This file is indexed.

/usr/lib/python3/dist-packages/bumps/fitters.py is in python3-bumps 0.7.6-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
"""
Interfaces to various optimizers.
"""
from __future__ import print_function, division

import sys
import time
from copy import copy

import numpy as np

from . import monitor
from . import initpop
from . import lsqerror

from .history import History
from .formatnum import format_uncertainty
from .fitproblem import nllf_scale

from .dream import MCMCModel


class ConsoleMonitor(monitor.TimedUpdate):
    """
    Display fit progress on the console
    """
    def __init__(self, problem, progress=1, improvement=30):
        monitor.TimedUpdate.__init__(self, progress=progress,
                                     improvement=improvement)
        self.problem = problem

    def show_progress(self, history):
        scale, err = nllf_scale(self.problem)
        chisq = format_uncertainty(scale*history.value[0], err)
        print("step", history.step[0], "cost", chisq)
        sys.stdout.flush()

    def show_improvement(self, history):
        # print "step",history.step[0],"chisq",history.value[0]
        p = self.problem.getp()
        try:
            self.problem.setp(history.point[0])
            print(self.problem.summarize())
        finally:
            self.problem.setp(p)
        sys.stdout.flush()


class StepMonitor(monitor.Monitor):
    """
    Collect information at every step of the fit and save it to a file.

    *fid* is the file to save the information to
    *fields* is the list of "step|time|value|point" fields to save

    The point field should be last in the list.
    """
    FIELDS = ['step', 'time', 'value', 'point']

    def __init__(self, problem, fid, fields=FIELDS):
        if any(f not in self.FIELDS for f in fields):
            raise ValueError("invalid monitor field")
        self.fid = fid
        self.fields = fields
        self._pattern = "%%(%s)s\n" % (")s %(".join(fields))
        fid.write("# " + ' '.join(fields) + '\n')

    def config_history(self, history):
        history.requires(time=1, value=1, point=1, step=1)

    def __call__(self, history):
        point = " ".join("%.15g" % v for v in history.point[0])
        time = "%g" % history.time[0]
        step = "%d" % history.step[0]
        scale, _ = nllf_scale(self.problem)
        value = "%.15g" % (scale * history.value[0])
        out = self._pattern % dict(point=point, time=time,
                                   value=value, step=step)
        self.fid.write(out)

class MonitorRunner(object):
    """
    Adaptor which allows solvers to accept progress monitors.
    """
    def __init__(self, monitors, problem):
        if monitors is None:
            monitors = [ConsoleMonitor(problem)]
        self.monitors = monitors
        self.history = History(time=1, step=1, point=1, value=1,
                               population_points=1, population_values=1)
        for M in self.monitors:
            M.config_history(self.history)
        self._start = time.time()

    def __call__(self, step, point, value,
                 population_points=None, population_values=None):
        self.history.update(time=time.time() - self._start,
                            step=step, point=point, value=value,
                            population_points=population_points,
                            population_values=population_values)
        for M in self.monitors:
            M(self.history)


class FitBase(object):
    """
    FitBase defines the interface from bumps models to the various fitting
    engines available within bumps.

    Each engine is defined in its own class with a specific set of attributes
    and methods.

    The *name* attribute is the name of the optimizer.  This is just a simple
    string.

    The *settings* attribute is a list of pairs (name, default), where the
    names are defined as fields in FitOptions.  A best attempt should be
    made to map the fit options for the optimizer to the standard fit options,
    since each of these becomes a new command line option when running
    bumps.  If that is not possible, then a new option should be added
    to FitOptions.  A plugin architecture might be appropriate here, if
    there are reasons why specific problem domains might need custom fitters,
    but this is not yet supported.

    Each engine takes a fit problem in its constructor.

    The :meth:`solve` method runs the fit.  It accepts a
    monitor to track updates, a mapper to distribute work and
    key-value pairs defining the settings.

    There are a number of optional methods for the fitting engines.  Basically,
    all the methods in :class:`FitDriver` first check if they are specialized
    in the fit engine before performing a default action.

