This file is indexed.

/usr/lib/python3/dist-packages/bumps/pytwalk.py is in python3-bumps 0.7.6-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
"""
T-walk self adjusting MCMC.
"""

# Author: By Andres Christen.
# see:  http://www.cimat.mx/~jac/twalk/

# 2010-04-17 Paul Kienzle
# * typo fixups
# * move pylab import to the particular functions
# * remove scipy dependence

__all__ = ["pytwalk"]

from numpy.random import uniform, normal
from numpy import ones, zeros, cumsum, shape, mat, cov, mean, ceil, matrix, sqrt
from numpy import floor, exp, log, sum, pi, arange

# Some auxiliary functions and constants
# square of the norm.


def SqrNorm(x):
    return sum(x * x)

log2pi = log(2 * pi)


class pytwalk:

    """This is the t-walk class.

    Initiates defining the dimension= n and -log of the objective function= U,
    Supp defines the support, returns True if x within the support, eg:

    Mytwalk = twalk( n=3, U=MyMinusLogf, Supp=MySupportFunction).

    Then do: Mytwalk.Run?

    Other parameter are:
    ww= the prob. of choosing each kernel, aw, at, n1phi (see inside twalk.py)
    with default values as in the paper, normally NOT needed to be changed."""

    def __init__(self, n, U=(lambda x: sum(0.5 * x ** 2)), Supp=(lambda x: True),
                 ww=[0.0000, 0.4918, 0.4918, 0.0082, 0.0082], aw=1.5, at=6.0, n1phi=4.0):

        self.n = n
        self.U = U
        self.Supp = Supp
        self.Output = zeros((1, n + 1))  # No data (MCMC output) yet
        self.T = 1
        # To save the acceptance rates of each kernel, and the global acc. rate
        self.Acc = zeros(6)

        # Kernel probabilities
        self.Fw = cumsum(ww)

        # Parameters for the propolsals
        self.aw = aw  # For the walk move
        self.at = at  # For the Traverse move

        # n1phi = 5 ### expected value of parameters to move
        self.pphi = min(n, n1phi) / (1.0 * n)  # Prob. of choosing each par.

    def Run(self, T, x0, xp0):
        """Run the twalk.

           Run( T, x0, xp0),
           T = Number of iterations.
           x0, xp0, two initial points within the support,
           ***each entry of x0 and xp0 most be different***.
        """

        print("twalk: Running the twalk with %d iterations." % T)
        # Check x0 and xp0 in the support
        x = x0  # Reference, so we can retrieve the last values used
        if not(self.Supp(x)):
            print(
                "twalk: ERROR, initial point x0 = %12.4g out of support." % x0)
            return 0
        u = self.U(x)

        xp = xp0
        if not(self.Supp(xp)):
            print(
                "twalk: ERROR, initial point xp0 = %12.4g out of support." % xp0)
            return 0
        up = self.U(xp)

        if any(abs(x0 - xp0) <= 0):
            print("twalk: ERROR, not all entries of initial values different.")
            return 0

        # Set the array to place the iterations and the U's ... we donot save
        # up's
        self.Output = zeros((T + 1, self.n + 1))
        self.T = T + 1
        self.Acc = zeros(6)
        kercall = zeros(6)  # Times each kernel is called

        # Make local references for less writing
        n = self.n
        Output = self.Output
        Acc = self.Acc

        Output[0, 0:n] = x.copy()
        Output[0, n] = u

        # Sampling
        for it in range(T):

            y, yp, ke, A, u_prop, up_prop = self.onemove(x, u, xp, up)

            kercall[ke] += 1
            kercall[5] += 1
            if (uniform() < A):
                x = y.copy()  # Accept the proposal y
                u = u_prop
                xp = yp.copy()  # Accept the proposal yp
                up = up_prop

                Acc[ke] += 1
                Acc[5] += 1

            # To retrive the current values
            self.x = x
            self.xp = xp
            self.u = u
            self.up = up

            Output[it + 1, 0:n] = x.copy()
            Output[it + 1, n] = u

        if (Acc[5] == 0):
            print("twalk: WARNING,  all propolsals were rejected!")
            return 0

        for i in range(6):
            if kercall[i] != 0:
                Acc[i] /= kercall[i]
        return 1

    def onemove(self, x, u, xp, up):
        """One move of the twalk.  This is basically the raw twalk kernel.
           It is usefull if the twalk is needed inside a more complex MCMC.

           onemove(x, u, xp, up),
           x, xp, two points WITHIN the support ***each entry of x0 and xp0 must be different***.
           and the value of the objective at x, and xp
           u=U(x), up=U(xp).

