/usr/lib/python3/dist-packages/bumps/pdfwrapper.py is in python3-bumps 0.7.6-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 | """
Build a bumps model from a function.
The :class:`PDF` class uses introspection to convert a negative log
likelihood function nllf(m1,m2,...) into a :class:`bumps.fitproblem.Fitness`
class that has fittable parameters m1, m2, ....
There is no attempt to manage data or uncertainties, except that an
additional plot function can be provided to display the current value
of the function in whatever way is meaningful.
The note regarding user defined functions in :mod:`bumps.curve` apply
here as well.
"""
import inspect
import numpy as np
from .parameter import Parameter
from .fitproblem import Fitness
from .bounds import init_bounds
class PDF(object):
"""
Build a model from a function.
This model can be fitted with any of the bumps optimizers.
*fn* is a function that returns the negative log likelihood of seeing
its input parameters.
The fittable parameters are derived from the parameter names in the
function definition, with *name* prepended to each parameter.
The optional *plot* function takes the same arguments as *fn*, with an
additional *view* argument which may be set from the bumps command
line. If provide, it should provide a visual indication of the
function value and uncertainty on the current matplotlib.pyplot figure.
Additional keyword arguments are treated as the initial values for
the parameters, or initial ranges if par=(min,max). Otherwise, the
default is taken from the function definition (if the function uses
par=value to define the parameter) or is set to zero if no default is
given in the function.
"""
def __init__(self, fn, name="", plot=None, dof=1, **kw):
self.dof = dof
# Make every name a parameter; initialize the parameters
# with the default value if function is defined with keyword
# initializers; override the initializers with any keyword
# arguments specified in the fit function constructor.
labels, vararg, varkw, values = inspect.getargspec(fn)
if vararg or varkw:
raise TypeError(
"Function cannot have *args or **kwargs in declaration")
# Parameters default to zero
init = dict((p, 0.) for p in labels)
# If the function provides default values, use those
if values:
init.update(zip(labels[-len(values):], values))
# Regardless, use any values specified in the constructor, but first
# check that they exist as function parameters.
invalid = set(kw.keys()) - set(labels)
if invalid:
raise TypeError("Invalid initializers: %s" %
", ".join(sorted(invalid)))
init.update(kw)
# Build parameters out of ranges and initial values
pars = dict((p, Parameter.default(init[p], name=name + p))
for p in labels)
# Make parameters accessible as model attributes
for k, v in pars.items():
if hasattr(self, k):
raise TypeError("Parameter cannot be named %s" % k)
setattr(self, k, v)
# Remember the function, parameters, and number of parameters
self._function = fn
self._labels = labels
self._plot = plot
def parameters(self):
return dict((p, getattr(self, p)) for p in self._labels)
parameters.__doc__ = Fitness.parameters.__doc__
def nllf(self):
kw = dict((p, getattr(self, p).value) for p in self._labels)
return self._function(**kw)
nllf.__doc__ = Fitness.__call__.__doc__
def chisq(self):
return self.nllf()/self.dof
#chisq.__doc__ = Fitness.chisq.__doc__
def chisq_str(self):
return "%g" % self.chisq()
#chisq_str.__doc__ = Fitness.chisq_str.__doc__
__call__ = chisq
def plot(self, view=None):
if self._plot:
kw = dict((p, getattr(self, p).value) for p in self._labels)
self._plot(view=view, **kw)
plot.__doc__ = Fitness.plot.__doc__
def numpoints(self):
return len(self._labels) + 1
numpoints.__doc__ = Fitness.numpoints.__doc__
def residuals(self):
return np.array([self.chisq()])
residuals.__doc__ = Fitness.residuals.__doc__
class VectorPDF(object):
"""
Build a model from a function.
This model can be fitted with any of the bumps optimizers.
*fn* is a function that returns the negative log likelihood of seeing
its input parameters.
Vector *p* of length *n* defines the initial value. Unlike :class:`PDF`,
*VectorPDF* operates on a parameter vector *p* rather than individual
parameters *p1*, *p2*, etc. Default parameter values *p* must be
provided in order to determine the number of parameters.
*labels* are the names of the individual parameters. If not present,
the name for parameter *k* defaults to *pk*. Each label is prefixed by
*name*.
The optional *plot* function takes the same arguments as *fn*, with an
additional *view* argument which may be set from the bumps command
line. If provide, it should provide a visual indication of the
function value and uncertainty on the current matplotlib.pyplot figure.