    The *load*/*save* methods load and save the fitter state in a given
    directory with a specific base file name.  The fitter can choose a file
    extension to add to the base name.  Some care is needed to be sure that
    the extension doesn't collide with other extensions such as .mon for
    the fit monitor.

    The *plot* method shows any plots to help understand the performance of
    the fitter, such as a convergence plot showing the the range of values
    in the population over time, as well as plots of the parameter uncertainty
    if available.  The plot should work within  is given a figure canvas to work with

    The *stderr*/*cov* methods should provide summary statistics for the
    parameter uncertainties.  Some fitters, such as MCMC, will compute these
    directly from the population.  Others, such as BFGS, will produce an
    estimate of the uncertainty as they go along.  If the fitter does not
    provide these estimates, then they will be computed from numerical
    derivatives at the minimum in the FitDriver method.
    """
    def __init__(self, problem):
        """Fit the models and show the results"""
        self.problem = problem

    def solve(self, monitors=None, mapper=None, **options):
        raise NotImplementedError


class MultiStart(FitBase):
    """
    Multi-start monte carlo fitter.

    This fitter wraps a local optimizer, restarting it a number of times
    to give it a chance to find a different local minimum.  If the keep_best
    option is True, then restart near the best fit, otherwise restart at
    random.
    """
    name = "Multistart Monte Carlo"
    settings = [('starts', 100)]

    def __init__(self, fitter):
        FitBase.__init__(self, fitter.problem)
        self.fitter = fitter

    def solve(self, monitors=None, mapper=None, **options):
        # TODO: need better way of tracking progress
        import logging
        starts = options.pop('starts', 1)
        reset = not options.pop('keep_best', True)
        f_best = np.inf
        x_best = self.problem.getp()
        for _ in range(max(starts, 1)):
            logging.info("multistart round %d"%_)
            x, fx = self.fitter.solve(monitors=monitors, mapper=mapper,
                                      **options)
            if fx < f_best:
                x_best, f_best = x, fx
                logging.info("multistart f(x),x: %s %s"%(str(fx),str(x_best)))
            if reset:
                self.problem.randomize()
            else:
                # Jitter
                self.problem.setp(x_best)
                pop = initpop.eps_init(1, self.problem.getp(),
                                       self.problem.bounds(),
                                       use_point=False, eps=1e-3)
                self.problem.setp(pop[0])
        return x_best, f_best


class DEFit(FitBase):
    """
    Classic Storn and Price differential evolution optimizer.
    """
    name = "Differential Evolution"
    id = "de"
    settings = [('steps', 1000), ('pop', 10), ('CR', 0.9), ('F', 2.0),
                ('ftol', 1e-8), ('xtol', 1e-6), #('stop', ''),
                ]

    def solve(self, monitors=None, abort_test=None, mapper=None, **options):
        if abort_test is None:
            abort_test = lambda: False
        options = _fill_defaults(options, self.settings)
        from .mystic.optimizer import de
        from .mystic.solver import Minimizer
        from .mystic import stop
        if monitors is None:
            monitors = [ConsoleMonitor(self.problem)]
        if mapper is not None:
            _mapper = lambda p, v: mapper(v)
        else:
            _mapper = lambda p, v: list(map(self.problem.nllf, v))
        resume = hasattr(self, 'state')
        steps = options['steps'] + (self.state['step'][-1] if resume else 0)
        strategy = de.DifferentialEvolution(npop=options['pop'],
                                            CR=options['CR'],
                                            F=options['F'],
                                            crossover=de.c_bin,
                                            mutate=de.rand1u)
        success = parse_tolerance(options)
        failure = stop.Steps(steps)
        self.history = History()
        # Step adds to current step number if resume
        minimize = Minimizer(strategy=strategy, problem=self.problem,
                             history=self.history, monitors=monitors,
                             success=success, failure=failure)
        if resume:
            self.history.restore(self.state)
        x = minimize(mapper=_mapper, abort_test=abort_test, resume=resume)
        #print(minimize.termination_condition())
        #with open("/tmp/evals","a") as fid:
        #   print >>fid,minimize.history.value[0],minimize.history.step[0],\
        #       minimize.history.step[0]*options['pop']*len(self.problem.getp())
        return x, self.history.value[0]