           It returns: [y, yp, ke, A, u_prop, up_prop]
           y, yp: the proposed jump
           ke: The kernel used, 0=nothing, 1=Walk, 2=Traverse, 3=Blow, 4=Hop
           A: the M-H ratio
           u_prop, up_prop: The values for the objective func. at the proposed jumps
        """

        # Make local references for less writing
        U = self.U
        Supp = self.Supp
        Fw = self.Fw

        ker = uniform()  # To choose the kernel to be used
        ke = 1
        A = 0

        # Kernel nothing exchange x with xp
        if ((0.0 <= ker) & (ker < Fw[0])):
            ke = 0
            y = xp.copy()
            up_prop = u
            yp = x.copy()
            u_prop = up
            # A is the MH acceptance ratio
            A = 1.0
            # always accepted

        # The Walk move
        if ((Fw[0] <= ker) & (ker < Fw[1])):

            ke = 1

            dir = uniform()

            if ((0 <= dir) & (dir < 0.5)):  # x as pivot

                yp = self.SimWalk(xp, x)

                y = x.copy()
                u_prop = u

                if ((Supp(yp)) & (all(abs(yp - y) > 0))):
                    up_prop = U(yp)
                    A = exp(up - up_prop)
                else:
                    up_prop = None
                    A = 0
                    # out of support, not accepted

            else:  # xp as pivot

                y = self.SimWalk(x, xp)

                yp = xp.copy()
                up_prop = up

                if ((Supp(y)) & (all(abs(yp - y) > 0))):
                    u_prop = U(y)
                    A = exp(u - u_prop)
                else:
                    u_prop = None
                    A = 0
                    # out of support, not accepted

        # The Traverse move
        if ((Fw[1] <= ker) & (ker < Fw[2])):

            ke = 2
            dir = uniform()

            if ((0 <= dir) & (dir < 0.5)):  # x as pivot

                beta = self.Simbeta()
                yp = self.SimTraverse(xp, x, beta)

                y = x.copy()
                u_prop = u

                if Supp(yp):
                    up_prop = U(yp)
                    if (self.nphi == 0):
                        A = 1  # Nothing moved
                    else:
                        A = exp((up - up_prop) + (self.nphi - 2) * log(beta))
                else:
                    up_prop = None
                    A = 0  # out of support, not accepted
            else:  # xp as pivot

                beta = self.Simbeta()
                y = self.SimTraverse(x, xp, beta)

                yp = xp.copy()
                up_prop = up

                if Supp(y):
                    u_prop = U(y)
                    if (self.nphi == 0):
                        A = 1  # Nothing moved
                    else:
                        A = exp((u - u_prop) + (self.nphi - 2) * log(beta))
                else:
                    u_prop = None
                    A = 0  # out of support, not accepted

        # The Blow move
        if ((Fw[2] <= ker) & (ker < Fw[3])):

            ke = 3
            dir = uniform()

            if ((0 <= dir) & (dir < 0.5)):  # x as pivot
                yp = self.SimBlow(xp, x)

                y = x.copy()
                u_prop = u
                if ((Supp(yp)) & all(yp != x)):
                    up_prop = U(yp)
                    W1 = self.GBlowU(yp, xp,  x)
                    W2 = self.GBlowU(xp, yp,  x)
                    A = exp((up - up_prop) + (W1 - W2))
                else:
                    up_prop = None
                    A = 0  # out of support, not accepted
            else:  # xp as pivot
                y = self.SimBlow(x, xp)

                yp = xp.copy()
                up_prop = up
                if ((Supp(y)) & all(y != xp)):
                    u_prop = U(y)
                    W1 = self.GBlowU(y,  x, xp)
                    W2 = self.GBlowU(x,  y, xp)
                    A = exp((u - u_prop) + (W1 - W2))
                else:
                    u_prop = None
                    A = 0  # out of support, not accepted