Additional keyword arguments are treated as the initial values for
the parameters, or initial ranges if par=(min,max). Otherwise, the
default is taken from the function definition (if the function uses
par=value to define the parameter) or is set to zero if no default is
given in the function.
"""
def __init__(self, fn, p, name="", plot=None, dof=1, labels=None, **kw):
self.dof = dof
if labels is None:
labels = ["p"+str(k) for k, _ in enumerate(p)]
init = dict(zip(labels, p))
init.update(kw)
# Build parameters out of ranges and initial values
pars = dict((k, Parameter.default(init[k], name=name + k))
for k in labels)
# Make parameters accessible as model attributes
for k, v in pars.items():
if hasattr(self, k):
raise TypeError("Parameter cannot be named %s" % k)
setattr(self, k, v)
# Remember the function, parameters, and number of parameters
self._function = fn
self._labels = labels
self._plot = plot
def parameters(self):
return dict((k, getattr(self, k)) for k in self._labels)
parameters.__doc__ = Fitness.parameters.__doc__
def nllf(self):
pvec = np.array([getattr(self, k).value for k in self._labels])
return self._function(pvec)
nllf.__doc__ = Fitness.__call__.__doc__
def chisq(self):
return self.nllf()/self.dof
#chisq.__doc__ = Fitness.chisq.__doc__
def chisq_str(self):
return "%g" % self.chisq()
#chisq_str.__doc__ = Fitness.chisq_str.__doc__
__call__ = chisq
def plot(self, view=None):
if self._plot:
values = np.array([getattr(self, k).value for k in self._labels])
self._plot(values, view=view)
plot.__doc__ = Fitness.plot.__doc__
def numpoints(self):
return len(self._labels) + 1
numpoints.__doc__ = Fitness.numpoints.__doc__
def residuals(self):
return np.array([self.chisq()])
residuals.__doc__ = Fitness.residuals.__doc__
class DirectProblem(object):
"""
Build model from negative log likelihood function *f(p)*.
Vector *p* of length *n* defines the initial value.
*bounds* defines limiting values for *p* as
*[(p1_low, p1_high), (p2_low, p2_high), ...]*. If all parameters are
have the same bounds, use *bounds=np.tile([low,high],[n,1])*.
Unlike :class:`PDF`, no parameter objects are defined for the elements
of *p*, so all are fitting parameters.
"""
def __init__(self, f, p0, bounds=None, dof=1, labels=None, plot=None):
self.f = f
self.n = len(p0)
self.p = np.asarray(p0, 'd')
self.dof = dof
if bounds is not None:
self._bounds = np.asarray(bounds, 'd')
else:
self._bounds = np.tile((-np.inf, np.inf), (self.n, 1)).T
self._labels = labels if labels else ["p%d" % i for i,_ in enumerate(p0)]
self._plot = plot
def nllf(self, pvec=None):
# Nllf is the primary interface from the fitters. We are going to
# make it as cheap as possible by not having to marshall values
# through parameter boxes.
return self.f(pvec) if pvec is not None else self.f(self.p)
def model_reset(self):
self._parameters = [Parameter(value=self.p[k],
bounds=self._bounds[:,k],
labels=self._labels[k])
for k in range(len(self.p))]
def model_update(self):
self.p = np.array([p.value for p in self._parameters])
def model_parameters(self):
return self._parameters
def chisq(self):
return self.nllf()/self.dof
def chisq_str(self):
return "%g" % self.chisq()
__call__ = chisq
def setp(self, p):
# Note: setp is called
self.p = p
for parameter, value in zip(self._parameters, self.p):
parameter.value = value
def getp(self):
return self.p
def show(self):
print("[nllf=%g]" % self.nllf())
print(self.summarize())
def summarize(self):
return "\n".join("%40s %g"%(name, value)
for name, value in zip(self._labels, self.getp()))
def labels(self):
return self._labels
def randomize(self, n=None):
bounds = [init_bounds(b) for b in self._bounds.T]
if n is not None:
return np.array([b.random(n) for b in bounds]).T
else:
# Need to go through setp when updating model.
self.setp([b.random(1)[0] for b in bounds])
def bounds(self):
return self._bounds
def plot(self, p=None, fignum=None, figfile=None, view=None):
if p is not None:
self.setp(p)
if self._plot:
values = np.array([getattr(self, p).value for p in self._labels])
self._plot(values, view=view)
plot.__doc__ = Fitness.plot.__doc__
|