    def load(self, input_path):
        self.state = load_history(input_path)

    def save(self, output_path):
        save_history(output_path, self.history.snapshot())


def parse_tolerance(options):
    from .mystic import stop
    if options.get('stop', ''):
        return stop.parse_condition(options['stop'])

    xtol, ftol = options['xtol'], options['ftol']
    if xtol == 0:
        if ftol == 0:
            return None
        if ftol < 0:
            return stop.Rf(-ftol, scaled=True)
        return stop.Rf(ftol, scaled=False)
    else:
        if xtol == 0:
            return None
        if xtol < 0:
            return stop.Rx(-xtol, scaled=True)
        return stop.Rx(xtol, scaled=False)


def _history_file(path):
    return path + "-history.json"


def load_history(path):
    """
    Load fitter details from a history file.
    """
    import json
    with open(_history_file(path), "r") as fid:
        return json.load(fid)


def save_history(path, state):
    """
    Save fitter details to a history file as JSON.

    The content of the details are fitter specific.
    """
    import json
    with open(_history_file(path), "w") as fid:
        json.dump(state, fid)


class BFGSFit(FitBase):
    """
    BFGS quasi-newton optimizer.
    """
    name = "Quasi-Newton BFGS"
    id = "newton"
    settings = [('steps', 3000), ('starts', 1),
                ('ftol', 1e-6), ('xtol', 1e-12)]

    def solve(self, monitors=None, abort_test=None, mapper=None, **options):
        if abort_test is None:
            abort_test = lambda: False
        options = _fill_defaults(options, self.settings)
        from .quasinewton import quasinewton
        self._update = MonitorRunner(problem=self.problem,
                                     monitors=monitors)
        result = quasinewton(fn=self.problem.nllf,
                             x0=self.problem.getp(),
                             monitor=self._monitor,
                             abort_test=abort_test,
                             itnlimit=options['steps'],
                             gradtol=options['ftol'],
                             steptol=1e-12,
                             macheps=1e-8,
                             eta=1e-8,
                             )
        self.result = result
        #code = result['status']
        #from .quasinewton import STATUS
        #print("%d: %s, x=%s, fx=%s"
        #      % (code, STATUS[code], result['x'], result['fx']))
        return result['x'], result['fx']

    # BFGS estimates hessian and its cholesky decomposition, but initial
    # tests give uncertainties quite different from the directly computed
    # jacobian in levenburg-marquardt or the hessian estimated at the
    # minimum by numdifftools
    def Hstderr(self):
        return lsqerror.chol_stderr(self.result['L'])

    def Hcov(self):
        return lsqerror.chol_cov(self.result['L'])

    def _monitor(self, step, x, fx):
        self._update(step=step, point=x, value=fx,
                     population_points=[x],
                     population_values=[fx])
        return True


class PSFit(FitBase):
    """
    Particle swarm optimizer.
    """
    name = "Particle Swarm"
    id = "ps"
    settings = [('steps', 3000), ('pop', 1)]

    def solve(self, monitors=None, mapper=None, **options):
        options = _fill_defaults(options, self.settings)
        if mapper is None:
            mapper = lambda x: list(map(self.problem.nllf, x))
        from .random_lines import particle_swarm
        self._update = MonitorRunner(problem=self.problem,
                                     monitors=monitors)
        low, high = self.problem.bounds()
        cfo = dict(parallel_cost=mapper,
                   n=len(low),
                   x0=self.problem.getp(),
                   x1=low,
                   x2=high,
                   f_opt=0,
                   monitor=self._monitor)
        npop = int(cfo['n'] * options['pop'])

        result = particle_swarm(cfo, npop, maxiter=options['steps'])
        satisfied_sc, n_feval, f_best, x_best = result