        # The Hop move
        if ((Fw[3] <= ker) & (ker < Fw[4])):

            ke = 4
            dir = uniform()

            if ((0 <= dir) & (dir < 0.5)):  # x as pivot
                yp = self.SimHop(xp, x)

                y = x.copy()
                u_prop = u
                if ((Supp(yp)) & all(yp != x)):
                    up_prop = U(yp)
                    W1 = self.GHopU(yp, xp,  x)
                    W2 = self.GHopU(xp, yp,  x)
                    A = exp((up - up_prop) + (W1 - W2))
                else:
                    up_prop = None
                    A = 0  # out of support, not accepted
            else:  # xp as pivot
                y = self.SimHop(x, xp)

                yp = xp.copy()
                up_prop = up
                if ((Supp(y)) & all(y != xp)):
                    u_prop = U(y)
                    W1 = self.GHopU(y,  x, xp)
                    W2 = self.GHopU(x,  y, xp)
                    A = exp((u - u_prop) + (W1 - W2))
                else:
                    u_prop = None
                    A = 0  # out of support, not accepted

        return [y, yp, ke, A, u_prop, up_prop]


##########################################################################
# Auxiliaries for the kernels

    # Used by the Walk kernel
    def SimWalk(self, x, xp):
        aw = self.aw
        n = self.n

        phi = (uniform(size=n) < self.pphi)  # parameters to move
        self.nphi = sum(phi)
        z = zeros(n)

        for i in range(n):
            if phi[i]:
                u = uniform()
                z[i] = (aw / (1 + aw)) * (aw * u ** 2.0 + 2.0 * u - 1.0)

        return x + (x - xp) * z

    # Used by the Traverse kernel
    def Simbeta(self):
        at = self.at
        if (uniform() < (at - 1.0) / (2.0 * at)):
            return exp(1.0 / (at + 1.0) * log(uniform()))
        else:
            return exp(1.0 / (1.0 - at) * log(uniform()))

    def SimTraverse(self,  x, xp, beta):
        n = self.n

        phi = (uniform(size=n) < self.pphi)
        self.nphi = sum(phi)

        rt = x.copy()
        for i in range(n):
            if (phi[i]):
                rt[i] = xp[i] + beta * (xp[i] - x[i])

        return rt

    # Used by the Blow kernel
    def SimBlow(self, x, xp):
        n = self.n

        phi = (uniform(size=n) < self.pphi)
        self.nphi = sum(phi)

        self.sigma = max(phi * abs(xp - x))

        rt = x.copy()
        for i in range(n):
            if (phi[i]):
                rt[i] = x[i] + self.sigma * normal()

        return rt

    def GBlowU(self, h, x, xp):
        nphi = self.nphi

        if (nphi > 0):
            return (nphi / 2.0) * log2pi + nphi * log(self.sigma) + 0.5 * SqrNorm(h - xp) / (self.sigma ** 2)
        else:
            return 0

    # Used by the Hop kernel
    def SimHop(self, x, xp):
        n = self.n

        phi = (uniform(size=n) < self.pphi)
        self.nphi = sum(phi)

        self.sigma = max(phi * abs(xp - x)) / 3.0

        rt = x.copy()
        for i in range(n):
            if (phi[i]):
                rt[i] = xp[i] + self.sigma * normal()

        return rt

    def GHopU(self, h, x, xp):  # It is actually equal to GBlowU!
        nphi = self.nphi

        if (nphi > 0):
            return (nphi / 2.0) * log2pi + nphi * log(self.sigma) + 0.5 * SqrNorm(h - xp) / (self.sigma ** 2)
        else:
            return 0


##########################################################################
# Output analysis auxiliary methods

    def IAT(self, par=-1, start=0, end=0, maxlag=0):
        """Calculate the Integrated Autocorrelation Times of parameters par
           the default value par=-1 is for the IAT of the U's"""
        if (end == 0):
            end = self.T

        if (self.Acc[5] == 0):
            print("twalk: IAT: WARNING,  all proposals were rejected!")
            print(
                "twalk: IAT: Cannot calculate IAT, fixing it to the sample size.")
            return self.T

        iat = IAT(self.Output, cols=par, maxlag=maxlag, start=start, end=end)

        return iat

    def TS(self, par=-1, start=0, end=0):
        """Plot time series of parameter par (default = log f) etc."""
        from pylab import plot, xlabel, ylabel

        if par == -1:
            par = self.n

        if (end == 0):
            end = self.T

        if (par == self.n):
            plot(arange(start, end), -1 * self.Output[start:end, par])
            ylabel("Log of Objective")
        else:
            plot(arange(start, end), self.Output[start:end, par])
            ylabel("Parameter %d" % par)
        xlabel("Iteration")

    def Ana(self, par=-1, start=0, end=0):
        """Output Analysis, TS plots, acceptance rates, IAT etc."""
        if par == -1:
            par = self.n

