1)
        b = _mid(pt1, pt2)
        c = _mid(pt2, pt3)
        d = _mid(a, b)
        e = _mid(b, c)
        return _mid(d, e)
    else:
        cx = (pt1[0] - pt0[0]) * 3.0
        cy = (pt1[1] - pt0[1]) * 3.0
        bx = (pt2[0] - pt1[0]) * 3.0 - cx
        by = (pt2[1] - pt1[1]) * 3.0 - cy
        ax = pt3[0] - pt0[0] - cx - bx
        ay = pt3[1] - pt0[1] - cy - by
        t3 = t ** 3
        t2 = t * t
        x = ax * t3 + bx * t2 + cx * t + pt0[0]
        y = ay * t3 + by * t2 + cy * t + pt0[1]
        return x, y


def _getQuadPoint(t, pt0, pt1, pt2):
    if t == 0:
        return pt0
    if t == 1:
        return pt2
    else:
        cx = pt0[0]
        cy = pt0[1]
        bx = (pt1[0] - cx) * 2.0
        by = (pt1[1] - cy) * 2.0
        ax = pt2[0] - cx - bx
        ay = pt2[1] - cy - by
        x = ax * t**2 + bx * t + cx
        y = ay * t**2 + by * t + cy
        return x, y