        return x_best, f_best

    def _monitor(self, step, x, fx, k):
        self._update(step=step, point=x[:, k], value=fx[k],
                     population_points=x.T, population_values=fx)
        return True


class RLFit(FitBase):
    """
    Random lines optimizer.
    """
    name = "Random Lines"
    id = "rl"
    settings = [('steps', 3000), ('starts', 20), ('pop', 0.5), ('CR', 0.9)]

    def solve(self, monitors=None, abort_test=None, mapper=None, **options):
        if abort_test is None:
            abort_test = lambda: False
        options = _fill_defaults(options, self.settings)
        if mapper is None:
            mapper = lambda x: list(map(self.problem.nllf, x))
        from .random_lines import random_lines
        self._update = MonitorRunner(problem=self.problem,
                                     monitors=monitors)
        low, high = self.problem.bounds()
        cfo = dict(parallel_cost=mapper,
                   n=len(low),
                   x0=self.problem.getp(),
                   x1=low,
                   x2=high,
                   f_opt=0,
                   monitor=self._monitor)
        npop = max(int(cfo['n'] * options['pop']), 3)

        result = random_lines(cfo, npop, abort_test=abort_test,
                              maxiter=options['steps'], CR=options['CR'])
        satisfied_sc, n_feval, f_best, x_best = result

        return x_best, f_best

    def _monitor(self, step, x, fx, k):
        # print "rl best",k, x.shape,fx.shape
        self._update(step=step, point=x[:, k], value=fx[k],
                     population_points=x.T, population_values=fx)
        return True


class PTFit(FitBase):
    """
    Parallel tempering optimizer.
    """
    name = "Parallel Tempering"
    id = "pt"
    settings = [('steps', 400), ('nT', 24), ('CR', 0.9),
                ('burn', 100), ('Tmin', 0.1), ('Tmax', 10)]

    def solve(self, monitors=None, mapper=None, **options):
        options = _fill_defaults(options, self.settings)
        # TODO: no mapper??
        from .partemp import parallel_tempering
        self._update = MonitorRunner(problem=self.problem,
                                     monitors=monitors)
        t = np.logspace(np.log10(options['Tmin']),
                           np.log10(options['Tmax']),
                           options['nT'])
        history = parallel_tempering(nllf=self.problem.nllf,
                                     p=self.problem.getp(),
                                     bounds=self.problem.bounds(),
                                     # logfile="partemp.dat",
                                     T=t,
                                     CR=options['CR'],
                                     steps=options['steps'],
                                     burn=options['burn'],
                                     monitor=self._monitor)
        return history.best_point, history.best

    def _monitor(self, step, x, fx, P, E):
        self._update(step=step, point=x, value=fx,
                     population_points=P, population_values=E)
        return True


class SimplexFit(FitBase):
    """
    Nelder-Mead simplex optimizer.
    """
    name = "Nelder-Mead Simplex"
    id = "amoeba"
    settings = [('steps', 1000), ('starts', 1), ('radius', 0.15),
                ('xtol', 1e-6), ('ftol', 1e-8)]

    def solve(self, monitors=None, abort_test=None, mapper=None, **options):
        from .simplex import simplex
        if abort_test is None:
            abort_test = lambda: False
        options = _fill_defaults(options, self.settings)
        # TODO: no mapper??
        self._update = MonitorRunner(problem=self.problem,
                                     monitors=monitors)
        # print "bounds",self.problem.bounds()
        result = simplex(f=self.problem.nllf, x0=self.problem.getp(),
                         bounds=self.problem.bounds(),
                         abort_test=abort_test,
                         update_handler=self._monitor,
                         maxiter=options['steps'],
                         radius=options['radius'],
                         xtol=options['xtol'],
                         ftol=options['ftol'])
        # Let simplex propose the starting point for the next amoeba
        # fit in a multistart amoeba context.  If the best is always
        # used, the fit can get stuck in a local minimum.
        self.problem.setp(result.next_start)
        #print("amoeba %s %s"%(result.x,result.fx))
        return result.x, result.fx