        if (end == 0):
            end = self.T

        print(
            "Acceptance rates for the Walk, Traverse, Blow and Hop kernels:" + str(self.Acc[1:5]))
        print("Global acceptance rate: %7.5f" % self.Acc[5])

        iat = self.IAT(par=par, start=start, end=end)
        print("Integrated Autocorrelation Time: %7.1f, IAT/n: %7.1f" %
              (iat, iat / self.n))

        self.TS(par=par, start=start, end=end)

    def Hist(self, par=-1, start=0, end=0, g=(lambda x: x[0]), xlab="g", bins=20):
        """Basic histograms and output analysis.  If par=-1, use g.
           The function g provides a transformation to be applied to the data,
           eg g=(lambda x: abs(x[0]-x[1]) would plot a histogram of the distance
           between parameters 0 and 1, etc."""
        from pylab import hist, xlabel

        if (end == 0):
            end = self.T

        if (par == -1):
            ser = zeros(end - start)
            for it in range(end - start):
                ser[it] = g(self.Output[it + start, :])
            xlabel(xlab)
            print("Mean for %s= %f" % (xlab, mean(ser)))
        else:
            ser = self.Output[start:end, par]
            xlabel("Parameter %d" % par)
            print("Mean for par %d= %f" % (par, mean(ser)))

        hist(ser, bins=bins)
        print("Do:\nfrom pylab import show\nshow()")

    def Save(self, fnam, start=0, thin=1):
        """Saves the Output as a text file, starting at start (burn in), with thinning (thin)."""
        print(("Saving output, all pars. plus the U's in file", fnam))

        from numpy import savetxt

        savetxt(fnam, self.Output[start:, ])


# A simple Random Walk M-H
    def RunRWMH(self, T, x0, sigma):
        """Run a simple Random Walk M-H"""

        print(
            "twalk: This is the Random Walk M-H running with %d iterations." % T)
        # Local variables
        x = x0.copy()
        if not(self.Supp(x)):
            print("twalk: ERROR, initial point x0 out of support.")
            return 0

        u = self.U(x)
        n = self.n

        # Set the array to place the iterations and the U's
        self.Output = zeros((T + 1, n + 1))
        self.Acc = zeros(6)

        # Make local references for less writing
        Output = self.Output
        U = self.U
        Supp = self.Supp
        Acc = self.Acc

        Output[0, 0:n] = x.copy()
        Output[0, n] = u

        y = x.copy()
        for it in range(T):
            y = x + normal(size=n) * sigma  # each entry with sigma[i] variance
            if Supp(y):  # If it is within the support of the objective
                uprop = U(y)  # Evaluate the objective
                if (uniform() < exp(u - uprop)):
                    x = y.copy()  # Accept the propolsal y
                    u = uprop
                    Acc[5] += 1

            Output[it + 1, 0:n] = x
            Output[it + 1, n] = u

        if (Acc[5] == 0):
            print("twalk: WARNING,  all propolsals were rejected!")
            return 0

        Acc[5] /= T
        return 1


##########################################################################
# Auxiliary functions to calculate Integrated autocorrelation times of a
# time series ####


# Calculates an autocovariance 2x2 matrix at lag l in column c of matrix Ser with T rows
# The variances of each series are in the diagonal and the
# (auto)covariance in the off diag.
def AutoCov(Ser, c, la, T=0):
    if (T == 0):
        T = shape(Ser)[0]  # Number of rows in the matrix (sample size)

    return cov(Ser[0:(T - 1 - la), c], Ser[la:(T - 1), c], bias=1)


# Calculates the autocorrelation from lag 0 to lag la of columns cols (list)
# for matrix Ser
def AutoCorr(Ser, cols=0, la=1):
    T = shape(Ser)[0]  # Number of rows in the matrix (sample size)

    ncols = shape(mat(cols))[1]  # Number of columns to analyse (parameters)