    def _monitor(self, k, n, x, fx):
        self._update(step=k, point=x[0], value=fx[0],
                     population_points=x, population_values=fx)
        return True


class LevenbergMarquardtFit(FitBase):
    """
    Levenberg-Marquardt optimizer.
    """
    name = "Levenberg-Marquardt"
    id = "lm"
    settings = [('steps', 200), ('ftol', 1.5e-8), ('xtol', 1.5e-8)]
    # LM also has
    #    gtol: orthoganality between jacobian columns
    #    epsfcn: numerical derivative step size
    #    factor: initial radius
    #    diag: variable scale factors to bring them near 1

    def solve(self, monitors=None, abort_test=None, mapper=None, **options):
        from scipy import optimize
        if abort_test is None:
            abort_test = lambda: False
        options = _fill_defaults(options, self.settings)
        self._low, self._high = self.problem.bounds()
        self._update = MonitorRunner(problem=self.problem,
                                     monitors=monitors)
        x0 = self.problem.getp()
        maxfev = options['steps']*(len(x0)+1)
        result = optimize.leastsq(self._bounded_residuals,
                                  x0,
                                  ftol=options['ftol'],
                                  xtol=options['xtol'],
                                  maxfev=maxfev,
                                  epsfcn=1e-8,
                                  full_output=True)
        x, cov_x, info, mesg, success = result
        if not 1 <= success <= 4:
            # don't treat "reached maxfev" as a true failure
            if "reached maxfev" in mesg:
                # unless the x values are bad
                if not np.all(np.isfinite(x)):
                    x = None
                    mesg = "Levenberg-Marquardt fit failed with bad values"
            else:
                x = None
        self._cov = cov_x if x is not None else None
        # compute one last time with x forced inside the boundary, and using
        # problem.nllf as returned by other optimizers.  We will ignore the
        # covariance output and calculate it again ourselves.  Not ideal if
        # f is expensive, but it will be consistent with other optimizers.
        if x is not None:
            self.problem.setp(x + self._stray_delta(x))
            fx = self.problem.nllf()
        else:
            fx = None
        return x, fx

    def _bounded_residuals(self, p):
        # Force the fit point into the valid region
        stray = self._stray_delta(p)
        stray_cost = np.sum(stray**2)
        if stray_cost > 0: stray_cost += 1e6
        self.problem.setp(p + stray)
        # treat prior probabilities on the parameters as additional
        # measurements
        residuals = np.hstack(
            (self.problem.residuals().flat, self.problem.parameter_residuals()))
        # Tally costs for straying outside the boundaries plus other costs
        extra_cost = stray_cost + self.problem.constraints_nllf()
        # Spread the cost over the residuals.  Since we are smoothly increasing
        # residuals as we leave the boundary, this should push us back into the
        # boundary (within tolerance) during the lm fit.
        residuals += np.sign(residuals) * (extra_cost / len(residuals))
        return residuals

    def _stray_delta(self, p):
        """calculate how far point is outside the boundary"""
        return (np.where(p < self._low, self._low - p, 0)
                + np.where(p > self._high, self._high - p, 0))

    def cov(self):
        return self._cov


class SnobFit(FitBase):
    name = "SNOBFIT"
    id = "snobfit"
    settings = [('steps', 200)]

    def solve(self, monitors=None, mapper=None, **options):
        options = _fill_defaults(options, self.settings)
        # TODO: no mapper??
        from snobfit.snobfit import snobfit
        self._update = MonitorRunner(problem=self.problem,
                                     monitors=monitors)
        x, fx, _ = snobfit(self.problem, self.problem.getp(),
                           self.problem.bounds(),
                           fglob=0, callback=self._monitor)
        return x, fx

    def _monitor(self, k, x, fx, improved):
        # TODO: snobfit does have a population...
        self._update(step=k, point=x, value=fx,
                     population_points=[x], population_values=[fx])


class DreamModel(MCMCModel):

    """
    DREAM wrapper for fit problems.
    """

    def __init__(self, problem=None, mapper=None):
        """
        Create a sampling from the multidimensional likelihood function
        represented by the problem set using dream.
        """
        # print "dream"
        self.problem = problem
        self.bounds = self.problem.bounds()
        self.labels = self.problem.labels()

        self.mapper = mapper if mapper else lambda p: list(map(self.nllf, p))

    def log_density(self, x):
        return -self.nllf(x)

    def nllf(self, x):
        """Negative log likelihood of seeing models given *x*"""
        # Note: usually we will be going through the provided mapper, and
        # this function will never be called.
        # print "eval",x; sys.stdout.flush()
        return self.problem.nllf(x)

    def map(self, pop):
        # print "calling mapper",self.mapper
        return -np.array(self.mapper(pop))


class DreamFit(FitBase):
    name = "DREAM"
    id = "dream"
    settings = [('samples', int(1e4)), ('burn', 100), ('pop', 10),
                ('init', 'eps'), ('thin', 1),
                ('steps', 0),  # deprecated: use --samples instead
               ]

    def __init__(self, problem):
        FitBase.__init__(self, problem)
        self.dream_model = DreamModel(problem)
        self.state = None

    def solve(self, monitors=None, abort_test=None, mapper=None, **options):
        from .dream import Dream
        if abort_test is None:
            abort_test = lambda: False
        options = _fill_defaults(options, self.settings)

        if mapper:
            self.dream_model.mapper = mapper
        self._update = MonitorRunner(problem=self.dream_model.problem,
                                     monitors=monitors)

        population = initpop.generate(self.dream_model.problem, **options)
        pop_size = population.shape[0]
        draws, steps = int(options['samples']), options['steps']
        if steps == 0:
            steps = (draws + pop_size-1) // pop_size
        # TODO: need a better way to announce number of steps
        # maybe somehow print iteration # of # iters in the monitor?
        print("# steps: %d, # draws: %d"%(steps, pop_size*steps))
        population = population[None, :, :]
        sampler = Dream(model=self.dream_model, population=population,
                        draws=pop_size * steps,
                        burn=pop_size * options['burn'],
                        thinning=options['thin'],
                        monitor=self._monitor,
                        DE_noise=1e-6)

        self.state = sampler.sample(state=self.state, abort_test=abort_test)
        self.state.mark_outliers()
        self.state.keep_best()
        self.state.title = self.dream_model.problem.name

        # TODO: Temporary hack to apply a post-mcmc action to the state vector
        # The problem is that if we manipulate the state vector before saving
        # it then we will not be able to use the --resume feature.  We can
        # get around this by just not writing state for the derived variables,
        # at which point we can remove this notice.
        # TODO: Add derived/visible variable support to other optimizers
        fn, labels = getattr(self.problem, 'derive_vars', (None, None))
        if fn is not None:
            self.state.derive_vars(fn, labels=labels)
        visible_vars = getattr(self.problem, 'visible_vars', None)
        if visible_vars is not None:
            self.state.set_visible_vars(visible_vars)
        integer_vars = getattr(self.problem, 'integer_vars', None)
        if integer_vars is not None:
            self.state.integer_vars(integer_vars)

        x, fx = self.state.best()

        # Check that the last point is the best point
        #points, logp = self.state.sample()
        #assert logp[-1] == fx
        #print(points[-1], x)
        #assert all(points[-1, i] == xi for i, xi in enumerate(x))
        return x, -fx

    def entropy(self, **kw):
        return self.state.entropy(**kw)

    def _monitor(self, state, pop, logp):
        # Get an early copy of the state
        self._update.history.uncertainty_state = state
        step = state.generation
        x, fx = state.best()
        self._update(step=step, point=x, value=-fx,
                     population_points=pop, population_values=-logp)
        return True

    def stderr(self):
        """
        Approximate standard error as 1/2 the 68% interval fo the sample,
        which is a more robust measure than the mean of the sample for
        non-normal distributions.
        """
        from .dream.stats import var_stats

        vstats = var_stats(self.state.draw())
        return np.array([(v.p68[1] - v.p68[0]) / 2 for v in vstats], 'd')