    # if ncols == 1:
    #    cols = [cols]

    # Matrix to hold output
    Out = matrix(ones((la) * ncols)).reshape(la, ncols)

    for c in range(ncols):
        for l in range(1, la + 1):
            Co = AutoCov(Ser, cols[c], l, T)
            Out[l - 1, c] = Co[0, 1] / (sqrt(Co[0, 0] * Co[1, 1]))

    return Out


# Makes an upper band matrix of ones, to add the autocorrelation matrix
# gamma = auto[2*m+1,c]+auto[2*m+2,c] etc.
# MakeSumMat(lag) * AutoCorr( Ser, cols=c, la=lag) to make the gamma matrix
def MakeSumMat(lag):
    rows = (lag) / 2  # Integer division!
    Out = mat(zeros([rows, lag], dtype=int))

    for i in range(rows):
        Out[i, 2 * i] = 1
        Out[i, 2 * i + 1] = 1

    return Out


# Finds the cutting time, when the gammas become negative
def Cutts(Gamma):
    cols = shape(Gamma)[1]
    rows = shape(Gamma)[0]
    Out = mat(zeros([1, cols], dtype=int))
    Stop = mat(zeros([1, cols], dtype=bool))

    if (rows == 1):
        return Out

    i = 0
    # while (not(all(Stop)) & (i < (rows-1))):
    for i in range(rows - 1):
        for j in range(cols):  # while Gamma stays positive and decreasing
            if (((Gamma[i + 1, j] > 0.0) & (Gamma[i + 1, j] < Gamma[i, j])) & (not Stop[0, j])):
                Out[0, j] = i + 1  # the cutting time for colomn j is i+i
            else:
                Stop[0, j] = True
        i += 1

    return Out


# Automatically find a maxlag for IAT calculations
def AutoMaxlag(Ser, c, rholimit=0.05, maxmaxlag=20000):
    Co = AutoCov(Ser, c, la=1)
    rho = Co[0, 1] / Co[0, 0]  # lag one autocorrelation

    # if autocorrelation is like exp(- lag/lam) then, for lag = 1
    lam = -1.0 / log(abs(rho))

    # Our initial guess for maxlag is 1.5 times lam (eg. three times the mean
    # life)
    maxlag = int(floor(3.0 * lam)) + 1

    # We take 1% of lam to jump forward and look for the
    # rholimit threshold
    jmp = int(ceil(0.01 * lam)) + 1

    T = shape(Ser)[0]  # Number of rows in the matrix (sample size)

    while ((abs(rho) > rholimit) & (maxlag < min(T / 2, maxmaxlag))):
        Co = AutoCov(Ser, c, la=maxlag)
        rho = Co[0, 1] / Co[0, 0]
        maxlag = maxlag + jmp
        ###print("maxlag=", maxlag, "rho", abs(rho), "\n")

    maxlag = int(floor(1.3 * maxlag))
    # 30% more

    if (maxlag >= min(T / 2, maxmaxlag)):  # not enough data
        fixmaxlag = min(min(T / 2, maxlag), maxmaxlag)
        print("AutoMaxlag: Warning: maxlag= %d > min(T/2,maxmaxlag=%d), fixing it to %d" %
              (maxlag, maxmaxlag, fixmaxlag))
        return fixmaxlag

    if (maxlag <= 1):
        fixmaxlag = 10
        print("AutoMaxlag: Warning: maxlag= %d ?!, fixing it to %d" %
              (maxlag, fixmaxlag))
        return fixmaxlag

    print("AutoMaxlag: maxlag= %d." % maxlag)
    return maxlag


# Find the IAT
def IAT(Ser, cols=-1,  maxlag=0, start=0, end=0):

    ncols = shape(mat(cols))[1]  # Number of columns to analyse (parameters)
    if ncols == 1:
        if (cols == -1):
            cols = shape(Ser)[1] - 1  # default = last column
        cols = [cols]

    if (end == 0):
        end = shape(Ser)[0]

    if (maxlag == 0):
        for c in cols:
            maxlag = max(maxlag, AutoMaxlag(Ser[start:end, :], c))

    #print("IAT: Maxlag=", maxlag)

    #Ga = MakeSumMat(maxlag) * AutoCorr( Ser[start:end,:], cols=cols, la=maxlag)

    Ga = mat(zeros((maxlag / 2, ncols)))
    auto = AutoCorr(Ser[start:end, :], cols=cols, la=maxlag)

    # Instead of producing the maxlag/2 X maxlag MakeSumMat matrix, we
    # calculate the gammas like this
    for c in range(ncols):
        for i in range(maxlag / 2):
            Ga[i, c] = auto[2 * i, c] + auto[2 * i + 1, c]

    cut = Cutts(Ga)
    nrows = shape(Ga)[0]

    ncols = shape(cut)[1]
    Out = -1.0 * mat(ones([1, ncols]))

    if any((cut + 1) == nrows):
        print("IAT: Warning: Not enough lag to calculate IAT")

    for c in range(ncols):
        for i in range(cut[0, c] + 1):
            Out[0, c] += 2 * Ga[i, c]

    return Out