    #def cov(self):
    #    # Covariance estimate from final 1000 points
    #    return np.cov(self.state.draw().points[-1000:])

    def load(self, input_path):
        from .dream.state import load_state
        print("loading saved state (this might take awhile) ...")
        self.state = load_state(input_path, report=100)

    def save(self, output_path):
        self.state.save(output_path)

    def plot(self, output_path):
        self.state.show(figfile=output_path)
        self.error_plot(figfile=output_path)

    def show(self):
        pass

    def error_plot(self, figfile):
        # Produce error plot
        import pylab
        from . import errplot
        # TODO: shouldn't mix calc and display!
        res = errplot.calc_errors_from_state(self.dream_model.problem,
                                             self.state)
        if res is not None:
            pylab.figure()
            errplot.show_errors(res)
            pylab.savefig(figfile + "-errors.png", format='png')


class Resampler(FitBase):
    # TODO: why isn't cli.resynth using this?

    def __init__(self, fitter):
        self.fitter = fitter
        raise NotImplementedError

    def solve(self, **options):
        starts = options.pop('starts', 1)
        restart = options.pop('restart', False)
        x, fx = self.fitter.solve(**options)
        points = _resampler(self.fitter, x, samples=starts,
                            restart=restart, **options)
        self.points = points  # save points for later plotting
        return x, fx


def _resampler(fitter, xinit, samples=100, restart=False, **options):
    """
    Refit the result multiple times with resynthesized data, building
    up an array in Result.samples which contains the best fit to the
    resynthesized data.  *samples* is the number of samples to generate.
    *fitter* is the (local) optimizer to use. **kw are the parameters
    for the optimizer.
    """
    x = xinit
    points = []
    try:  # TODO: some solvers already catch KeyboardInterrupt
        for _ in range(samples):
            # print "== resynth %d of %d" % (i, samples)
            fitter.problem.resynth_data()
            if restart:
                fitter.problem.randomize()
            else:
                fitter.problem.setp(x)
            x, fx = fitter.solve(**options)
            points.append(np.hstack((fx, x)))
            # print self.problem.summarize()
            # print "[chisq=%g]" % (nllf*2/self.problem.dof)
    except KeyboardInterrupt:
        # On keyboard interrupt we can declare that we are finished sampling
        # without it being an error condition, so let this exception pass.
        pass
    finally:
        # Restore the state of the problem
        fitter.problem.restore_data()
        fitter.problem.setp(xinit)
        fitter.problem.model_update()
    return points


class FitDriver(object):

    def __init__(self, fitclass=None, problem=None, monitors=None,
                 abort_test=None, mapper=None, **options):
        self.fitclass = fitclass
        self.problem = problem
        self.options = options
        self.monitors = monitors
        self.abort_test = abort_test
        self.mapper = mapper if mapper else lambda p: list(map(problem.nllf, p))

    def fit(self, resume=None):

        if hasattr(self, '_cov'): del self._cov
        if hasattr(self, '_stderr'): del self._stderr
        fitter = self.fitclass(self.problem)
        if resume:
            fitter.load(resume)
        starts = self.options.get('starts', 1)
        if starts > 1:
            fitter = MultiStart(fitter)
        t0 = time.clock()
        x, fx = fitter.solve(monitors=self.monitors,
                             abort_test=self.abort_test,
                             mapper=self.mapper,
                             **self.options)
        self.fitter = fitter
        self.time = time.clock() - t0
        self.result = x, fx
        if x is not None:
            self.problem.setp(x)
        return x, fx

    def entropy(self):
        if hasattr(self.fitter, 'entropy'):
            return self.fitter.entropy()
        else:
            from .dream import entropy
            return entropy.cov_entropy(self.cov()), 0

    def cov(self):
        """
        Return an estimate of the covariance of the fit.

        Depending on the fitter and the problem, this may be computed from
        existing evaluations within the fitter, or from numerical
        differentiation around the minimum.  The numerical differentiation
        will use the Hessian estimated from nllf.   If the problem uses
        $\chi^2/2$ as its nllf, then you may want to instead compute
        the covariance from the Jacobian::

            J = lsqerror.jacobian(fitdriver.result[0])
            cov = lsqerror.cov(J)

        This should be faster and more accurate than the Hessian of nllf
        when you can use it.
        """
        if not hasattr(self, '_cov'):
            self._cov = None
            if hasattr(self.fitter, 'cov'):
                self._cov = self.fitter.cov()
        if self._cov is None:
            if hasattr(self.problem, 'residuals'):
                J = lsqerror.jacobian(self.problem, self.result[0])
                self._cov = lsqerror.cov(J)
            else:
                H = lsqerror.hessian(self.problem, self.result[0])
                H, L = lsqerror.perturbed_hessian(H)
                self._cov = lsqerror.chol_cov(L)
        return self._cov

    def stderr(self):
        """
        Return an estimate of the standard error of the fit.

        Depending on the fitter and the problem, this may be computed from
        existing evaluations within the fitter, or from numerical
        differentiation around the minimum.
        """
        if not hasattr(self, '_stderr'):
            self._stderr = None
            if hasattr(self.fitter, 'stderr'):
                self._stderr = self.fitter.stderr()
        if self._stderr is None:
            # If no stderr from the fitter then compute it from the covariance
            self._stderr = lsqerror.stderr(self.cov())
        return self._stderr

    def show(self):
        if hasattr(self.fitter, 'show'):
            self.fitter.show()
        if hasattr(self.problem, 'show'):
            self.problem.show()

    def show_err(self):
        """
        Display the error approximation from the numerical derivative.

        Warning: cost grows as the cube of the number of parameters.
        """
        # TODO: need cheaper uncertainty estimate
        # Note: error estimated from hessian diagonal is insufficient.
        err = lsqerror.stderr(self.cov())
        norm = np.sqrt(self.problem.chisq())
        print("=== Uncertainty est. from curvature: par    dx           dx/sqrt(chisq) ===")
        for k, v, dv in zip(self.problem.labels(), self.problem.getp(), err):
            print("%40s %-15s %-15s" %(k,
                                       format_uncertainty(v, dv),
                                       format_uncertainty(v, dv/norm),
                                       ))
        print("="*75)

    def save(self, output_path):
        # print "calling driver save"
        if hasattr(self.fitter, 'save'):
            self.fitter.save(output_path)
        if hasattr(self.problem, 'save'):
            self.problem.save(output_path)

    def load(self, input_path):
        # print "calling driver save"
        if hasattr(self.fitter, 'load'):
            self.fitter.load(input_path)
        if hasattr(self.problem, 'load'):
            self.problem.load(input_path)

    def plot(self, output_path, view=None):
        # print "calling fitter.plot"
        if hasattr(self.problem, 'plot'):
            self.problem.plot(figfile=output_path, view=view)
        if hasattr(self.fitter, 'plot'):
            self.fitter.plot(output_path=output_path)


def _fill_defaults(options, settings):
    """
    Returns options dict with missing values filled from settings.
    """
    result = dict(settings)  # settings is a list of (key,value) pairs
    result.update(options)
    return result

# List of (parameter,factory value) required for each algorithm
FITTERS = [
    SimplexFit,
    DEFit,
    DreamFit,
    BFGSFit,
    LevenbergMarquardtFit,
    PSFit,
    PTFit,
    RLFit,
    SnobFit,
    ]

FIT_AVAILABLE_IDS = [f.id for f in FITTERS]


FIT_ACTIVE_IDS = [
    SimplexFit.id,
    DEFit.id,
    DreamFit.id,
    BFGSFit.id,
    LevenbergMarquardtFit.id,
    ]

FIT_DEFAULT_ID = SimplexFit.id

assert FIT_DEFAULT_ID in FIT_ACTIVE_IDS
assert all(f in FIT_AVAILABLE_IDS for f in FIT_ACTIVE_IDS)